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PREFACE.

In the following work, I have proposed to myself
to apply the principles of mechanics to the discussion
of the most important and obvious of those questions
which present themselves in the practice of the en-
gineer and the architect ; and I have sought to in-
clude in that discussion all the circumstances on which
the practical solution of such questions may be as-
sumed to depend. It includes the substance of a
course of lectures delivered to the students of King's |
College in the department of engineering and archi- |
tecture, during the years 1840, 1841, 1842.* 1

In the first part I have treated of those portions of
the science of Srarics which have their application
in the theory of machines and the theory of con-
struction.

In the second, of the science of Dymamics, and,
under this head, particularly of that union of a con-
tinued pressure with a continued motion which has
received from English writers the various names of

® The first 170 pages of the work were printed for the use of
my pupils in the year 1840, Copies of them were about the same
time in the possession of several of iy friends in the Umvemuel.
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vi PREFACE.

“ dynamical effect,” * cfficieney,” * work done,” ¢ la-
bouring force,” “work,” &e.; and “moment dactivite,”
“quantité d'action,” “ puissance mécanique,” ¢ tra-
vail,” from French writers,

Among the latter this variety of terms has at length
given place to the most intelligible and the simplest
of them, “ travail.” The kEnglish word “ work” is
the obvious transiation of © travail,” and the use of it
appears to be recommended by the same consider-
ations. The work of overcoming a pressure of one
pound through « space of one foot has in this country
been taken as the unit, in terms of which any other
amount of work is cstimated ; and in France the
work of overcoming a pressure of one kilogramme
through a space of one metre. M. Dupin has pro-
posed the application of the term dyname to this
unit.

I have gladly sheltercd myself from the charge of
having contributed to increasc the vocabulary of
scientific words by assuming the obvious term * unit
of work” to represent concisely and conveniently
enough the idea which is attached to it, without
translation.

The work of any pressure operating through any
space is cvidently measured in terms of such units,
by multiplying the number of pounds in the pressure
by the number of feet in the space, if the direction of
the pressure be continually that in which the space is
described. If not, it follows, by a simple geometrical
deduction, that it is measared by the product of the
number of pounds in the pressure, by the number of
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feet in the projection of the space described®, upon
the direction of the pressure ; that is, by the produet
of the pressure by its virtnal velocity. Thus, then,
we conclude, at onee, by the principle of virtual
velocities, that if a machine work under a constant
equilibrium of the pressures applied to it, orif it work
uniformly, then is the aggregate work of those pres-
sures which tend to accelerate its motion equal to the
aggregate work of those which tend to retard it ; 'and,
by the principle of wvis viva, that if the machine do
not work under an equilibrium of the forces impressed
upon it, then is the aggregate work of those which
tend to accelerate the motion of the machine greater
or less than the aggregate work of those which tend
to retard its motion by one half the aggregate of the
vires vivee acquired or lost by the moving parts of the
system, whilst the work is being done upon it. In no
respect have the labours of the illustrious president
of the Academy of Sciences more contributed to the
developement of the theory of machines than in the
application which he has so successfully made to it of
this principle of vis viva.t In- the elementary ‘dis-
cussion of this priuciple, which is given by M. Pon-
celet, in the introduction to his' Mécenique Indus-
trielle, he has revived the term vis inerfie (vis

® Tf the direction of the pressure rémain always parallel to iteslf,

the space described may be auny finite spaces; if it.de nots the spaes

+ is understood to be so small, that the direction -of the pressure may.

be supposed to remam pa.rallel to zlxelf whﬂst l:hat space 1s de-

seribed. - :

1 See Poncelet, Mécanigue Indusiricle, rtroméme plrtie. i
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tnertie, vis insita, Newton), and, associating with it
the definitive 1dca of a force of resistance opposed to
the acceleration or the retardation of a body’s motion,
he has shown (Arts. 66. and 122.) the work expended
in overcoming this resistance through any space to be
measured by one half the vis viva accumulated through
the space ; so that throwing into the consideration of
the forces under which a machine works, the vires
inertie of its moving elements, and obscrving that one
half of their aggregate vis viva i3 equal to the aggre-
gate work of their vires inertiee, it follows, by the
principle of virtual velocities, that the difference be-
tween the aggregate work of those forces impressed
upon a machine, which tend to acecelerate its motion,
and the aggregate work of those which tend to retard
the motion, is equal to the aggregate work of the
vires inertie of the moving parts of the machine:
under which form the principle of vis vive resolves
itself into the principle of virtual vclocities. So many
difficulties, however, oppose themselves to the intro-
duction of the term wis inertie, associated with the
definitive idea of an opposing force, into the discussion
of questions of mechanics, and especially of practical
and elementary mechanics, that it has appeared to the
author of this work desirable to avoid it. It is with
this view, that in the following work a new interpret-
ation is given to that function of the velocity of a
moving body which is known as its »is viva ; one half
that function being interpreted to represent the num-
ber of units of work accumulated in the body so long
as its motion is continued, and which number of units
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of work it is capable of. reproducing upon any resist-
ance which may be opposed to its motion, and bring it
to rest. A very simple investigation (Art. 66.) esta-
“blishes the truth of this interpretation, and gives to
the principle of vis viva the following new and more
simple enunciation :— * The difference between the ag-
gregate work done upon the machine, during any time,
by those forces which tend to accelerate the motion,
and the aggregate work, during the same time, of those
which tend to retard the motion, is equal to the ag-
gregate number of units of work accumulated in the
moving parts of the machine during that time if the
former aggregate exceed the latter, and lost from
them during that time if the former aggregate fall
short of the latter.” Thus, then, if the aggregate
work of the forces which tend to accelerate the motion
of a machine exceeds that of the forces which tend
to retard it, then is the surplus work (that done upon
the driving points, above that expended upon the
prejudicial resistances and upon the working points)
continually accumulated in the moving elements of
the machine, and their motion is thereby continaally
accelerated. And if the former aggregate be less than
the latter, then is the deficiency supplied from the
work already accumulated in the moving elements, so
that their motion is in this case continually retarded.
The moving power “divides itself whilst it ope-
rates in a machine, first, into that which overcémes
the prejudicial resistances ofthe: machine, or those
which are opposed by friction and other causes, use-
lessly absorbing the work in its transmission. Se-

&
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condly, into that which accelerates the motion of the

various moving parts of the machine, and which accu-

mulates in them so long -as the work done by the

moving power upon it exceeds that expended upon’
the various resistances opposed to the motion of the

machine.  Thirdly, into that which overcomes the

useful resistances, or those which are opposed to the

motion of the machine at the working point, or points,

by the useful work which is done by it.

Between thesc three elements there obtains in every
machine a mathematical relation, which I have called
its mopurrs. The general form of this modulus I
have discussed in a memoir on the * Theory of Ma-
chines” published in the Philosophical Transactions
for the year 1841. The determination of the par-
ticular moduli 8f those clements of machinery which
are most commonly in use is the subject of the third
part of the following work. From a combination of
the moduli of any such elements there results at once
the modulus of the machine compounded of them.

When a machine has acquired a state of uniform
motion work ceases to accumulate in its moving
elements, and its modulus assumes the form of a
dircct relation between the work done by the motive
power upon its driving point and that yielded at its
working points. I have determined by a general
method* the modulus in this case, from that statical
relation between the driving and working pressures
upon the machine which obtains in the state bordering

= Art. 152. See Phil. Trans., 1841, p. 290.
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upon its motion, and which may be deduced from the
known conditions of equilibrium and the established
laws of friction. In making this deduction I have, in
every case, availed myself of the following principle,
first published in my paper on the theory of the arch -
read before the Cambridge Philosophical Society in .
Dec. 1833, and printed in their Transactions of the '
following year:—*“In the state bordering upon mo-
tion of one body upon the surface of another, the
resultant pressure upon their common surface of con-
tact is inclined to the normal, at an angle whose
tangent is equal to the coefficient of friction.”

This angle I have called the limiting angle of resist-
ance. [ts values calculated, in respect to a great
variety of surfaces of contact, are given in a table at
the conclusion of the second part, from the admirable
experiments of M. Morin¥*, into the mechanical details
of which precautions have been introduced hitherto
unknown to experiments of this class, and which have
given to our knowledge of the laws of friction a pre-
cision and a certainty hitherto ushoped for.

Of the various elements of machinery those which
rotate about cylindrical axes are of the most frequent
occurrence and the most useful application; I have,
therefore, in the first place sought to establish the
general relation of the state bordering upon motion
between the driving and the working pressures upon
such a machine, reference being had to the weight of

* Nouselles Expériences sur le Frottement, Paris, 1838, |
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the machine.®* This relation points out the existence
of a particular direction in which the driving pressure
should be applied to any such machine, that the
amount of work expended upon the friction of the
axis may he the least possible.  This direction of the
driving pressure always presents itself on the same
side of the axis with that of the working pressure,
and when the latter is vertical it becomes parallel to
it; a principle of the economy of power in machinery
which has received its application in the parallel mo-
tion of the marine engines known as the Gorgon
Engines.

I have devoted a considerable space in this portion
of my work to the determination of the modulus of a
system of toothed wheels ; this determination I have,
moreover, extended to bevil wheels, and have included
in it, with the influence of the friction of the teeth
the wheels, that of their axes and their weights.
An approximate form of this modulus applies to
any shape of the teeth under which they may be
made to work corrftly; and when in this approx-
imate form of the modulus the terms which represent
the influence of the friction of the axis and the weight
of the wheel are ncglected, it resolves itself into &
well known theorem of M. Poncelet, reproduced by
M. Navier and the Rev. Dr. Whewell.4 In respect

* In my memoir on the “ Theory of Machines” (Phil. Trans.
1841), I have extended this relation to the case in which the num-
ber of the pressures and their directions are any whatever. The
theorem which expresses it is given in the Appendix of this work.

1 In the discussion of the friction of the teeth of wheels, the



Gt e B ¢ Yo T

PREFACE. xii

to wheels having epicycloidal and involute teeth, the
modulus assumes a character of mathematical ex-
actitude and precision, and at once. establishes the
conclusion (so often disputed) that the loss of power
is greater before the teeth pass the line of centres
than at corresponding points afterwards; that the
contact should, nevertheless, in all cases take place
partly before and partly after the line of centres has
been passed. In the case of involute teeth, the pro-
portion in which the arc of contact should thus be
divided by the line of centres is determined. by &
simple formula; as also are .the best dimensions of the
base of the involute, with a view to the most perfect
economy of power in the working of the wheels.

The greater portion of the subjects discussed in
the third part of my work I believe to be entirely
new to science. In the fourth part I have treated
of ““the theory of the stability of structures,” referring
its conditions, so far ag they are dependent upon ro-
tation, to the properties of a certain line which may
be conceived to traverse every structure, passing
through those points in it where its surfaces:.of con-
tact are intersected by the resultant preséures upon
them. To this line, whose properties I first dis-.
cussed in a memoir upon *the Stability of a Bystem
of Bodies in Contact,” printed in the sixth volume of
the Cumb. Phil. Trans., I have given the name of,,‘

direction of the mutual pressures of the mh is determmed by Y

method first applied by me to that purpose i a popnhrhwﬁne,
entitled Mechanics applied to the Arts, published in 1884 * '
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the line of resistance; it differs essentially in its pro-
perties from a line referred to by preceding writers
under the name of the curve of cquilibrium or the
line of pressure.

The distance of the line of resistance from the ex-
trados of a structure, at the point where it most
nearly approaches it, I have taken as a measure of
the stability of a structure, and have called it the
modulus of stability * ; conceiving this measure of the
stability to be of more obvious and easier application
than the cocfficicnt of stability used by the French
writers. :

That structure in respect to cvery independent
clement of which, the modulus of stability is the
same, is cvidently the structure of the greatest
stability having a given quantity of material em-
ployed in its construction; or of the greatest economy
of material having a given stability.

The application of these priveiples of construction
to the theory of picrs, walls supported by counter-
forts and shores, buttresses, walls supporting the
thrust of roofs and the weights of the floors of dwell-
ings, and Gothic structures, has suggested to me u
class of problems never, I believe, before treated ma-
thematically.

I have applied the well known principle of Coulomb

* This idea was suggested to me by a rule for the stability of
revétement walls attributed to Vauban, to the effect, that the re-
sultant pressure should intersect the base of such a wall at a point
whose distance from its extrados is §ths the distance between the
extrados at the base and the vertical through the centre of gravity.
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to the determination of the pressure of earth upon:
revétement walls, and a modification of that principle,:
suggested by M. Poncelet, to the determination of the
resistance opposed to the overthrow of a wall backed
by earth. This determination has an obvious appli=
cation to the theory of foundations.

In the application of the principle of Coulomb I
have availed myself, with great advantage, of the
properties of the limiting angle of resistance. All
my results have thus received a new and a sunphﬁed
form.

The theory of the arch I have discussed upon prin- v
ciples first laid down in my memoir on “the Theory :.
of the Stability of a System of Bodies in Contact,”
before referred to, and subsequently in a ‘memoir
printed in the “ Treatise on Bridges” by Professor /
Hosking and Mr. Hann.* They differ essentially from '/
those on which the theory of Coulomb is foundedt;
when, nevertheless, applied to the case treated by the
French mathematicians they lead to identical results.
I have inserted at the conclusion of my work the
tables of the thrust of circular arches, calculated by
M. Garidel from formule founded on the theory of
Coulomb.

The fifth part of the work treats of the * Btarength

* I have made extensive use of the memoir above referred to
in the following work, by the obliging permission of the publisher,
Mr. Weanle,

+ The theory of Coulomb was unknown to me at the time pf the \
publication of my memoirs printed in ‘the Camb. Phil. Trans. |
For a comparison of the two methods see Mr, Hann’s treatise, ;
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of materials,” and applies a new method to the de-
termination of the deflexion of a beam under given
pressures.

In the case of a beam loaded uniformly over its
whole length, and supported at four different points,
I have determined the several pressures upon the
points of support by a method applied by M. Navier
to a similar determination in respect to o beam loaded
at given points.®

In treating of rupture by elongation I have been
led to a discussion of the theory of the suspension
bridge., This question, so complicated when reference
is had to the weight of the roadway and the weights
of the suspending rods, and when the suspending
chains are assumed to be of uniform thickness, be-
comes comparatively easy when the section of the
chain is assumed so to vary its dimensions as to be
every where of the same strength, A suspension
bridge thus constructed is obviously that which, being
of a given strength, can be constructed with the least
quantity of materials; or, which is of the greatest
strength having a given quantity of materials used
in its construction.t

The theory of rupture by transverse strain has sug-
gested a new class of problems, having refcrence to the
forms of girders having wide flanges connected by

* As in fig. p- 521. of the following work.

t That particular case of this problem, in which the weights of
the suspending rods are neglected, has been treated by Mr. Hodg-
kinson in the fourth vol. of the Manchester Transactions, with his
usual ability. He has not, however, succeeded in effecting its
complete solution,
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slender ribs or by open frame work: the eonsideration
of their strongest forms leads to results of practical
importance.

In discussing the conditions of the strength of
breast-summers, my attention has been directed to the
best positions of the columns destined to support them,
and to a comparison of the strength of a beam carry-
ing a uniform load and supported freely at its ex-
tremities, with that of a beam similarly loaded but
having its extremities firmly imbedded in masonry.

In treating of the strength of columns I have gladly
replaced the mathematical speculations upon this sub-
ject, which are so obviously founded upon false data,
by the invaluable experlmental results of Mr E.
Hodgkinson, detailed in his well known paper in the
Plilosophical Transactions for 1840.

The sixth and last part of my work treats on “im-
pact;” and the Appendix includes, together with tables
of the mechanical properties of the materials of con-
struction, the angles of rupture and the thrusts of
arches, and complete elliptic functions, a demonstra-
tion of the admirable theorem of M. Poncelet for de-
termining an approximate value of ‘the square root of
the sum or difference of two squares.

In respect to the following articles of my work I
have to acknowledge my obligations to the work of
M. Poncelet, entitled Mécanique Industrielle. The
mode of demonstration is in some, perhaps, so far
varied as that their origin might with difficulty be
traced; the principle, however, of each demonstration

8
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—all that constitutes its novelty or its value—be-
longs to that distinguished aunthor,

30%, 38, 40, 45, 46, 47, 52, 58, 62, 75, 108+, 123,
202, 2671, 268, 269, 270, 349, 354, 365.§

* The enunciation only of this theorem is given in the Mée.
Ind., 2me partie, Art, 38.

1 Somc important elements of the demonstration of this theorem
are taken from the Meée. fnd., Art. 79. 2me partie. The prineiple
of the demonsiration is not, however, the same as in that work.

T In this and the three following articles I have developed the
theory of the fly-wheel, under a different form from that adopted by
M. Poneclet ( Mér. Ind., Art.56. 3me partic). The principle of the
whole caleulation 1s, however, taken from his work. It probably
constitutes one of the most valuable of Lis contributions to prae-
tical science.

§ Theidea of determining the work necessary to produce a given
deflection of a beam from that expended upon the compression
and the elongation of its component fibres was suggested by an
observation in the Mée, Ind., Art. 75. Sme partie. An error
presents itself in the determination given by M. Poncelet in that
article of the linear deflection " of a beam under a given deflecting
pressure P. It consists in assuming that the work of the deflecting
pressure is represented by Pf; as it would be if, in order to deflect
the beam, P must always retain the same value instead of varying
directly as the deflection. The true value of the work is LPf; the
determination of which requires a knowledge of the law of the
deflection, which the demonstration does not suppose. I is due
to M., Poncelet to state that the Mécanique Industrielle was pub-
lished (uncorrected) without his concurrence or knowledge, in
Belgium, from a MS, copy of his lectures lithographed for the
use of the workmen at Metz to whomn they were addressed.
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Page 36.

ERRATA.
line 2. from bottom, for "'1% read z 3.

55. line 5. from bottom, for ABDC read ARTC.

64.
64,
122.
167.
172,

173,

174.
521,

line 3. from bottom, for Y, read y,.
line 5. from bottom, for Y,_,read Y, _ .
line 10, from top, for half read double.
line 8, from top, for B, read B,
Tine 3, from top, for 114 read 119,

2
line 5. from bottom, for XV,2 read TSV 2.
line 8. from top, for 12 read b,
line 6, from top, for Lin. square read 4 in. by f; in.

In the table page 152, the words “ without unguent” enclosed by a bracket

opposite to the words “ iron upom oak,” belong (with the corresponding num-
bers) to the following bracket.
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MECHANICAL PRINCIPLES

OF

CIVIL ENGINEERING.

PART 1.
STATICS.

1. Force is that which fends to cause or to destroy motion,
or which actually causes or destroys it.

The direction of a force is that straight line in which it
tends to cause motion in the point to which it is applied,
or in which it tends to destroy the motion in it.

When more forces than one are applied to a body, and
their respective tendencies to communicate motion to it
counteract one another, so that the body remains at rest,
these forces are said to be in EQUILIBRIUM, and are called
PRESSURES.

It is found by experiment, that the effect of a pressure
when applied to a solid body, is the same at whatever point
in the line of its direction it is applied ; so that the condi-
tions of the equilibrium of that pressure, in respect fo other
pressures applied to the same body, are not altered, if, with-
out altering the direction of the pressure, we remove its point
of application, provided only the point to which we remove
it be in the straight line in the direction of which it acts.

The science of Statics is that which treats of the equili--
brium of pressures. 'When two pressures only are applied to.
a body, and hold it at rest, it:is found by experiment that

: B



2 THE UXIT OF PRESSURE.

these pressures act in opposite directions, and have thelr
dircetions always in the same straight line. Two such pres-
sures are said to be equal.

If instead of applying two pressures which are thus equal
i apposite divections, we apply them both in the same direc-
tion, the single pressure which must be applied in a di-
rection opposite to the fwo to sustain them, is said to be
double of either of them. If we take a third pressure
equal to either of the two first, and apply the three in the
same direction, the single pressure, which must be applied in
a direction opposite to the three to sustain them, is said to
be triple of cither of them; and so of any nuwber of pres-
sures, Thus fixing upon any one pressure, and ascertaining
how many pressures equal to this are necessary, when applied
i an opposite direction, to sustain any other greater pres-
sure, we arrive at a truc conception of the amount of that
greater pressure in terms of the first.

That single pressure, in terms of which the amount of any
other greater pressure s thus ascertained, is called an UNIT
of pressure,

Pressures, the amount of which are determined in terms of
some known unit of pressure, are said to be measured.

Different pressures, the amounts of which can be deter-
mined in terms of the seme unit, are said to be commen-
surable.

The units of pressure which it is found most convenient to
use, arc the weights of certain portions of matter, or the
pressures with which they tend towards the centre of the
carth, 'L'he units of pressure arc different in different coun-
tries, With us the unit of pressure from which all the rest
are derived ig the weight of 22:815 * cubic inches of distilled
water. This weight is one pound troy; hbeing divided into
5760 equal parts, the weight of each is a grain troy, and
7000 such grains constitute the pound avoirdupois.

If straight lines be taken in the directions of any number

* This standsrd was fixed by Act of Parliament in 1824, The tem-
perature of the water is supposed to be 62° Farenheit, the weight to be
taken in air, and the barometer to stand at 30 inches.
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of pressures, and have their lengths proportional to the
numbers of units in those pressures respectively, then these
lines having to one another the same proportion in length
that the pressures have In magmitude, and being moreover
drawn in the directions in which those pressures respectively
act, are said to represent them in magnitude and direction.

A system of pressures being in equilibrium, let any num-
ber of them be imagined to be taken away and replaced by
a single pressure, and let this single pressure be such that
the equilibrium which before existed may remain, then this
single pressure, producing the same effect in respect to the
equilibrium that the pressures which it replaces produced, is
said to be their RESULTANT.

The pressures which it replaces are said to be the compo-
NENTS of this single pressure ; and the act of replacing them by
such a single pressure, is called the composiTION of pressures.

If, a single pressure being removed from a system in equi-
librium, it be replaced by any namber of other pressures,.
such, that whatever cffect was produced by that which they.
replace singly, the same effect (in respect to the conditions of
the equilibrium) may be produced by those pressures con-
jointly, then is that single pressure said to have been RE-
soLVED into these, and the act of making this substitution
of two or more pressures for one, is called the rREsoLuTION
of pressures.

THE PARALLELOGRAM OF PRESSURES.

2. The resultant of any two pressures applied to a point,
is represented in direction by the diagonal of e paral-
lelogram, whose adjacent sides represent those pressures in
magnitude and direction.*®

(Puchayla’s Method.}
To the demonstration of this propoaition,“after the ex-
cellent method of Duchayla, it is necessary in the first place

* This proposition constitutes the foundation of the entire science of
Statics.

B 2
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to show, that if there be any two pressures Py and P whosc
directions are in the same straight Yine, and a third pressure
P, in any other direction, and if the proposition be true in
respect to Py and Py, and also in respect to Py and Py, then
it will be true in respect to P, and P, + P,

Let P, Py, and Py, form part of any system of pressures in
»  equilibrium, and let them be applied to the point
i A take ADB and AC to represent, in magnitade
~% and direction, the pressures P; and Py and CD
the pressure I's, and complete the parallelograms CB and
DF. BSuppose the proposition to be truc with regard to
P, and P,, the resultant of P, and P, will then be in the
dircetion of the diagonal A¥ of the parallelogram BC, whose
adjacent sides AC and ADB represent P; and P in magnitude
and direction., Let I’y and D, be replaced by this resultant.
It matters not to the equilibrium where in the line AF it is
applied; lct it then be applied at . But thus applied at
¥ it may, without affecting the conditions of the equilibrium,
be in its turn replaced by (or resolved into) two other pressures
acting in CF and BF, and these wili manifestly be equal to
Py and Py, of which P; may be transferred without altering
the conditions to C, and P, to E.  Let this be done, and let
P3 be iransferred from A to (, we shall then have P, and
P, acting in the directions CF and CD at C, and Py, in the
direction FE at I, and the conditions of the equilibrium will
not have been affected by the transfer of them to these
points. Now suppose that the proposition is also true in
respect to P; and Py as well as P, and P,. Then since CF
and CD represent P, and P in magnitude and direction,
therefore their resultant is in the direction of the diagonal
CE. Let them he replaced by this resultant, and let it be
transferred to I, and let it then be resolved into two other
pressures acting in the directions DI and FE; these will
evidently be P, and P35, We have now then transferred all
the three pressures I'y, Py, Py, from A toE, and they actat E
in directions parallel to the directionsin which they acted at A,
and this has been done without affecting the conditions of
the equilibrium ; or, in other words, it has been shown that
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the pressures P, Py, P;, produce the same effect as it re-
spects the conditions of the equilibrium, whether they he
applied at A or E. The resultant of Py, Py, P, must there-
fore produce the same effect, as it regards the conditions of
the equilibrium, whether it be applied at A or E. But in
order that this resultant may thus produce the same eflect
when acting at A or E, it must act in the straight line AE,
because a pressure produces the same effect when applied at
two different points, only when both those points are in
the line of its direction. On the supposition made there-
fore, the resultant of P, Py, and Pg, or of P, and P,+ P4
acts in the direction of the diagonal AE of the parallel-
ogram BD whose adjacent sides AD and AB represent
P, + Py and P, in magnitude and direction; and it has heen
shown, that if the proposition be true in respect to P, and
Ps, and alse in respect to P, and Pg, then it is true in re-
speet to P, and Py+P;. Now this being the case for all
values of P, Py, Ps, it is the case when P;, P, and P, are
equal to onc another. But if P, be equal to Pystheir result-
ant will manifestly have its direction as much towards one of
these pressures as the other; that is, it will have its diree-
tion midway between them, and it will bisect the angle
BAC: but the diagonal AF in this case also bisects the angle
BAC, since P/ being equal to Pg, AC is equal to AB; so that
in this particular case the direction of the resultant is the
direction of the diagonal, and the proposition is true, and
similarly it is true of P, and Pj, since these pressures are
equal, Since then it is true of P, and P, when they are
equal, and also of P, and Py, therefore it is true in this case
“of P and Py+ Py, that is of P, and 2P,. And since it is
true of P, and P,, and also of P, and 2 P,, therefore it is true
of P, and P, +2P,, that is of P, and 8 P,; and so of P, and
mPy, if m be any whole number; and similarly since it is
true of m P, and P,, therefore it is true of m P, and 2P, &e.,
and of m P, and » P, where = is any whole number. There-
fore the proposition is true of any two pressures mP, and
nP, which are commensurable.
E 3
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It is moreover true when the pressures arc in-
— commensurable. For let AC and AB represent
ks any two such pressures P, and P, in magnitude
and direction, and complete the parallelogram ABDC, then
will the direction of the resultant of P, and P; be in AD;
for if not, let its direction be AE, and draw EG parallel to
CD. Divide AB into cqual parts, cach less than GC, and
set off on AC parts equal to those from A towards C. One
of the divisions of these will manifestly fall in GC. Let it
be H, and complete the parallelogram AHFB. Then the
pressure P, being conceived to be divided into as many equal
units of pressurc as there are equal parts in the lime AB, AH
may be taken to rcpresent a pressure Py containing as many
of these units of pressure as there are equal parts in AH, and
these pressures Py and Py will be commensurable, being
measured in terms of the same unit.  Their resultant is there-
fore in the direction AF, and this resultant of Pz and P, has
its direction nearer to AC than the resultant AR of P, and
Py has; which is absurd, since I’, is greater than P,.

Therefore AE, is not in the direction of the resultant of
Py and P;; and in the same manner it may be shown that no
other than AD is in that direction. Therefore, &ec.

3. The resultant of two pressures applied in any directions
o a point, is represented in magnitude as well as in direc-
tion by the diagonel of the parallelvgram whose adjacent

sides represent those pressures in magnitude and in direc-
tion.

. Let BA and CA represent, in magnitude and
/™ direction, any two pressures dpplied to the point
'L\\ZSZ A. Complete the parallelogram BC. Then by the
3 last proposition AD will represent the resultant of
these pressures in direetion, It will also represent it in mag-
pitude ; for, produce DA to G, and conceive a pressure to be
applicd in GA equal to the resultant of BA and CA,
and opposite to it, and let this pressure be represented in



OF PRESSURES. 7

magnitude by the line GA. Then will the pressures repre-
sented by the lines BA, CA, and G A, manifestly be pressures
in equilibrium. Complete the parallelogram BG, then is
the resultant of GA and BA in the direction FA ; also
since GA and BA are in equilibrium with CA, therefore this
resultant is in equilibrium with CA, but when #wo pressures
are in equilibrium, their directions are in the same straight
line ; therefore FAC is a straight line. But AC is parallel
to BD, therefore FA is parallel to BD, and ¥B is, by con-
struction, parallel to GD, therefore AFBD is a parallelogram,
and AD is equal to FB and therefore to AG. But AG repre-
sents the resultant of CA and BA in magnitude, AD there-
fore represents it in magnitude. Therefore, &c.

Tue Princirre or THE EquariTy or MoMENTS.

4. Dermarion.  If any number of pressures act in the
same plane, and any point be taken in that plane, and per-
pendiculars be drawn from it npon the directions of all these
pressures, produced if necessary, and if the number of units
in each pressure be then multiplied by the number of units
in the corresponding perpendicular, then this product is called
the moment of that pressure about the point from which the
perpendiculars are drawn, and these moments are said to be
measured from that point.

5. If three pressures be in equilibrium, and their moments be
taken about any point in the plane in which they act, then
the sum of the moments of those two pressures which tend to
turn the plane in one direction about the. point from which
the moments are measured, is equal to the. moment of that
pressure which tends to turn it in the opposite direction.

Nl—iw—w Let P, P, P, actlng in the du'ectlons
\\ E‘\ PO, P,0, PsQ, be any three pressures in
' equilibrium. Take any point A in the plane

B 4
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in which they act, and measure their moments from A, then
will the sum of the moments of Py and Py, which tend to turn
the planc in one direction about A, equal the moment of
P,, which tends to tarn it in the opposite dircction.

Through A draw DAB parallel to OP,, and produce 0P, to
meet it in D.  Take OD to represent Ps, and take DB of
such a length that OD may have the same proportion te
DB that P, has to P,.  Complete the parallelogram ODBC,
then will OD and OC represent P, and P, in magnitnde and
dircction. Therefore OB will represent P, in magnitude and
direction.

Draw AM, AN, AL, perpendiculars on OC, oD, OB,
aud join AO, AC, Now the triangle OBC is equal to the
triangle OAC, since these triangles are upon the same base
and between the same parallels.

Also, A ODA-+AOAB=A ODB=A OBC,
<. AODA+A OAB=A4 0AC,
o 3 ODx AN +3 OBx A=} OCx AM,
. Pyx AN+ Pyx AL=P, x AM.
Now Pix AM, P, x AN, Pax AL, are the moment
Py, Py, about A {Art. 4.)

somt Podmt Pya—mm' P

Therefore, &c, &e.

wor T

s Of P;,

6. If R be the resultant of P; and Ps, then since R is
equal to P, and acts in the same straight line, m* R=m'Py
<o m' Po4m® Py=m' R. (8)

The sum of the moments therefore, about any point, of two
pressures, Py and P, in the same plane, which tend to turn
it in the same direction about that point, is equal to the
moment of their resultant about that point.

If they had tended to turn it in opposite directions, then
the difference of their moments would have equalled the
moment of their resultant. For let R be the resultant of
Ifl and Ps, which tend to turn the plane in opposite direc-
tions about A, &c. Then is R equal to Py, and in the same
straight line with it, therefore moment R is equal to moment P
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But by equation (1) m* Pj—m® Py=m* Py; ./, m* Py—m' Py
=m" R.

Generally therefore, m'P,4+m*Pe=m'R .....(2), the
moment therefore of the resultant of any two pressures in
the same plane is equal to the sum or difference of the
moments of its components, according as they act to turn the
plane in the same direction about the point from which the
moments are measured, or in opposile directions.

7. Ifany number of pressures in the same plane be in equilibrium,
and any point be taken, in that plane, from whick their mo-
ments are measured, then the sum of the moments of those
pressures which tend to turn the plane in one direction
about that point is equal to the sum of the moments of those
which tend to turn it in the opposite direction.

Let P, Py, Py. . .. .P, be any number of pressures

.z, in the same plane which are in

o ETIN ;7%“’1",,,“ - equilibrivm, and A any point in

T "// . o the plane from which their moments

: ;/ are measured, then will the sum of

the moments of those pressures which tend to turn the plane

in one direction about A equal the sum of the moments of
those which tend to turn it in the opposite direction.

Let R; be the resultant of P, and Py,

R, . .. . . .RandP;,
R: . . . . . .Ryand Py
&e. o« . o . &c.

R,y . - . . Ry andP,
Therefore by the last proposition, it being understood that
the moments of those of the pressures Py, Py, which tend to
turn the plane to the left of A, are to be taken negatively, we
have
mR =mP + mP,

m" Rq - m RI + mt Pa,
mR; = mRy + m* Py,
&e. = &ec. &e.

m' R,..._.t: mtRu.._Q"[' m* Pﬁ.
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Adding these equations together, and striking out the
terms common to both sides, wc have

mR,L=m'P +m Py4m* Py . .. .. +m' P, ... (3)

where R,—; is the resultant of all the pressures Py, Py,
R A

But these pressures are in equilibrium ; they have, there-
fore, no resultant,

SR =0 mR,, =0,
com P +-m P +m P+ mt P, =00 ()

Now in this equation the moments of those pressures which
tend to turn the system to the left hand arc to be taken
negatively. Morcover, the sum of the negative terms must
equal the sum of the positive terms, otherwise the whole sum
could not cqual zero. It follows, thercfore, that the sum of the
moments of those pressures which tend to turn the system to
the right must cqual the sum of the moments of those which
tend to turn it to the left. Therefore, &e. &ec.

8. If any number of pressures acting in the same plane be in
equilibrium, and they be imagined to be moved parallel to
their existing directions, and all applied to the same point,
s0 as all to act upon that point in directions parallel to
those in whick they before acted upon different points, then
will they be in equilibrium about that point.

For (sce the preceding figure} the pressure R, at what-
ever point in its direction it be conceived to be applied, may
be resolved at that point inte two pressures parallel and
equal to P, and Po: similarly, R, may be resolved, at any
point in its direction, into two pressures parallel and equal
to R; and Py, of which R, may be resolved into two, parallel
and equal to P, and Py, so that Ry may be resolved at any
point of its direction into three pressures parallel and equal
to Py, Py, Py: and in like manner, R, may be resolved into
two pressures parallel and equal to Ry and Py, and therefore
into four pressures parallel and equal to P, P;, P;, P,, and
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so of the rest. Therefore R, , may at any point of its
direction be resolved into n pressures parallel and equal to
PP, Py .. ... P, if, therefore, = such pressures were
applied to that point, they would just be held in equilibrium
by a pressure equal and opposite to R,_,. But R,_;=0;
these » pressures would, therefore, be in equilibrium with
one another if applied to this point.

Now it is evident, that if being thus applied to ¢kis point,
they would be in equilibrium, they would be in equilibrium
if similarly applied to any other point, Therefore, &c.

Tue PorvcoN oF PRESSURES.

9. The conditions of the equilibrium of any number of pres-
sures applied to a point.

Let OPy, OPy, OP4, &c. represent in mag-

« nitude and direction pressures P;, P, &c.
_applied to the same point O. Complete the
parallelogram OP,AP,, and draw its diagonal
OA.; then will OA represent in magnitude and
direction the resultant of P; and P,. Complete the parallelo-
gram OABP;, then will OB represent in magnitude and direc-
tion the resultant of OA and Pg; but OA is the resultant of
P, and P;, therefore OB is the resultant of Py, Py, Py; simi-
larly, if the parallelogram OBCP, be completed, its diagonal
OC represents the resultant of OB and P,, that is, of P, Py,
P, P, and in like manner OD, the diagonal of the parallel-
ogram QCDPy, represents the resultant of Py, Py, Py, Py, Ps.
Now let it be observed, that AP, is equal and parallel to
OP;, AB to OPg BC to OP,, CD to OP;, so that P, A, AB,
BC, CD, represent Py, Py, Py, P;, respectively in magnitude,
and are parallel to their directions, Moreover OP, is in the
direction of P, and represents it in magnitude, so that the
sides OP,, P,A, AB, BC, CD, of the polygon OPIABCDO
represent the pressures Py, Py, P, Py, P;, respectively in
magnitude, and are parallel to their directions ; whilst the side
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OD, which completes that polygon, represents the resultant
of those pressures in magnitude and direction.

1f, therefore, the pressures Py, Do, Dy, Ty, s, be in equi-
librium, so that they have no resultant, then the side O of
the polygon must vanish, and the point D coincide with O.
Thus then if any number of pressures be applied to a point,
and lines be drawn parallel to the directions of those pres-
sures, and rcpresenting them in magnitude, so as to form
sides of a polygon (care being taken to draw each line from
the point where it unites with the preceding, fowards the
direction in which the corresponding pressure acts), then the
line thus drawn parallel to the last pressure and representing
it in magnitude, will pass through the point from which the
polygon commenced, and will just complete it if the pressures
be in cquilibrium ; and if they be nof in equilibrium, then
this last line will not complete the polygon, and if a line be
drawn completing it, that line will represent the vesultant of
all the pressures in magnitude and direction,

This principle is that of the PoLycoN oF prEssurEs; it
obtains in respect to pressures applied to the same point,
whether they be in the same plane or not.

10. If any number of pressures in the same plane be in equi-
lLibrium, and each be resolved in directions parallel to any
two rectangular axes, then the sum of all those resolved
pressures, whose tendency is to communicate motion in oné
direction along either axis, is equal to the sum of those
whose tendency is in the vpposite direction.

Let the polygon of pressures be formed in respect to any
number of pressures, P;, Py, Py, Py, in the same planc and in
- cquilibrium (Arts. 8,9.),and let the sidesof this
; polygon be projected on any straight line A
L in the same plane.  Now it is evident, that
Ao the sum of the projections of those sides of the
polygon which form that side of the figure which is nearest to
Aux, is equal to the sum of the projections of those sides which




OF PRESSURES. -13

form the opposite side of the polygon: moreover, that the
former are those sides of the polygon which represent pressures
tending to communicate motion from A towards x, or from
left to right in respect to the line Ax; and the latter, those
which tend to communicate motion in the opposite direction.
Now each projection is equal to the corresponding side of the
polygon, multiplied by the cosine of its inclination to Axz. The
sum of all those sides of the polygon which represent pressures
tending to communicate motion from A towards x, multiplied
cach by the cosine of its inclination to Az, is equal, therefore,
to the sum of all the sides representing pressures whose tend-
ency is in the opposite direction, each being similarly mul-
tiplied by the cosine of its inclination to Az. Now the sides
of the polygon represent the pressures in magnitude, and are
inclined at the same angles to Az, Therefore ecach pres-
sure being multiplied by the cosine of its inclination to A,
the sum of all these products in respect to those which tend
to communicate motion in one direction equals the sum
similarly taken in respect to those which tend to communi-
catc motion in the opposite direction; or, if in taking this
sum it be understood that each term into which there enters
a pressure whose tendency is from A towards z, is to be
taken positively, whilst each into which there enters a pres-
sure which tends from x towards A is to be taken nega-
tively, then the sum of all these terms will equal zero; that
is, calling the inclinations of the directions of Py, Py, P5... P,
to Ax, ay, ag, @3 . . . . o, Tespectively,

Py cos.ay + Pycos. ag+ Pyeos ag+ . .o . + Preosia,=0. .. (5),

in which expression all those terms are to be taken nega-
tively which include pressures, whose tendency is from x
towards A.

This proposition being true in respect to any axis, Az is
true in respect to another axis, to which the inclinations of
the directions of the pressures are represented by 8, B, ps,
. . B 50 that,

Pl cos. By + Pacos. Ba4+ . . .« +P,cos. B, =0,
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Lt this second axis be at right angles to the first:
then ;31::—:“ @) . Cos, B =sin. a, ,32:%—-:4.3 c.ocos. P
=sin. a4, &c. = &e.
o Ppsing e+ Pysin gk oL L0 4P, sing a, =0 . ... (6);

those terms in this equation, invelving pressures which tend
to communicate motion in one direction, in respect to the
axis Ay being taken with the positive sign, and these which
tend in the opposite direction with the negative sign.

If the pressures P), Py, &c. be each of them resolved
into two others, one of which is parallel to the axis A, and
the other to the axis Ay, it is evident that the pressures
thus resolved parallel to Az, will be represented by Py cos 21,
Po cos, ag, &e., and those resclved parallel to Ay, by
P, sin. 2, P, sin. ay, &c. Thus then it follows, that if
any system of pressures in equilibrium be thus resolved
parallel to two reetangular axes, the sum of those resolved
pressurcs, whose tendency is in one direction along either
axis, s equal to the sum of those whose tendency is in the op-
posite direction.

This condition, and that of the cquality of moments, are
necessary to the equilibriunt of any number of pressures in

the same planc, and they are together suffcient to that equi-
librium,

K

11. To determine the resuliant of any number of pressures
in the seme plane,

If the pressures P; Py . ... P, be not in
equilibrium, and have a resultant, then one
side is wanting to complete the polygon of pres-

& sures, and that side represcnts the resultant of
all the pressures in magnitude, and is parallel to its direction
(Art.9.). Moreover it is evident, that in this case the sum of
the projections on Az (Art. 10.) of those lines which form one
side of the polygon, will be deficient of the sum of those of
the lines which form the other side of the polygon, by the
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projection of this last deficient side ; and therefore, that the
sum of the resolved pressures acting in one direction along
the line Az, will be less than the sum of the resolved pres-
sures in the opposite dircction, by the resolved part of the
resultant along this line. Now if R represent this resultant,
and § its inclination to Az, then R cos, 8 is the resolved part
of R in the direction of Ax. Therefore the signs of the terms
being understood as before, we have

R cos. §=P, cos. a;+ P cos. ag+. . . .+ P, cos. 2, . . (7).
And reasoning similarly in respect to the axis Ay, we have
R sin. 6=P, sin, &) + Py sin. ag+. + . .+ P, 80 2, ... (8).

Squaring these equations and adding them, and observing
that R?sin.? 9+ R? cos,? § =R? (sin.? § +cos.? §)==R?, we have

R'=(ZPsin, «)?+(ZPcos. af* . . . .. . .. 9),

where 2P sin. « is taken to represent the sum P, sin. «;, +
P, sin. ay+ Py sin. a3+ &c., and P cos. « to represent the
sum P; cos. ey + Py cos. o+ P3 cos. az+ &e.

Dividing equation (8) by equation (7),

ZP sin, a
E_P CO8,

tan. f=—

S 11))

Thus then by equation (9) the magnitude of the resultant
R is known, and by equation (10) its inclination § to the axis
Az is known. In order completely to determine it, we have
yet to find the perpendicular distance at which it acts from
the given point A. For this we must have recourse to the
condition of the equality of moments (Art. 7.).

If the sum of the moments of those of the pressures, P,,
Py . ... P, which tend to turn the system in one direc-
tion about A, do not equal the sum of the moments of those
which tend to turn it the other way, then a pressure being
applied to the system, equal and opposite to the resultant R,
will bring about the equality of these two sums, so that the
moment of R must be equal to the difference of these sums.
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Let then p equal the perpendicular distance of the direction
of R from A. Therefore

Rp=m'P,{m" P4+ m* Py, . . .4+m' P, ... (11),

in the second member of which cquation the moments of
those pressures are to be taken negatively, which tend to
communicate motion round A towards the left.

Dividing both sides by R we have

2}__11" P1#t7?1t£)'g-+ . .f—l—lnt P_,‘. . (12)

R

Thus then by equations (9), (10), (12), the magnitude of
the resultant R, its inclination to the given axis Ax, and the
perpendicular distance of its dircetion from the point A, are
known ; and thus the resultant pressure is completely deter-
mined in magnitude and direction,

Tur PARALLELOPIPEDON OF PRESSURES.

12. Three pressures, Py, Py, Py, being applied to the same
point A, in directions zA, yA, zA, which are not in the
same plane, it is required to determine their resultant.

Take the lines PjA, PyA, DA, to represent the pressures
: P, P, Py in magnitude and direction.
- Complete the parallelopipedon RP;PsPu of
... which APy, AP, AP;, are adjacent edges,

ﬂﬂs and draw its diagonal RA; then will RA
¥ represent the resultant of P, Py Py, 1
direction and magnitude, For since P;SPyA is a paral]elo-
gram, whose adjacent sides P A, PoA, represent the pressures
P, and P, in magnitude and direction, therefore its diagonal
SA represents the resultant of these two pressures. And
similarly RA, the diagonal of the parallelogram RSAPs, re-
presents in magnitude and direction the resultant of SA and
Py, that is, of P, Py, and Ps, since SA is the resultant of
P, and P..

It is evident that the fourth pressure necessary to produce
an equilibrium with Py, Py, Py, being equal and opposite t0
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their resultant, is represented in magnitude and direction
by AR.

18. Three pressures, Py, Py P, being in equilibrium, it is
required fo determine the third Py in terms of the other
two, and their inclination to one another.

Let AP, and AP, represent the pressures Py and P; in
magnitude and direction, and let the inclination
< PiAP; of P; to P, be represented by 48;. Com-
% plete the parallelogram AP\RP;, and draw its

diagonal AR. Then does AR represent the re-
sultant of P, and P, in magnitude and direction. But this
resultant is in equilibrium with Py, since P, and P; are in
equilibrium with Py It acts, therefore, in the same straight
line with Py, but in an opposite direction, and is equal to it.
Since then AR represents this resultant in magnitude and
dircetion, therefore RA represents P; in magnitude and
direction,

Now, AR*=AP*—¢2AP,.P,R.cos. AP,R+ PR
also, AP|R =n — P, APy~ ), PLR=AP,, and AP, AP,,
AR, represent P;, Py, P, in magnitude, A

P =P* 2P, P; cos. (x— 8;) + P*
Now cos. (7—,0y) = —cos. 3, . Pg? =Py*+ 2P, Py cos. i3+ Py,

g

14. If three pressures, Py, Py, Py, be in equilibrium, any two
of them are to onme another inversely as the sines of their
inclinations to the third. '

Let the inclination of Py to P; be represented by 05, and
that of Py to Pj by of;. : _
Now PJAR=w—P)APy=w—1fy, .. sin. PLAR =sin. ,85;
PRA=—PAR=7—~PAPy=x—gfa .. sin. PyRA =uin:
CC
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Also AP, _AP,_sin. P RA
’ AP, PR Tsin. PJAR
Py sin. o9
P'.z_ sitt. )9;}‘,

That is, P;is to P, inversely, as the sine of the inclin-
ation of Py to P, is to the sine of the inclination of P, to P
Therefore, &e. &ec. [Q-E.D.]

Or Pararier. PrEessurges.

15. The principle of the equality of moments obtains in re-
spect to pressures in the same plane whatever may be their
inclinations to one auwother, and therefore if their inclinations
be infinitely small, or if they be parallel.

In this case of parallel pressures, the same line AB, which
5 i3 drawn from a given point A, perpendicu]ar
{ to one of these pressures, is also perpendicular
o to all the rest, so that the perpendiculars are

™ ' & here the parts of this line AM,, AM,, &c. inter-
cepted between the point A and the dircetions of the pres-
sures respectively. The principle is not however in this case
truc only in respect to the intercepted parts of this perpen-
dicular line AB, but in respect to the intercepted parts of
any line AC, drawn through the point A across the directions
of the pressures, since the intercepted parts Amy, Amgy A, -
&c. of this second line are proportional to those, AM,;, AMa
&c. of the first,

Thus taking the case represented in the figure, since by

the principle of the equality of moments we have,

AE - P+ AM,, P, :AWE o AM.;}PS'FAM.;P&;
dividing both sides by AMj,

AM, AM, _AM,

—_ . P]+EM; - P4-—m5 . Pg-}--AM‘; . P3+‘P5.

AM;
- . AM,_ Am; AM._ Am.

b 1 b A vle Sl
But by similar triangles, AM, ~ Am;’ AM, Am.

AM,

&e. = &e.
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L Am p o Amg p _Amy p Ams p o p
Amg +Am5 4MAms 2+A g st s
Therefore muitiplying by Amg,

ml . Pl +Am4 - Amg Pg"' Ama . P3+Am5 P5
Therefore, &ec. [Q.E.D.]

16. To find the resultant of any number of parallel pressures
in the same plane.

1t is evident that if a pressure equal and opposite to the
resultant were added to the system, the whole would be in
equilibrium. And being in equilibrium it has been shown
(Art. 8.), that if the pressures were all moved from their
present points of application, so as to remain parallel to their
existing directions, and applied to the same point, they are
such as would be in equilibrium about that point. But being
thus moved, these parallel pressures would all have their
directions in the same straight line, Acting therefore all in
the samie straight line, and being in equilibrium, the sum of
those pressures whose tendency is in one direction along that
Jine must equal the sum of those whose tendency is in the
opposite direction. Now one of these sums includes the result-
ant R. Itisevident then that before R was introduced the two
sums must have been unequal, and that R equals the excess of
the greater sum over theless; and generally, that if 2P repre-
sent the sum of any number of parallel pressures, those whose
tendency is in one direction being taken with the positive
sign, and those whose tendency is in the opposite direction,
with the negative sign; then

R=SP......(l5)

the sign of R indicating whether it act in the direction of -
those pressures which are taken positively, or those whi_ch_.me
taken negatlvely ‘
Moreover since these pressures, including R, are in equl-
librium, therefore the sum of the moments about any point, of

c 2
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those whose tendency is to communicate motjon in one
direction, must equal the sum of the moments of the rest,—
these moments being measured on any line, as AC; but one

. v " of these sums includes the moment of R ; these
%\«\;\ two sums must therefore, before the introdue-
i UG ¢ tion of R, have been unequal, and the moment
‘: 4 of Rmust be equal to the excess of the greater
sum over the less, so that, representing the sum of the mo-
ments of the pressures (R not being included) by T m* B,
those whose tendency is to communicate motion in one direc-
tion, having the positive sign, and the rest the negative ; and
representing by @ the distance from A, mcasured along the
line AC, at which R interseets that line, we have, since xR s
the moment of R, 2R =3 m' P, where the sign of zR in-
dicates the direction in which R tends to turn the system

about A, but R=3P,

Sm'P
-

e =S

e (16

Equations (15) and (16) detcrmine completely the mag-
nitude and the dircetion of the resultant of a system of parallel
pressures in the same plane,

17. T determine the resultant of any number of parallel pres-
sures not in the same plane.

Let Py and P, be the points of application of any two of

;.- these pressures, and let the pressures themselves
5T be represented by Py and Py Also let their
. ﬁj::f._f-""’ resultant B; intersect the line joining the points
kAN P, and Py in the point R,; produce the line
P,, Py, to intersect any plane given in position, in the point L.
Through the points Py, Py and R,, draw P,M,, P;M,, and
RN, perpendicularly to this plane: these lines will be in the
same plane with one another and with P,I.; let the inter-

section of this last mentioned plane with the first be LM
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then will P,M,, P,M,, and R,N; be perpendiculars to LM, ;

morcover by the last proposition,

P] LP] + Pg L.Pg--—-Rl —I-:[i‘l H

LP LP
-oPy ! 2-R,.
TR e
But by similar triangles,
LP] - PIM; LPQ — PQMQ

Eﬂ‘mm’. TR, RN,

PM
'-P i
mm*ﬂ RN,

Let now the resultant, Ry, of R, and Pg intersect the line
joining the points' R, and Ps in the point Ry,
and similarly let the resultant, Ry, of Ry and
P, intersect the line joining the points Ry and

i/l,/- P, in the point Rj, and so on: then by the
¢ last equation,

P..PM +P,. P,M,=R, R,N,.
Similarly, R, . RN +P;. PyMa=R, R;N,,
R. . RoNy+ P, . PuM,=R; RyN,,
&e. +  &ee = &e
Ros. R, N, +P, . PM, =R, . R, N,
Adding these equations, and striking out terms common to
both sides,

P| . P]Wlﬂr-Pg P:ﬁ;q- +Pn' P,,T/I_ﬂ_—' -l ¢ Rn—-]Nn—l (17)_
NOW, Rl P1+Pg, RQIR1+P3=P1+PE+P3,
RE_BQ+P4_P]+PQ+P3+P4, &C.:&C-
Rn_1=P1+PQ+P3+ ..... +P8;
‘. R"_..IN”_" . P1+ngf'P3+&C ‘f"P,,-—P[ P]M] +P,.

PQM2+. LI Y -+P”' PnMn;

Pl P1M1+Pg PgMg-i". +P PM
P,+Py+Ps+. . .4+P,

n—lNa-l — - (18) H

in which expression those of the parallel pressures P,, Pg. &c

which tend in one direction, are to be taken positively, whilst
c3 '
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those which tend in the opposite direction are to be taken
negatively,

The line R, ; N, represents the perpendicular distance
from the given plane of a point through which the resultant
of all the pressures P,, P . . . . P,, passes. In the same
manner may be determined the distance of this point from
any other plane. Let this distance be thus determined in
respect to three given planes at right angles to one another,
Its actual pusition in space will then be known. Thus then
we shall know a point through which the resultant of all the
pressures passes, also the direetion of that resultant, for it is
parallel to the common direetion of all the pressures, and we
shall know its amount, for it is equal to the sum of all the
pressure with their proper signs, Thus then the resultant
pressure will be completely known, The point R, is called
the CENTRE OF PaRALLEL PRESSURES.

18, The product of any pressure by its perpendicular dis-
tance from a plane (or rather the product of the number of
units in the pressure by the number of units in the perpen-
dicular), is called the moment of the pressure, in respect to that
plane.  Whence it follows from equation (17) that the sum
of the moments of any number of parallel pressures in respect
to a given plane is equal to the moment of their resultant
in respect to that plane.

19. 1t is evident, from equation (17), that the distance
Rpi N,_; of the centre of pressure of any number of pa-
rallel pressures from a.given plane, is independent of the
directions of thesc parallel pressures, and is dependent wholly
upon their amounts and the perpendicular distances P;Mi,
PuM,, &e. of their points of application from the given plane.

So that if the directions of the pressures wetre changed,
provided that their amounts and points of application re-
inained the same, their centre of pressure, determined as
above, would remain unchanged; that is, the resultant,
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although it would alter its direction with the directions of the
component pressures, would, nevertheless, always pass through
the same point.

The weights of any number of different bodies or different
parts of the same body, constitute a system of parallel pres-
sures; the direction, therefore, through this system of the
resultant weight may be determined by the preceding pro-
position ; their centre of pressure is their centre of gravity.

THE CEXTRE or GRAVITY.

20. The resultant of the weights of any number of bodies
or parts of the same body united into a system of invariable
Jorm passes through the same point in it, into whatever
position it may be turned.

¥or the eflect of turning it into different positions is to
cause the directions of the weights of its parts to traverse
the heavy body or system in different directions, at one time
lengthwise for instance, at another across, at another ob-
liquely ; and the effect upon the direction of the resultant
weight through the bedy, produced by thus turning it into
different positions, and thereby changing the directions in
which the weights of its component parts traverse its ass,
is manifestly the same as would be produced, if without alter-
ing the position of the body, the direction of gravity could be
changed so as, for instance, to make it at one time traverse
that body longitudinally, at another obliquely, at a third
transversely. But by Article 19, this last mentioned change,
altering the common direction of the parallel pressures
through the body without altering their amounts or their
points of application, would not alter the position of their
centre of pressure in the body; therefore, meither would
the first mentioned change. Whence it follows that the
centre of pressure of the weights of the parts of a heavy
body, or of a system of invariable form, does not alter its
position in the body, whatever may be the position into which

c4
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the body is turned; or in other words, that the vesultant of
the weights of its parts passes always through the same point
in the body or system in whatever position it may be placed.
This point, through which the resultant of the weights of
the parts of a body, or system of bodies of invariable form,
passes, in whatever position it is placed; or, if it be a body
or system of variable form, through which the resultant wonld
pass, in whatever position it were placed, if it became rigid
or invariable in its form, is called the CENTRE oF (GRAVITY.

21. Since the weights of the parts of a boedy act in pe-
rallel directions, and all tend in the same direction, therefore
their resultant is equal to their sum. Now, the resultant of
the weights of the parts of the body would produce, singly, the
same effect as it regards the conditions of the cquilibrium of
the body, that the weights of its parts actually do collectivelyy
and this weight is equal to the sum of the weights of the
parts, that is, to the whole weight of the body, and in every
position it acts vertically downwards through the same point
in the body, viz. the centre of gravity. Thus then it follows,
that in every position of the body and wunder every circum-
stance, the weights of its parts “produce the same effect n
respect to the conditions of its equilibrium, as though they
were all collected in and acted through that one point of i —
its centre of gravity ¥

# That the resultant of the weights of all the parts of = rigid body
passes in all the positions of that body through the same point in it is 8
property of many and most important uses in the mechanism of the uni-
verse, as well as in the practice of the arts; another proof of it is there-
fore subjoined, which may be more satisfactory to some readers than that

[T given inthe text. The system being rigid, the distance
;{_/Ti ' F{ Py, Py, of the points of application of. any two of_ fhe
e 1L pressures remasins the same, into whatever position
E lj‘i the body may be turned : the only difference producﬂd
,‘E/”a’ * - in the circumstance under which they are applied is 8t

alteration in the inclinations of these pressures to the
line P, Pa: now being weights, the directions of these pressures Blways.
remain parallel to one another, whatever may be their inclination ; thus
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R2. To determine the position of the centre of gravity of two
weights, P, and Py, forming part of a rigid system.

Let it be represented by G. Then since the resultant of
o . Py and P, passes through G, we have by equation

© % (18), taking P, as the point from which the mo-
ments are measured, -

P/+P,. P,G=P,. PP,
. PGzt PP

P +P,’
whence the position of G is known.

23. It is required to delermine the centre of gravity of three
weights Py, Py, Ps, not in the same straight line, and form-
ing part of a rigid system.

Find the centre of gravity G, of P, and Py, as in the last
% proposition. Suppose the weights P, and P; to
.  be collected in G, and find as before the common
R centre of gravity Gy of this weight P+ Py, so

“ collected in G, and the third weight Py, It is
evident that this point G is the centre of gravity required.

then it follows by the principle of the equality of moments (Art.15.),
that P+ P,. P R,;=P, . P,P,, so that for every such inclination of the
pressures to P, P, the line P\R, is of the same length, and the
the point R, therefore the same point ; therefore, the line PR, is always
the same line in the body; and R, which equals PP, is always the
same pressure, as also is Py, and these pressures always remain parallel,
therefore, for the same reason as before, R, is always the same point in
the body in whatever position it may be turned, end soof Ry, R, . . . . .
and R, ,. That is, in every position of the body, the resultant of the
weights of its parts passes through the same point R._, init. Since the
resultant of the weights of the parts of a body always passes through its
centre of gravity, it is evident, that a single force applied at that point
equal and opposite to this resultant, that is, equal in amount to the whole
weight of the body, and ir a direction vertically upwards, would in every
position of the body sustain it. This properéy of the centre of gravity, viz
that it is a point in the body where a single force would snpport it, is
sometimes taken as the definition of it. -
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Since G, is the centre of gravity of Py and P + P, collected
in Gy, we have by the last proposition
—(;Ge . PﬁwP; P:&:GIP; . P3s
LGP,

If Py, Py, Py, be all equal, then
GlGQ:% GlPS:
Moreover in this case,

PiGh=3 PP,

24, To find the centre of gravity of four weights not in the

same plane.

Let Py, Py, Ps, T4, rcpresent these weights; find the
F centre of gravity G, of the weights Py, Py, Pa
as in the last proposition ; suppose these three
. weights to be collected in Gy, and then find the
., centre of gravity Gy of the weight thus collected
in Gg and Py G will be the centre of gravity
required, and since Gy is the centre of gravity of P, acting
at the point P,, and of P;+ P, 4+ P, collected at Gy,
GyGs . Pyt Pyt Pyt Py=GoPs . Py
_— G,P, . P,
RERCRS 25 e ey 3
If all these weights be equal, then by the above equation,
GaGy=1 Py,
also,  GiGe=3% GiPy,
and  G,P\ =170,

s

/
£ 3 .
r,é?.ﬁ:iﬁ_“ T,

25. THE CENTRE OF GRAVITY OF A TRIANGLE.

Let the sides AB and BC of the triangular lamina ABC
be bisected in E and D, and the lines CE and AD
drawn to the opposite angles, then is the intersection
G of these lines the centre of gravity of the triangle :
for the triangle may be supposed to be made up
of exceedingly narrow rectangular strips or bands,
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parallel to BC, each of which will be bisected by the line AD;
for by similar triangles PR : DB:: AR : AD::RQ : DC,
therefore, alternando, PR : RQ:: DB : DC; but DB=DC;
therefore PR =RQ.

Therefore each of the elementary bands, or rectangles pa-
rellel to BC, which compose the triangle ABC, would sepa-
rately balance on the line AD; therefore all of them joined
together would balance on the line AD, therefore the centre
of gravity of the triangle is in AD.

In the same manner it may be shown that the centre of
gravity of the triangle is in the line CE; therefore the centre
of gravity is at the intersection G of these lines.

Now DG =4 DA : for imagine the triangle to be without
weight, and three equal weights to be placed at the angles
A, B, and C, then it is evident that these three weights will
balance upon AD; for AD being supported, the weight A
will be supported, since it is é» that line; moreover, B and
C will be supported since they are equidistant from that
line,

Since, then, all three of the weights will balance upon AD,
their centre of gravity is in AD. In like manner it may be
shown that the centre of gravity of all three weights is in CE;
therefore it is in G, and coincides with the centre of gravity
of the triangle. :

Now, suppose the weights B and C to be collected in their
centre of gravity D, and suppose each weight to be repre-
sented in amount by A, & weight equal to 2A will then be
collected in D, and a weight equal to A at A, and the centre of
gravity of these is in G5 therefore DA X A=DG % (2A + A),

.. DA=3 DG, or DG =4 DA, [Q.E.D'.]

26. THE CENTRE OF GRAVITY OF THE PYRAMID.

Let ABC be a pyramid, and suppose it to be.
made up of elementary lamine bed, parallel to
the base BCD. Tsake G, the centre of gravity

2 of the base BCD, and. jon AG; then “A..
wﬂl pass through the centre of gravity g of ‘the lmnim
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bed *, therefore each of the lamina will separately balance on

the straight line AG; therefore the lamin® when combined

will balance upon this line; therefore the whole figure will
balance on AG, and the centre of gravity of the whole is in
AG. Inlike mannerif the centre of gravity H of the face ABD
be taken, and CH be joined, then it may be shown that the
centre of gravity of the whole is in CH; therefore the linP:B
AG and CH intersect, and the centre of gravity is at thelr
intersection K.

Now GK is one-fourth of G A ; for suppose equal Weigh.ts
to be placed at the angles A, B, C, and D of the pyramld-
(the pyramid itself being imagined without weight), ther
will these four weights balance upon the line AG, for one of
them A is én that line, and the line passes through the centre
of gravity G of the other three.

Since then the equal weights A, B, C, and D balance upott
the line AG, their centre of gravity is in AG; in the sameé
manner it may be shown that the centre of gravity of the
four weights is in CH, therefore it is in K, and coincides with
the centre of gravity of the pyramid.,

Now let the number of units in each weight be represeﬂted
by A, and let the three weights B, C, and D be supposed 10
be collected in their centre of gravity G; the four weights
will then be reduced to two, viz. 3A at (3, and A at &
whose common centre of gravity is K,

s GEKx3A+A=GAxA,

1GK=GA or GK=1} GA. [e.ED]

7. The centre of gravity of a pyramid with o polygonal bast
is situated at @ vertical height from the base, equal to 0%
Jourth the whole height of the pyramid.

For any such pyramid ABCDEF may be supposcd to bé
* Tor produce the plane ABG to intersect the plane ADC in AM, then

by similat triangles DM : MC::dm : me, but DM=MC ; therefore dm=m¢
Also by similar triangles GM : BM::gm : bm, but GM=4 BM ; therefor

gm=>% bm. Since then dm=} dc and gm=1} bm, therefore g is the centf® .

of gravity of the triangle ddc,

e
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made up of triangular pyramids ABCF, ACDF,

and ADEF, whose centres of gravity G, H, and

K, are situated in lines AL, AM, and AN, drawn
" to the centres of gravity L, M, and N of their

=% hases; LG being one fourth of LA, MH one
fourth of MA, and NK one fourth of NA. The points G,
H, and K, are therefore in a plane parallel to the base of the
pyramid, and whose vertical distance from the 'base equals .
one fourth the vertical height of the pyramid.

Since then the centres of gravity G, H, and K of the ele-
mentary triangular pyramids which compose the whole poly-
gonal pyramid are in this plane, therefore the centre of gravity
of the whole is in this plane, i.e. the centre of gravity of the
whole polygonal pyramid is situated at a vertical height from
the base, equal to one fourth the vertical height of the whole
pyramid, or at a vertical depth from the vertex, equal to three
fourths of the whole. Now the above proposition is true,
whatever be the number of the sides of the polygonal base,
and therefore if they be infinite in number; and therefore it
is true of the cone, which may be considered a pyramid having
a polygonal base, of an infinite number of sides; and it is

true whether the cone or pyramid be an obligue or a right
cone or pyramid,

28. If a body be of a prismatic form, and symmetrical
about a certain plane, theu its whole weight may be sup-
pose& to be collected in the surface of that plane, apd wupi-

g * formly distributed through it. For Jet

3\, ACBEFD represent such a prismatic

3%, body, and abe a plane about which it is
"\ symmetrical: take m, an element of uni-
form thickness whose sides are parallel to the sides of the
prism, and which is terminated by the faces ABC and
DFE of the prism; it is evident that this ‘element ‘m
will be bisected by the plane abe, and that its centre: of
gravity will therefore lie in that plane, so that its whdle
weight may be supposed collected in that plane; and this

i

being ‘true of every other similer element, amd:iall: thess
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elements being equal; it follows that the whole weight of the -

body may be supposed to be collected in and uniformly dis-
tributed through that plane. It is in this sense only that we
can speak with accuracy of the weight and the centre of gra-
vity of a plane, whercas a plane being a surface only, and hav-
ing no thickness, can have no weight, and therefore no centre of
gravity. Inlike manner when we speak of the centre of gravity
of a curved surface, we mean the centre of gravity of a body,
the weights of all whose parts may be supposed to be col-
lected and uniformly distributed throughout that curved
surface. It is evident that this condition is approached 10
whenever the body being hollow, its material is exceedingly
thin. 1ts whole weight may then be conceived to be col-
lected in a surface equidistant from its two external surfaces.
In like manner an exceedingly thin uniform curved rod may
be imagined to have its weight collected uniformly in a line
passing along the centre of its thickness, and in this sensé
we may speak of the centre of gravity of a line, although
a line having mo breadth or thickness can have no weight
and therefore no centre of gravity.

29. THE CENTRE OF GRAVITY OF A TRAPEZOID.

Let AD and BC be the parallel sides of the trapezoid, of _

T which AD is the less. Let AD be repre
' &/'2 /i sented by a, BC by b, and the perpendi-
' cular distance NL of the two sides by
h. Draw DE parallel to AB. Let Gu
be the intersection of the diagonals of the parallelogram
ABED, then will G, be the centre of gravity of that paral-

lelogram, Bisect CE in L, join DL, and take DGy=§ DL»

then will G, be the centre of gravity of the triangle DEC.
Draw G,M, and GoM, perpendiculars to AD; then since
AG;=% AE, therefore G\M;=4 FE=4 A And since

DGy=4% DL, therefore GoMy=4% NL=% & Suppose the:
whole parallelogram to be collected in its centre of gravity
G, and the whole triangle in its centre of gravity G Let
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G be the centre of gravity of the whole trapezoid, and draw
GM perpendicular to AD. Then would the whole be sup-
ported by a single force equal to the weight of the trapezoid
acting upwards at G. Therefore (Art. 17.},

MG . ABCD=GM, . ABED+G,M; . CED
Now, ABCD =1 % (a+5), ABED=ha,
CED=} % (b—a), G My=% % GM;=%4,
MG . 3h(a+B=kh . ha+ih . 3 h(b—a),
, MG (a+b)=ha+ %k (ba)=4% h (a+2b),

a+26
W MG=14. oFh {19,

30. THE CENTRE OF GRAVITY OF ANY QUADRILATERAL
FIGURE,

Draw the diagonals AC and BD of any quadrilateral figure
ABCD, and let them interseet in E,
and from the greater of the two parts,
BE and DE, of either diagonal BD set
~»  off a part BF equal to the less part.
¢ Bisect the other diagonal AC in H, join’
HF and take HG equal to one third of HF; then will G be
the centre of gravity of the whole figure.

Far if not, let g be the centre of gravity, join HB and HD
and take HG,=4 HB aud HGy=4 HD, then will G; and
Gy be the centres of gravity of the triangles ABC and ADC
respectively (Art. 25.). Suppose these triangles to be col-
lected in their centres of gravity Gy, Gy; it is evident that
the centre of grawty g, of the whole figure, will be in the
straight line j Jmmng the points G, Gy : let this line intersect
AC in K; then since a pressure equal to the ‘weight of the
whole figure acting upwards at g, will be in equilibrium with
the weights of the triangles collected in G, and Gg, we have,
by the principle of the equality of moments, (Art. 15.)

Kg . ABCD=KG; . ABC—KG; . ADC.
Now since HGy =4 HB, and HG, =} HD, therefore GGy ip
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parallel to DB, therefore KG,=34 BE, and KG,=4 DE.

Now let the angle AED =BEC=.. Therefore the perpen-
dicular from B wpon AC=BE sin. +, and that from D=DE

sin. 4, therefore area of triangle ABC=4 AC . BE sin.y,
and area of triangle ADC=% AC . DE sin. 4, therefore area

of quadrilateral ABCD=3 AC . BE sin.+} AC . DE

sin. 1=} (BE + DE) AC sin.s. Substituting these values in
the preceding equation,

Kg . 3 (BE+DE) AC sin. y=%1 BE . $ AC . BE sin.i—
% DT]_ XC DE sin. I
. (BE + DE)=1 (BEZ—DE?),
3 Kg:%B-’-z.:_.DE }(BE —DE)=} (BE—BY)=} FE.
But since HG=4HF, .-, KG=1 FE, .-, Kg=KG; that
is, the true centre of gravity ¢ coincides with the point G
Therefore, &ec. [Q.ED.]

*31. In the examples hitherto given, the centre of pressure
of a system of weights, or their centre of gravity, has been
determined by methods which are indirect as compared with
the direct and general method indicated in Article 17,  That
method supposes, however, a determination of the sum of the
moments of the weights of all the various elements of the body
in respect to three given planes, Now in a continwous body
these elements are infinite in number, each being infinitely
small ; this determination supposes, therefore, the summation
of an jnfinite number of infinitely small quantities, and re-
quires an application of the principles of the integral calculus.

Let AM be taken to represent any small element of the
volume M of a continuous body, and z its perpendicular
distance from a given plane, Then will zuAM represent the
moment of the weight of this element about that plane, g re-
presenting the weight of each wnit of the volume M. Let
p2xAM represent the sum of all such moments, taken in re-
spect to all the small elements, such as AM, which make up
the volume of the body. Then if G, represent the distance

AR e et 802 LR i T TS e e 2 bR s e e
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of the centre of gravity of the body from the given plane;
since uSxAM represents the sum of the moments of a system
of parallel pressures about that plane, pM the sum of those
pressurcs, and G the distance of their centre of pressure
from the plane (Art. 18.), it follows by equation (18.) that

G.— #Zz . AM_Zr . AM
. i v SR

Now it is proved in the theory of the integral calculus®,
that a sum, such as is represented by the above expression.
ZxAM, whose terms are infinite in number, and each the pro~
duct of a finite guantity x, and an infinitely small quantity
AM, and in which M is, asin this case, a function of x (and
therefore & function of M), is equal to the definite integral

ﬁdM. Therefore, generally,

g

ffndM A

Gl:_,‘.?._ﬂ__.

%
t_/ydM ’
Sim.ila.l']y, Ga:ﬂ—m_ B (21)-

fam

Gy =

a M IR

In the two last of which equations y and z are taken to re-
present, respectively, the distances of the element AM of the
body from two other planes, as « represents its distance from

* Poigson, Journal de VEcole Polytechnique, 18me cabier, p. 320,

or Art. 2, in the Treatise on Definite Integrals in the Encyclopadia

Metropolitana by the suthor of this work, See Appendix, note A,
. D )
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the first plane ; and G;and G, to represent the distances of its
centre of gravity from those planes. The distances Gy, Go
Gy, of the centre of gravity from three different planes being
thus known, its actual position in space is fully determined.
These three planes are usually taken at right angles to one
another, and are then called rectangular co-ordinate planes,
and their common intersections rectangular co-ordinate
axes.

If the centre of gravity of the body be known to lie in a
certain plane, and one of the co-ordinate planes spoken of
above, as for instance that from which G, is measured, be
taken to coincide with this plane in which the centre of gravity
is known to lie, then G;=0, and the position of the centre
of gravity is determined by the two first only of the above
three equations. This case occurs when the body, whose
centre of gravity is to be determined, is symmetrical about 2
certain plane, since then its centre of gravity evidently lies in
its plane of symmetry. If the centre of gravity of the body
be known to lie in a certain Jine, and two of the co-ordinate
planes, those for instance from which G, and Gy are measured,
be taken so as to intersect one another in that line, then the
centre of gravity will be in both those planes; therefore
Ge=0and Gy=0, and its position is determintd by the first
of the preceding equations alone. This case occurs when
the body is symmetrical about a given line; its centre of
gravity is then manifestly in that line.

%32 THE CENTRE OF GRAVITY OF A CURVED LINE WHICH
LIES WHOLLY IN THE SAME PLANE.

Taking M to represent the length S of such a line, we
have, by equations (21),

=g£“?§_s, G,= J¥S e,

ExaMpLE. — Let it be required to determine the cenire of
gravity of a circular arc EF.
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The centre of gravity of such an arc is evidently in the
radius CA, which bisects it; since the arc
is symmetrical about that radius. Take

., 8 plane Cy perpendicular to this radius, and
passing through the centre, to measure the
moments from. Let x represent the dis.

. tance PM of any point P in this arc from this plane ; also let

s represent the arc PA, and S the arc EAF, o the radius CA,
and C the chord EF.

Mz.m:-:

o =PM=CP cos. CPM=CP cos. ACP=a cos. %;

ot mofon /os 142) _za»,m<~ -

38

the integral being taken between the limits 4S and —i8,
because these are the values of 3 which correspond to the
extreme points F and E of the arc.

S .
Now, 2a sin.%(—;) =chord of EAF=C, .. [dS=aC,

aC
Gl —— S - & 3 2 & 3 (23)‘
The distance of the centre of gravity of a circular arc from
the centre of the circle is therefore a fourth proportional to

the length of the are, the length of the chord and the radlu.s
of the arc.

*33. THE CENTRE OF GEAVITY OF A CURVILINEAR AREA
WHICH LIES WHOLLY IN THE SAME PLANE.

Let BAC Tepresent such an area. If x a.nd 4y repre-

* sent. the perpendiculnr dumnées PN and - PM
of any point P in the curve AB from planes
I_i AC and AD, perpendicular to the plane of the -

n ¢ given area and to one anothér, and M rep
D 2
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sent the area PAM, then, considering this area to be made
up of rectangles parallel to PM, the width of each of which
is represented by the exccedingly small quantity Aa, the
volume AM of each such rectangle will be represented by
yAax, and its moment about AD by payAx.

"
- / xydx
Therefore by equation (20), G,==%¥ Ar_T_ L (@)
M M

A similar expression determines the value of Ggy; but oné
more convenient for calculation is obtained, if we consider
the weight of each of the rectangles, whose length is y, to
be collected in its centre of gravity, whose distance from AC
is 3y. The moment of the weight of each rectangle about
AC will then be represented luy'Ax; whence it follows
that

/ g;gdx
w2yrtAr 1

Y R 5).
M <3 M N 1))

EXaMPLE.— Suppose the curve APB to be a parabola, whos
axts is AC,
) . By the equation to the parabola g2=4ax, if o
i be the distance of the focus from the verteX.
Moreover, the limits between which the integral
is to be taken are 0 and «, and O and ¢, since at
© A 2=0,y=0, and at C, x =a, Y =71,

therefore/:;:ydm:ﬁu/a atde= i.-\/a.rl'g ; also, Mz/ﬁ;dwz
0 “o

Iy

20 fatdx :-g ‘/cm:lg, therefore G= % ).

w I 3
= —agp2Ytt 4 A
Also.,{y dm_,4«cf/wdm_2aml =z-send M= %—ch“g__ 6

]

3
therefore Go= YA
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If, then, G be the centre of grav1ty of the pardbohc area
ACB, then AH-——AC HG—-——CB

*34. THE CENTRE OTF GRAVITY OF A SURFACE OF
REVOLUTION.

Any surface of revolution BAC is evidently symmetrical

» about its axis of revolution AD, its centre of
.|| gravity is therefore in that axis. Let the mo-
- ments be measured from a plane passing throngh
A and perpendicular to the axis AD, and let
¢ x and y be co-ordinates of any point P in the
generating curve APB of the surface, and s the length of
the curve AP. Then M being taken to represent the area
of the surface, and being supposed to be made up of bands
parallel to PQ, the area AM of each such band is re-
presented (see p. 44.) ¥ by 2myAs, and its moment by
Druicy As,

Sy

_/ xyds
Gl szmytls Sg
M M

ExaMPLE. — T0 determine the centre of gravity of the sur-
Sface of any zome or segment of a sphere.

Let B,AC, represent the surface of a sphere,
whose centre i D, and whose radius DP is repre-
sented by a, and the arc AP by 5. Ther e=DM =

- DP cos. PDM=a cos.-z-, y=PM :*;.DP sin. PDM

R ) .8 g . 25
=a sin~-, v, 20y = 262 sin,— cos. — —a®sin.—,
a a a a

-+ Or Prof. Hall’s Diff. Calculus, p. 188. -~
»3
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S) 8
N R 4
" er/a‘yds ::-ra‘?/sm.__ds
. x o
Sg S-g

o
=1 nq? { cos.Q_S;% —~COS. 25,1
a @ J

=ira? { (1 + cos.2%> - (l-{—cos. E{?) }

=mad { cos.9§3—-cos.9§_'} ..... (27).

[ o

where S; and S, are the values of s at the points B
and By, where the zone is supposed to terminate,

Sy
Also, since % =2y, S M=2xfyds
Se
1
:era,/sin. S ds= 2ra? {c:c>s,.§---u','c)s._s_1 } s
g 7 a P

1 S s
Gl:_'z_a {cos:&—Ea +cos.-j}

1 ‘
=7 { DE,+DE, } =DE ..... (28),
if E be the bisection of E,E,.

If S, =0, or the zone commence from A, then

1 S, Sy
Gl_—éa{l+cos.—g}:a cc»s.’-g-c—I v e (29),

*35. THE CENTRE OF GRAVITY OF A SOLID OF REVOLUTION.

Any solid of revolution BAC is evidently symmetrical

U
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. about its axis of revolution AD, its cenire of
/E] gravity is therefore in that line; and taking a
< -zt plane passing through A and perpendicular to

that axis as the plane from which the moments
© are measured, we have only to determine the
distance AG of the centre of gravity, from that plane,

Now, if # and y represent the co-ordinates of any point P
in the generating curve, and M the volume of the portion
PAQ of this solid, then, conceiving it to be made up of
cylindrical lamine parallel to PQ, the thickness of each of
which is Az, the volume of each is represented by =y2Axz,
and its moment by wuxy*Az.

F
aﬁy’dx
LG=TEA e L 80),

M M

ExaMpPLE.—T0 determine the centre of gravity of any solid
segment of a sphere,

Let B,AC, represent any such segment of a sphere

whose centre is D and its radius @. Let = and g

» represent the co-ordinates AM and MP of any point

P, z being measured from A ; then by the equation
“  to the circle ¥*=2ax—2°

ﬂ:l &y
. tde— oz —x )dr == S dary ).
f:ﬂy x/ = Roe—a)dz=slhas’ i

Lo &
Also, M :J y'da :1:/'(2@:— & )dx =x(ax,*—}x;*),
Ta [

NPT ot ST (Sa=3a a1

a—4z; Jg—z,

If the segment become a hemisphere, =a, .-, G,=4a.
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36. The centre of gravily of the sector of a circle.

Let CAB represent such a seetor ; conceive the are ADB
to be a polygon of an infinite number of sides and
lines, to be drawn from all the angles of the po-
Iygon to the centre C of the circle, these will
divide the sector into as many triangles. Now the
centre of gravity of each triangle will be at a distance from
C equal to § the line drawn from the vertex C of that ti-
angle to the biscction of its base, that is equal to % the radius
of the circle, so that the centres of gravity of all the triangles
will lie m a circular arc FE, whose centre is ¢ and iis
radius CF equal to 3CA, and the weights of the triangles
may be supposed to be collected in this arc FE, and to be
uniformly distributed through it, so that the centre of
gravity G of the whole sector CAB is the centre of gravity
of the circular arc FE. Therefore by cquation (23}, if 87, €',
and &', represent the arc FE, its chord FE, and its radius
CF, and 8, C, @, the similar are, chord, and radius of ADB,
1Fall

then CG:—QSIE-‘; but since the arcs AB and FE are
similar, and that ¢'=%a, .-, C'=2C and S'=32S. Sub-
stituting these values in the last equation, we have

al
CG=%g ....... (32

87. The centre of gravity of any portion of a circular ring o
of an arck of equal voussoirs.

Let B,C\CeB, represent any such portion of a circular
. ¥ing whose centre is A. Let @, represent

,..,(:”f - the radius, and C, the chord of the arc B,Ci
™ and S, its length, and let ag, €, similarly re-

present the radius and chord of the are BsCo
and 8, the length of that arc.

Also let G represent the centre of gravity of the sector

i i e
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AB,\C,, G, that of the sector AByCs, and G the centre of
gravity of the ring. Then

AGQ ercct. ABQCQ + KG x riﬂgBlC]BgCg:AGl X ééct AB[C].

Now (by equation 32), AG, :*-'_aé? I AG,=2 aeSCg :

also sector AB,C, =48,4,, sector AB;Cy=1S.as,
.. ring B,C,CyBy=sect. AB,C;~sect. AB.Co =458, — §Sea,,

. Qag 2 %Sgdg'f‘AG é(Slal —Sgag).—— Qal'_' % S,al,
AG. (Sla’l""'SQa!)—K(Cla'l - Caa! )3

Clal —Cgﬂag
AG=¢ S\a;—5qa9

38. TilE PROPERTIES OF GULDINUS.

If NL represent any plane area, and AB be any axis, in the

s same plane, about whick the area is made to re-

volve, so that NL is by this revolution made to

Y-{5s) generate a solid of revolution, then is the volume

>/ of this solid equal to that of a prism whose base

h % g NL, and whose height iz equal to the longth

of the path which the centre qf gravity G of the area NL
13 made to describe.

For take any rectangular area PRSQ in NI, whose sides
are respectively parallel and perpendicular to AB, and let
MT be the mean distance of the points P and Q, or R
and S, from AB. Now it is evident that in the revolution
of NL about AB PQ will describe a superficial ring.

Suppose this to be represented by. QFPK, let M be the

* centre of the ring, and let the arc subtended by.the
ﬁ angle QMF at distance upity from M be represented
* by 6, then the ares FQAPK equnh the sector. F
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—the sector KPM =1 MQ' x§—1 MP* x = 14 (MQ'~ -
MP?) = o MQ;MP) x (MQ—MP)=#(MT x PQ).

Now the solid ring generated by PRSQ is evidently cqual
to the superficial ring generated by PQ, multiplied by the
distance PR. This solid ring equals therefore § (MT x P@ -
xPR) or § xMT x PRSQ. Now suppose the ares
PRSQ to be exceedingly small, and the whole area Nk :
to be made up of such exceedingly small areas, and let -
them be represented by a, ay, a, &c. and their meal
distances MT by ), a4, a4, &c. then the solid annul
generated by these arcas respectively will (as we have
shown), be represented by Oey0y, bBagny, Sagas, &c. & and -
the sum of these annuli, or the whole solid, will be repre-
sented by 62,0, + bxea; + birgas + K., or by H(may+ Tt
@ga3+ &c.). Now if u represent the weight of any superﬁﬂ"*l :
element of the plane N1, x,¢,% =the moment of the weight of :
¢, about the axis AB, 2,04 =that of the area a, about the same -
axis AB,and so on, therefore the sum (z,a, + ®yaq + wsas + &
=the moment of the whole area NT, about AB; but if Gbe
the centre of gravity of NL, and G its distance from AB,ihfn :
the moment of NL about AB=GT % NLg; :
thercfore the whole solid =6 . G1. NL; but
6. GL equals the length of the circular
path described by G ; therefore the volumeé
of the solid equals NI multiplied by (;h.e :
~ length of the path described by G, é.e. 1 °
2 equals a prism NM, whose base is NL, and
=t/ whose height GH is the length of the path
" described by G ; which is the first property

of GULDINUS.

39. The above proposition is applicable to finding th
solid contents of the thread of a screw of variable diameter; ©
of the material in a spiral staircase: for it is evident that t}‘
thread of a screw may be supposed to bemade up of an jnfimite :
number of small solids of revolution, arranged oneabove anotherfig

HE
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like the steps of a staircase, all of which (contained in one turn
of the thread) might be made to slide along the axis, so that
their surfaces should all lie in the same plane; in which case
they would manifestly form one solid of revolution, such as
that whose volume has been investigated. The principle is
moreover applicable to determine the volume of any solid
(however irregular may be its form otherwise), provided only
that it may be conceived to be generated by the motion of a
given plane area, perpendicular to a given curved line, which
always passes through the same point in the
G p!ang. I:)For it is evident that whatI;ver point in
this curved line the plane may at any instant be traversing,.
it may at that instant be conceived to be revelving about
a certain fixed axis, passing through the centre of cur-
vature of the curve at that point; and thus revolving about a
fixed axis, it is generating for an instant a solid of revolution
about that axis, the volume of which elementary solid of revo-
lution is equal to the area of the plane multiplied by the
length of the path described by its centre of gravity; and
this being true of all such elementary solids, each being
equal to the product of the plane by the corresponding ele-
mentary path of the centre of gravity, it follows that the
whole volume of the solid is equal to the product of the area
by the whole length of the path.

40. If AB represent any curved line made to revolve-about the
axis AD so as to generate the surface
of revolution BAC, and G be the

* centre of gravity of this curved hne,

' then is the area of this surface equal
to the product of the length of the curved line AB, by the
length of the path described by the pomt @G, My the ro-
volution of the curve about AD. 17:43 is the ucoud };‘rcgmmtyi

of Guldinus. - i

Let PQ be any small element of the generatmg curve, and_; .
PQFK a zone of the surface generated by this element; this -
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zone may be considered as a portion of the surface of a come
whose apex is M, where the tangents to the curve at T and
V, which are the middle points of PQ and FK, meet wher
produced, Tet this band PQFK of the conc QMF be de-
= weloped*, and let PQFK represent its developement;

&y this figure PQFK will evidently be a circular sing

= whose centre is M; since the developement of the
whole cone is cvidently a circular sector MQF whose centre
M corresponds to the apex of the cone, and its radins MQt0
the side MQ of the cone. ;

Now, as was shown in the last proposition, the area of 1fh15
circular ring when thus developed, and therefore of the conical
band before it was developed, is represented by § . MT . rQ,
where § represcnts the arc subtended by QMF at distanc
unity, Now the arc whose radius is MT is represented by
§ . MT; but this arc, before it was developed from the €08%
formed a complete circle whose radius was N'I', and therefore
its circumference 2sNT; since then the circle has ot
altered its length by its developement, we have

SMT =2xNT.
Substituting this valuc of 6MT in the expression for the ared
of the band we have
area of zone PQFK 2= , NT . PQ.

Let the surface be conceived to be divided into an infibité
number of such elementary bands, and let the lengths of the
corresponding clements of the curve AB be represented by -
815 89, 83, &c. and the corresponding values of NT by 41, ¥
¥» &c. Then will the areas of the cotresponding zones be
represented by 2zy)s,, 2myys,, 2myqss, &c. and the area of the
whole surface BAC by 2my,s; +2mys, + 2mggsg+ . - . 0L bY
2m(y.8, + yoso+ Yyt + . . . .)-  But since G is the centre of .
gravity of the curved line AB, therefore AB . GHp repre
sents the moment of the weight of a uniform thread or Wir .
of the form of that line about AD, # being the weight of each ..

* If the cone be supposed covered with s flexible sheet, and a band such :
a5 PQFK be imagined to be cut upon it, and then unwrapped from the co%®
and laid upon a plane, it is called the developement of the band. :
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unit in the length of the line : moreover, this moment equals
the sum of the moments of the weights s, #op, sgp, &c. of
the elements of the line.

. AE_-_ GHpe=(151+ Yoo+ gata+ = « -
w AB . GH=p8 +yabo+yats+ « . . .
Therefore area of surface BAC=27AB . GH=AB.(2xGH).

But 2rGH equals the length of the circular path descnbed
by G in its revolution about AD. Therefore, &c.

This proposition, like the last, is true not only in respect
to a surface of revolution, but of any surface generated by a
plane curve, which traverses perpendicularly another cuive of
any form whatever, and is always intersected by it in the
same point, It is evident, indeed, that the same demonstra-
tion applies to both propositions. - It ‘must, -however; - be
observed, that neither proposition applies unless the motion
of the generating plane or curve be such, that no two of its
consecutive positions intersect or cross one another.

41, The volume of any truncated prismatic or cylindrical body
ABCD, of which one extremity CD is perpendiculay to the
sides of the prism, and the other AB inclined to them, is
equal to that of an upright prism ABEF, having for it base
the plane AB, and for its height the perpendicular height
GN of the centre of gravity G of the plane DC, above tﬁe
plane of AB.

For lets represent the inclination of the plane DC to AB;
»  take m, any small element of the plane CD,

o;} and let mr be a prism whose base is » and
! | whose sides are parallel to AD and BC; of
~-¥ elementary prisms similar to which the
whole solid ABCD may be supposed to bemade up. Now the
volume of this prism, whose base is m and its height mr, equals

mr X m=sec. i x {mr . cos:)xrn seeﬂ((mr sm.mm)m..
sec. IXMnxm
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Therefore the whole solid equals the sum of all such pre
ducts as mn X m, each such product being multiplied by the
constant quantity sec. s, or it is equal to the sum just spoket
of, that sum being divided by cos.s. Let this sum be repre
sented by Zmn x m, therefore the volume of the solid is re-
presented by g::)_?s’:,m Now suppose CD to representd
thin lamina of uniform thickness, the weight of each squar®
unit of which is x, then will the weight of the element m be
represented by & x m, and its moment about the plane ABN
by wx mn x m, and wSmn x m will represent the sum of the
moments of all the elements of the lamina similar to m about
that plane. Now by Art. 15. this sum equals the moment of
the whole weight of the lamina p % CD, supposed to be cok
lected in G, about that plane. Therefore

pxc_ﬁxNTiszEiszxm,
.. CD x NG =Smn x m.

Substituting this value of Zmz x n, we have

volume of solid:=sec. 1 x CD x NG.

But the plane CD is the projection of AB, therefore ch
=AB cos.s,.". CD xsec. 1= AB;

>+ vol. of solid ABCD=AB x NG =vol. of prism ABEF.
Therefore, &c.

[q.e1]
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PART 11

DYNAMICS.

42. MoTioN is change of place. ‘
The science of DyxNamics is that which treats of the laws

which govern the motions of material bodies, and of their re-

lation to the forces whence those motions result, S

The spaces deseribed by a movmg body are the distances
between the positions which it occupies at different successive
periods of time.

UntrorM MoTION is that in which equal spaces are de-
scribed in equal successive intervals of time,

The vevoctTy of wumiform motion is the space which a
body moving uniformly describes in each second of time.
Thus if a body move uniformly with a velocity represented
by V, and during a time represented in seconds by T, then
the space S described by it in those T seconds i 1s represented
by TV, or S=TV. Whence it follows thatV:T. and T_%! :
so that if a body move uniformly, the space described by it
is equal to the velocity multiplied by the time i se¢onds, the
velocity is equal to the space divided by the time, and the'
time is equal to the space divided by the veloclty '

43. Itis a law of motion, established from constant observa.
tion upon the motions of the planets, and by experiment uponé
the motions of the bodiés around us, thatwhen onée corm<
municated to a body, it remains in that body unaflected by
the lapse of time, earrying it forward for ever with the same. .
velocity and in the same dlrectmn in whlch it ﬁrst begm 4
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move, unless some force act afterwards in a contrary divec-
tion to destroy it.®

The velocity, at any instant, of a body moving with a
VARIABLE MOTION, is the space which it would describe in
one second of time if its motion were from that instant to
become UNIFORM.

An AccELERATING FORCE is that which acting continually
upon a body in the direction of its motion, produces in it a
continually increasing velocity of motion,

A RETARDING FORCE is that which acting upon a body in
a direction opposite to that of its motion producesin it a
continually diminishing velocity.

An mrpunstve force is that which having communicated
motion to a body, ceases to act upon it after an excecedingly
small time from the commencement of the motion.

4. A uNiroRMLY accelerating or retarding force is that
which produces equal increments or decrements of velocity in
cqual successive intervals of time. If f represent the ad-
ditional velocity communicated to a body by a uniformly
accelerating force in each successive second of time, and T
the number of seconds during which it moves, then since by
the first law of motion it retains all these inerements of
velocity (if its motion be unopposed), it follows that after T
seconds, an additional velocity represented by f'T, will have
been communicated to it; and if at the commencement of
this T seconds its velocity in the same direction was V, then
this initial velocity having been retained (by the first law of
motion}, its whole velocity will have become V +fT.

If, on the contrary, f represent the velocity continually
taken away from a body in each successive second of time, by
a uniformly retarding force, and 'V the velocity with which it
began to move in a divection opposite to that in which this
retarding force acts, then will its remaining velocity after T

* This is the first LAw oF sorion, For numerous illustrations of this
fundamental law of motion, the reader is referred to the author’s work,
entitled, ILLusTrRATIONS oF MECHANICS, Art. 193,
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seconds be represented by V—fT; so that generally thé
velocity V of a body acted upon by & uniformly accelerating

or retarding force -is represented, after T seconds, by the
formula

p=VfT ... .. (34).

The force of gravity is, in respect to the descent of bodies
near the earth’s surface, a constantly accelerating force, in-
creasing the velocity of their descent by 32} feet in each
successive second, and if they be projected upwards it is a
constantly retarding force, diminishing their velocity by that
quantity in each second. The symbol g is commonly used to
represent this number 323 ; so that in respect to' gravity the
above formula becomes v==V+gT, the sign % being taken
according as the body is projected upwards or downwards.

A VARIABLE aceelerating force is that which communicates
unequal increments of velocity in equal successive intervals of
time; and a variable refarding force that which takes away
unequal decrements of velocity.

45. To DETERMINE THE RELATION BETWEEN THE VELOCITY
AND THE SPACE, AND THE SPACE AND TIME OF A BODY'S
MOTION, ;

Let AM,, M\M,, MM, &c. represent the exneethng
7 small successive periods of a bodys—motmn,
Tl “ and AP the velocity with which it begani to
‘ _ move, M,P; the velocity at the expiration
Ak ® of the first interval of time, MpP; thet ‘at
the expiration of the second, MzP;of the third intetval of
time, end so on; and instead of the body varying the veloclty
of its motion caﬂtmually thronghout the period AM,, sip-
Pose it to move through that interval with a velocity which
s & mean between the velocity AP at A, and that Mll’;
at M,, or with a velocity equal to (AP +M,P).

Since on this supposition it moves with a uniform: motion,
the space it describes during the period AM; equals ﬂie?ro- :
duct of that velocity by that period of time, or, lt gyl

. R .
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HAP+M,P,)AM,. Now this product represents the ares
of the trapezoid AM ,P\P. The space deseribed then in the
interval AM,, on the supposition that the body moves during
that interval with a velocity which is the mean hetween those
actually acquired at the commencement and termination of
the interval, is represented by the trapezoidal area AM, T T

Similarly the arsas P\M,, P;M,, &c. represent the spaces
the body is made to describe in the successive intervals M, Ms,
M;Mg, &c.; and therefore the whole polygonal area APCB
represents the whole space the body is made to describe in
the whole time AB, on the supposition that it moves in each
sucecessively exceeding small interval of time with the mean
veloeity of that interval.  Now the less the intervals are, the
more nearly does this mean veloeity of each interval approach
the actual velocity of that interval; and if they be infinitely
small, and therefore infinitely great in mumber, then the
mean velocity coincides with the actual velocity of cach in-
terval, and in this case the polygonal area passes into the
curvilinear area APCB.

Generally, therefore, if we represent by the abscissa of a
curve the times through which a body has moved, and by
the corresponding erdinates of that curve the velocities which
it has acquired after those times, then the area of that curve
will represent the space through which the body has moved ;
or in other words, if a curve P'C be taken sueh that the number
of equal parts in any one of its abscisse AMj being taken
to represent the number of seconds during which a body has
moved, the number of those equal parts in the corresponding
ordinate MyP, will represent the number of feet in the velocity
then acquired; then the space which the body has described
will be represented by the number of these equal parts squared
which are contained in the area of that curve.

46. To DETERMINE THE SPACE DESCRIBED IN A GIVEN
TIME BY A BODY WHICH IS8 PROJECTED WITH A GIVEN
VELOCITY, AND WHCGSE MOTION 18 UNIFORMLY ACCELE-
RATED, OR UNIFORMLY RETARDED.

Take any straight line AB to represent the whole time T,
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in seconds, of the body’s motion, and draw AD
perpendicular to it, representing on the same,
scale its velocity at the commencement of its
motion. Draw DE parallel to AB, and accord-
ing as the motion is accelerated or retarded draw DC or DF
inelined to DE, at an angle whose tangent equals f; the con-
stant increment or decrement of the body’s velocity. Then
if any abscissa AM be taken to represent a number of seconds
f during which the body has moved, the corresponding ordinate
MP or MQ will represent the velocity then acquired by it,
according as its motion is accelerated or retarded. For PR=
RQ=DR tan. PDE=AM tan. PDE; but AM =¢, and tan.
PDE =f; therefore PR=RQ =f. AlsoRM=AD=Y,there-
fore MP=RM + PR=V +ft,and MQ=RM-RQ=V—fi;
therefore by equation (34), MP or MQ represents the velo-
city after the time AM according as the motion is accelerated
or retarded. The same being true of every other time, it
follows, by the last proposition; that the whole space de-
scribed in the time T or AB is represented by the area
ABCD if the motion be accelerated, and by the area ABFD
if it be retarded.

Now area ABCD=34AB(AD+ BC), but AB=T, AD=
V,BC=V+ /T,

. area ABCD=4T(V+V +fT)=VT+{fT%

Also area ABFD=31AB(AD + BF), where AB and AD
have the same values as before, and BF =V —fT,

. area ABFD=3T(V4+V—fT)=VT =41

Therefore, generally, if S represent the space described after
T scconds,

] W w7

S=VIT£3fT*..... (35);

in which formula the sign =+ is to be taken according as the
motion is accelerated or retarded.
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47, To DETERMINE A RELATION BETWEEN TIIE SPACE DE-
SCRIBED AND THE VELOCITY ACQUIRED BY A BODY WHICH
18 PROJECTED WITH A GIVEN VELOCITY, AND WHOSE MO-
TION 18 UNIFORMLY ACCELERATED OR RETARDED,

Let @ be the velocity acquired after T seconds, then by

equation (34), v=V=fT, .. T= +( V)

!5_’::’: Now area ABCD=}AB(AD+ BC), where
b AB=T=US Y AD =V, o=y,
x ™ » f

area ABCD ::é(ti_fv) (V+oy=1 (""1‘}V1)’

' -V
area ABFD=4{AB(AD + BF), where AB=T= -~ -(v P -),
AD=v», BF=V,

area ABFD=—} *(?.:_M 3\ (22— Vl)

f ke
Therefore generally, if S represent the space through which
—_ 32
the velocity » is acquired, then S:i% v ),
T - I (36);

in which formula the * sign is to be taken according as
the motion is accelerated or retarded.

If the body’s motion be retarded, its velocity v will eventu-
ally be destroyed. Let 8, be the space which will have been
described when o thus vanishes, then by the last equation

—VQ—_'——-QfS;.

Ve=2rS, . . . .. (37),

where V is the velocity with which the body is projected
in a direction opposite to the force, and S, the whole space
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which by this velocity of projection it can be made to
deseribe.

If the body’s motion be accelerated, and it fall from resz,
or have ne velocity of projection, then v2—0= + 2f8,

Let S; be the space through which it must in this case
move to acquire a velocity V equal to that with which it
was prajected in the last case, therefore V2=2fS,., "Whence
it follows that S,=S8,, or that the whole space S, through
which a body will move when projected with a given velocity
V, and uniformly refarded by any force, is equal to the space
Sg, through which it must move to aeguire that velocity when
uniformly aecelerated by the same force.

In the case of bodies moving freely, and acted upon by
gravity, f equals 32} feet, and is represented by g; and the
space S,, through which any given velocity V is acquired, is
then said to be that due to that velocity.

WORK.

48, WoRK is the union of a continued pressure with a con-
tinued motior. And a mechanical agent is thus said to
WORK when a pressure is continually overcome, and a point
(to which that pressure is applied) continually moved by it.
Neither pressure nor motion alone is sufficient to constitute
work; so that a man who merely supports a load upon his
shoulders without moving it, no more works, in the sense in
which that term is here used, than does a column which sus-
tains a hea.vy weight upon its summit; and ‘a stone as it falls
freely in vacuo, no more works than do the planets as they
wheel unresisted through space.

49. TuE uNir oF work. The unit of work used in this
E 3
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country, in terms of which to estimate every other amount
of work, is the work necessaty to overeome a pressure of ope
pound through a distance of one foot, in a direction opposite
to that in which the pressure acts. Thus, for instance, if a
pound weight be ratsed through a vertical height of one foot,
one unit of work is done; for a pressure of one pound is
overcome through a distance of one foot, in a direction oppe-
site to that in which the pressure acts.

S50. The number of units of work necessary lo overcome 2
pressure of M pounds through a distance of M feet, is
equal to the product MN.

For since, to overcome a pressure of one pound through
one foot requires one unit of work, it is evident that to over-
come a pressurc of M pounds through the same distance of
one foot, will require M units. Since then M units of work
are Tequired to overcome this pressure through one foot, it
is evident that N times as many units (i. e. NM) are re-
quired to overcome it through N feet. Thus, if we take U
to represent the number of units of work done in overcoming
a constant pressure of M pounds through N feet, we have

U=MN........(39)

51, To ESTIMATE THE WORK DONE UNDER A VARIABLE
PRESSURE.

Let PC be a curved line and AB its axis, such that any one
of its abscisse AM;, containing as many

o : 'F'Mm“‘"‘*i‘c equal parts as there are units in the space
r(’ L | through which any portion of the work has
A‘T}“?{g—‘—*ﬁ—il becn done, the corresponding ordinate MsPs

may contain as many of those equal parts,
as there are in the pressurc under which it is then being
done. Divide AB into cxceedingly small equal parts,
AM,, M\M,, &c. and draw the ordinates M,P,, MoP,, &c.;



VARIABLE WORK. 55

then if we conceive the work done through the space AM,
(which is in reality done under pressures varying from AP to
M,P,,) to be done uniformly under a pressure, which is the
arithmetic mean between AP and M;P,, it is evident that
the number of units in the work done through that small
space will equal the number of square units in the trapezoid
APP M, (see Art.45.), and similarly with the other trape-
zoids; so that the number of units in the whole work done
through the space AB will equal the number of square units
in the whole polygonal area APP,P,P;, &c. CB.

But since AM;, M;M,, &c. are exceedingly small, this
polygonal area passes into the curvilincar area APCB; the
wiole work done is therefore represented by the number of
square equal parts in this area.

Now, generally, the area of any curve is represented by

the integral j _;;d;r;, where y represents the ordinate, and x

the corresponding abscissa. But in this case the variable
pressure P is represented by the ordinate, and the space S
described under this variable pressure by the abscissa. If
therefore U represent the work done between the values
S; and 8; of 8, we have

Mean pressure is that under which the same work would
be done over the same space, provided that pressure, instead

r of varying throughout that space, remained
Bl —» the same: thus, the mean pressure in re-
| I spect to an amount of work represented by
the curvilinear area AEFC, s that under
which an amesnt of work would be done represented by the
rectilineal area ABDC, the area ABDC being equal to the cur-
vilinear area ABDC; the mean pressure in this case is repre-
sented by AB. Thus, to determine the mean pressure in any
case of variable pressure, we have only to find a ewsvilinear
area representing the work done under that variable pressure,
and then to describe a rectangular paralielogram en the same

E 4 . .

A
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base AC, which shall have an area equal to the curvilinear
arca.

If S represent the space deseribed under a variable pres-
sure, U the work done, and p the mean pressure, then pS=U,

therefore p = g

52. To estimate the work of a pressure, whose direction is not
that in whick its point of application is made Lo move.

Hitherto the work of a force has been estimated only on
" thesupposition that the point of applicatiqn

e of that force is moved in the dircetion m
vé: p,.i%’ which the force operates, or in the opposite

S‘é
i direction. Let PQ be the direction of a
pressure, whose point of application Q is made to move in
the direction of the straight line AB. Suppose the pressure
P to remain constant, and its direction to continuc parallel to
itself. It is requircd to estimate the work done, whilst the
point of application has been moved from A to Q.

Resolve P into R and 8, of which R is parallel and $ per-
pendicular to AB.  Then since no motion takes place in the
dircetion of 5Q, the pressure S does no work, and the whole
work is done by R ; therefore the work =R . AQ.

Now R=P . cos. PQR, therefore the work =P . AQ cos.
PQR. From the point A draw AM perpendicular to PQ, then
AQ cos. PQR=QM ; therefore work =P . QM. Therefore
the work of any pressure as above, not acting in the divection of
the motion of the point of application of that pressure, is the
same as it would have been if the point of application had
been made to move in the direction of the pressure, provided
that the space through which it was so moved had been the
prejection of the space through which it actually moves. The
product P . QM may be called the work of P resolved in
the direction of P,

"The above proposition which has been proved, whatever
may be the distance through which the point of application is



OF WORK, 57

moved, in that particular case only in which the pressure
remains the same in amount and always parallel to itself,
1s evidently true for exceedingly small spaces of motion, even
if the pressure be variable both in amount and direction ; since
for such exceedingly small variations in the positions of the
points of application, the variations of the pressures them-
selves, both in amount and direction, arising from these
variations of position, must be exceedingly small, and there-
fore the resulting variations in the work exceedingly small as
compared with the whole work. '

53, If any number of pressures Py, Py, Ps, be applied to the
same point A, and remain constant and parallel to them-
selves, whilst the point A is made to move through the
straight line AB, then the whole work done is equal to
the sum of the works of the different pressures resolved in
the directions of those pressures, each being taken negatively
whose point of application is made to move in an opposite
direction to the pressure upon .

Let «), a5, a4, &e. represent the inclinations of the pressures
Py, Py, &ec. to the line AB, then will the
resolved parts of these pressures in the
direction of that line be P, cos. a), Py
T coS. ag, P cos. ag, &e. and they will be
equivalent to a single pressure in the direc-
tion of that line represented by P, cos. a;+ P cos. ap+ Py
€0s. ay, &c. in which sum all those terms are to be taken
negatively which involve pressures whose direction is from
B towards A (since the single pressure from A towards B is
manifestly equal to the difference between the sum of those
resolved pressures which act in that direction, and those in the
opposite direction), Therefore the whole work is equal to

{P\ cos. @ + Py cos.ag+ Pycos.ag+ . -« + o } - AB=P,AB
cos. o+ Py . AB cos. zg+ P,AB cos.ag+ . . . =P . Baﬂl.+
Py . BMg+P; . BMy+ .. ...; in which expression the
Successive terms are the works of the different pressures
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resolved in the several directions of those pressures, cach
being taken positively or negatively, according as the direc-
tion of the corresponding pressure is fowards the direction of
the motion or opposite to it.

Thus if U represent the whole work and U, and U, the
sums of those done in opposite directions, then

54, If any number of pressures applied to a point be in equt-
librium, and their point of application be moved, the whole
work done by these pressures in the direction of the motion
will equal the whole work done in the opposite direction.

For if the pressures Py, Py, Py, &e. (Art. 53.) be in equi-
librium, then the sums of their resolved pressures in opposite
directions along AB will be equal (Art. 10.); thereforc the
whole work U along AB, which by the last proposition is
equal to the work of a pressure represented by the difference
of these sums, will equal nothing, therefore 0=U,-U,,
therefore U, =1, that is, the whole work donc in one direc-
tion along AB, by the pressures P,, P,, &e. is equal to the
whole work done in the opposite direction,

55. If a hody be acted upon by a force whose direction
always towards @ certain point S, called a centre of force,
and be made to describe any given curve PA in a direction
opposed to the action of that force, and Sp be measured on
SA equal {o ST, then will the work done in moving the
body through the curve RA be equal to that which would
be necessary to move it in a straight line from p to A.

For suppose the curve PA to be a polygon of an infinite
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number of sides PP,, P,P, &c. Through the
points P, P, Py, &c. describe circular arcs with
the radii SP, SP,, SP,, &c. and let them intersect
SA in p, py, ps, &c. Then since PP; is exceed-
ingly small, the force may be considered to act
throughout this space always in a direction parallel
to SP,; therefore the work done through PP, is
equal to the work which must be done to move the body
through the distance mP, (Art. 52.), since mP, is the projection
of PP, upon the direction SP, of the force. But mP,=pp,;
therefore the work done through PPy is cqual to that which
would be required to move the body along the line SA through
the distance pp, ; and similarly the work done through P, P; is
equal to that which must be done to move the body through
Pipas 30 that the work through PP is equal to that through
PPy and so of all other points in the curve. Therefore the
work through PA is equal to that through pA.* Therefore,
&e, [e.E.D.]

56. If 8 be at an exceedingly great distance as compared
with AP, then all the lines drawn from S to AP may be con-
sidered parallel., 'This is the case with the force of gravity
at the surface of the earth, which tends towards a point, the
earth’s centre, situated at an exceedingly great distance, a8
compared with any of the distances through which the work
of mechanical agents is usually estimated.

Thus then it follows that the work necessary to move a
heavy body up any curve PA, or inclined plane, is the same as

would be necessary to raise it ina vertical line pA to the same
height.

The dimensions of the body are here supposed to be ex-

* Of course it is in this proposition supposed that the force, if it be not
constant, is dependent for its amount only on the distance of the point at
which it acts from the centre of force § ; so that the distances of p and P
from & being the same, the force at p is equal to that at P; similarly the
force at 21 18 equal to that at Py, the force at g, equal to that at Py, &e:-:
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ceeding small. If it be of considerable dimensions, then what-
ever be the height through which its centre of gravity is
raised along the curve, the work expeuded js the same
(Art. 60.) as though the centre of gravity were raised ver-
tically to that height.*

57. In the preceding propositions the work has been
cstimated on the supposition that the body is made to move
so as to increase its distance from the centre S, or in a dirce-
tion opposed to that of the forceimpelling it towards S, It is
evident nevertheless that the work would have been precisely
the same, if instead of the hody moving from P to A it had
moved from A to P, provided only that in this last case
there were applied to it at every point such a force as would
prevent its motion from being accelerated by the force con-
tinually impelling it towards S; for it is cvident that to pre-
vent this acceleration, there must continually be spplied to
the body a forec in a direction from S equal to that by which
it is attracted towards it; and the work of such a force is
manifestly the samc, provided the path be the same, whether
the body move in one direction or the other along that path,
being in the two cases the work of the same force over the
same space, but in opposite dircctions.

58. If there be any number of parallel pressures, Py, Pa P
&e. whose points of application are transferred, each through
any given distance from one position to another, then is the
work which would be necessary to transfer their resultant
through a space equal to that by which their centre of
pressure is displaced in this change of position, equal to the
difference between the aggregate work of those pressures
whose points of application have been moved in the directions
in whick the pressures applied to them act, and those whose

* The only force acting upon the body is in this propesition supposed
to be that acting towards 8. No account is taken of friction or any other
forces which oppose themselves to its motion.
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points of application have been moved in the opposite direc-
tions to their pressures.

For (Art. 17.), if 4y, 2, ¥ &c. represent the distances of
the points of application of these pressures from any given
plane in their first position, and % the distance of their centre
of pressure from that plane, and if Y, Yy, Y3, &c. and H re-
present the corresponding distances in the second position,
and if Py, Py, Ps, &c. be taken positively or negatively ac-
cording as their directions are from or tewards the given

plane, ]L{P]+PQ+P3+ . . --}:Plyl+P9‘yg+P3y3 . s
and H{P, +Po+Ps+ ... . =P\ Y1+ PYo+PYe+ . ...

Co(Hmh) (P 4+ Po+ Pyt oo 3 =Py (Y~ )+ Po(Yo—y0)
+Py(Yo—ys)+ ... .o (42)3

in the second member of which equation the several terms
are evidently positive or negative, according as the pressure
P corresponding to each, and the difference Y—y of its dis-
tances from the plane in its two positions, have the same or
contrary signs, Now by supposition P is positive or negative
according as it acts from or towards the plane; also Y—y is
evidently positive or negative according as the point of appli-
cation of P is moved from or towards the plane: each term is
thercfore positive or negative, according as the corresponding
point of application is transferred in a direction fowards that
in which its applied pressure acts, or in the opposite direction.

Now the plane from which the distances of the points of
application are measured may be any plane whatever. Let
it be a plane perpendicular to the directions of the pressures.

2 Let Axy represent this plane, and let P
! » and P’ represent the two positions of the
L . point of application of the pressure P (the
i path described by it between these two -
/,“ ‘ positions having been any whatever). Let
y Ll

MP and M'P’ represent the perpendi-
cular distances of the points P and P’ from the piane,
and draw Pm from P perpendicular to M'P.  Then
» PY—p)=P(M'P'~MP)=P . mP'; but, by Art &5,
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P .'?;;}:-ﬁﬂequa]s the work of P as its point of application is
transferred from P to P, Thus cach term of the second
member of equation ($2) represents the work of the corre-
sponding pressure, so that if Zw represent the aggregate
work of those pressures whose puints of application are trans-
ferred fowards the directions in which the pressures act, and
Zig the work ol those whose points of application are moved
opposite to the dircetions n which they severally act, then
the second member of the equation is represented by Zu—
=u;  Morvcover the first member of the equation is o8 idently
the work necessary to transfer the resultant pressure P+
T+ P, &e. through the distance 1—/, which is that by
which the centre of pressute is vemoved from or tnwards the
given plane, so that if U represent the quantity ol work
neeessary to make this transfer of the centre of pressure,

U=y ==y . o .o . (B3

59. If the sum of those parallel pressures whose tendeney
is in one direction equal the sum of thosc whose tendency
is in the opposite direction, then Py+ P+ Pyt . . . . =0
In this case, therefore, U=0, therefore Xu, — Yu, =0, there-
fore Eu,=2u,; so that when in any system of parallel
pressures the sum of those whose tendency is in one direction
equals the sum of those whose tendency is in the opposite direc-
tion, then the agyregate work of those whose points of appli-
cation are moved in the directions of the pressures severally
applied to them is equal to the aggreqate work of thuse whose
puints of application are moved in the opposite directions.

This case manifestly obtains when the parallel pressures
are in EQUILIBRIUM, the sum of those whose tendency is in
one direction then cqualling the sum of those whose tendency
is in the opposite dircction, since otherwise, when applied to

a point, these pressures could not be in equilibrium about
that point (Art. 8.).

60. The preceding proposition is manifestly true in respect
to a systemn of weights, these being pressures whose directions
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arc always parallel, wherever their points of application may
be moved. Now the centre of pressure of a system of
weights is its centre of gravity (Art. 19.). Thus then it
follows, that if the weights composing such a system be
separately moved in any directions whatever, and through
any distances whatever, then the difference between the
aggregate work done upwards in making this change of
relative position and that done downwards is equal to the
work necessary to raise the sum of all the weights through
a height equal to that through which their centre of gravity
is raised or depressed.* Moreover that if such a system

* This proposition has numerous applications. If for inatance it be
required to determine the aggregate expenditure of work in raising the
different elements of a structure, its stone, cement, &c. to the different
positions they occupy in it, we muke this calculation by determining
the work reguisite to raise the whole weight of material at once to
the height of the centre of gravity of the structure, If these materials
have been carried up by labourers, and we are desirous to include the
whole of their labour in the calculation, we ascertain the probable amount
of each load, and conceive the weight of a labourer to be added to each
load, and then all these at once to be raised to the height of the centre of
gravity,

Again, if it be required to determine the expenditure of work made in
raising the material excavated from a well, or in pumping the water out of
it_, we know that (neglecting the effeet of friction, and the weight and
rigidity of the cord) this expenditure of work is the same as though the
whole material had becn raised at one lift from the centre of gravity of the
shaft to the surface. Let us take another application of this principle
\Njhich offers so many practical results. The material of  milway excava-
tion of cousiderable length is to be removed so as to form an emankment
ucross 4 valley at some distance, and it is required to determine the ex.
venditure of work made in this transfer of the material. Here each load
01_' waterial is made to traverse a different distance, a resistance from the
friction, &e. of the road being continually opposed to its motion. These
resistances on the different loads constitute a system of paraliel pressures,
each of whose points of application is separately transferred from one.
given point to another given point, the directions of tranafer being also
parallel. Now by the preceding proposition the expenditure of work in:
all these separate tranafers is the same 8s it would have been had a pres-:
sure equal to the sum of all these pressures been at once transferred from.
the centre of resistance of the excavation to the centre of resistance of:
the embankment, Now the resistances of the parts of the mass moved:
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of weights be supported in cquilibrium by the resistance of
any fixed point or points, and be put in motion, then (since
the work of the resistance of each such point is nothing)
the aggregate work of those weights which are made to de-
scend, is equal to that of those which are made to ascend.

61. If a plane be laken perpendicular to the directions of any
number of parallel pressures and there be two different
positions of the points of application of certain of these
pressures in which they are at different distances from the
plane, whilst the points of application of the rest of these
pressures vemain uf the swme distance from that plane,
and if in both pesitions the system be in equiltbrium, then
the centre of pressure of the first mentioned pressures will
be at the same distance from the plane in both positions.

For since in hothi positions the system is in equilibrium,
therefore in both positions P+ P, + P+ . . . =0,

G (Y= P+ (Yo—pa) P+ (Ygm ) P+, - .+ Pﬂ(Yn_g") _:O'
Now let P, be any one of the pressures whose point of appli-
cation is at the same distance from the given plane in both
positions,

S Y=g, and Y, —y,=0,
T (Y 1 '—'yl)Pl + (Ye"‘?la)Pe +...+ (Yﬂ——-ﬂ_yn——l)Pﬂ.—l :O’

Y P Y P+ Y P =P +yPo+.. .+ ’S’W""P“"”

Y P1 + Y2P2+ “» +Y1L—1P?t—l J1P1 +YoPo+. :;_*t,jn—-lpﬂ"‘

P+ Pt Py = PHP+.. . +P
e Humy=hy

LY

are the frictions of its elements upon the road, and these frictions are
proportional to the weights of the elements; their centre of resistsnce
coincides therefore with the centre of gravity of the mass, and it follows
that the expenditure of work is the same s though all the material had
been moved at ence from the centre of gravity of the excavation to that of
the embankment. To allow for the weight of the carriages, as many

times the weight of a carriage must be added to the weight of the material
as there are journeys made,
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where H,_; represents the distance of the centre of pressure
of P;, Py ... P,;, from the given plane in the first position,
and A, its distance in the second position. Its distance in
the first position is therefore the same as in the second.
Thercfore, &c.

From this proposition it follows, that if a system of weights
be supported by the resistances of one or more fixed points,
and if there be any two positions whatever of the weights
in both of which they are in equilibrium with the resistances
of those points, then the height of the common centre of
gravity of the weights is the same in both positions. And that
if there be a series of positions in all of which the weights
are in equilibrium about such a resisting point or poiats, then
the centre of gravity remains continually at the same height as
the system passes through this series of positions,

If all these positions of equilibrium be infinitely near to
one another, then it is only during an infinitely small motion
of the points of application that the centre of gravity ceases
to ascend or descend ; and, conversely, if for an infinitely small
motion of the points of application the centre of gravity
ceases to ascend or descend, then in two or more positions
of the points of application of the system, infinitely near to
one another, it is in equilibrium.

WoRk oF PRESSURES APPLIED IN DIFFERENT IIRECTIONS TO
A BODY MOVEABLE ABOUT A FIXED AXIs.

62, The work of & pressure applied fo a body moveable about a
jf:red axis is the same at whatever point in ils proper direc-
tion that pressure may be applied.

For let AB represent the direction of a pressure applied
to a body moveable about a fixed axis

. W’ O; the work done by this pressure
\ ;’/Z,./ will be the same whether it be applied
Vi at A or B. For conceive the body to
) revolve about O, through an exceed~
ingly small angle AQC, or BOD, so that the points A and D
may describe circular arcs AC and BD. Draw Cm, Du, and

OE, perpendiculars to AB, then if P represent the pressure
F
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applied to AB, P . Aw will represent the work done by P
when applied at A (Art. 52.), and I, Bn will sepreseut the
work done by P when applied at B ; therefore the work done
by P at A is the same as that done by P at B if Am is equal
to Ba.

Now AC and BD being exccedingly small, they may be
conceived to be straight lines. Since BD and BI arce respee-
tively perpendicular to OB and O, therefore /DBE=
£ BOE#*; and because AC and AE arc perpendicular to
OA and OF, therefore £ CAE= 7 AQE. NowAm=CA . cos.
CAE=CA . cos. AOF= éf\t . OA . cos. A()E:g%x

BD
OFE. Similarly B»=DB cos. DBE=DDB . cos. BOE=gp"

. BD CA

OB cos. BOE:O"BXOE, i.e. Am=0I . OA? and Ba=
BD CA B

OF g But 'O'A:O'I;, since the 2 AOC= £ BOD, there-

fore Am=DBn.

63. If any number of pressures be in equilibrium about @ fixed
axis, then the whole work of those which tend to move the systen
tn one direction about that axis is equal to the whole work of
thase whieh tend 1o move it in the oppasite direction about the
same axis.  Korlet I be any ene of such a system of pres-
sures, and O a fixed axis, and OM perpendicular to the direc-
tion of P, then whatever may be the point of application of
P, the work of that pressure is the same as though it were
applied at M. Suppose the whole system to be moved through

»  an exceeding small angle § about the point O, and
7/ let OM be represented by p, then will pj represent
~#  the space described by the point M, which will be
" actually in the direction of the force P, therefore

* It is a well known principle of Geometry, that if two lines be inclined
at any angle, and any two others be drawn perpendicular to these, then

the inclination of the last two to one another shall equal that of the first
two,
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the work of P=P . p . 6. Now let P, Py, Ps &ec. re-
present those pressures which act in the direction of the
motion, and P, Py, &ec. those which act in the opposite
direction, and let py, pa ps, &c. be the perpendiculars on the
first, and p', p’y, p's, &c. be the perpendiculars on the second ;
therefore by the principle of the equality of moments P, p, +
Pep, + Pyps+ &e. =P p'v + Popla+ Pypls+ &e.;  therefore
multiplying both sides by §, P8 + Paped + Papd =Py +
Yo'+ Pyplsh + &e.; but Pyps, Pp'd, &e, are the works
of the forces P,, P, &e. ; therefore the aggregate work of
thosc which tend to move the system in one direction is equal
to the aggregate of those which tend to move it in the opposite
direction,

G1. THE ACCUMULATION OF WORK IN A MOVING BODY.

In every moving body there is accumulated, by the action of
the forces whence its motion has resulted, a certain amount of
power which it reproduces upon any resistance opposed to its
motion, and which is measured by the work done by it upon
that obstacle. Not to multiply terms, we shall speak of this
accumulated power of working, thus measured by the work it
is capable of producing, as ACCUMULATED WoORK. [t is in
this sense that in a ball fired from a cannon there is un-
derstood to be accumulated the work it reproduces upon the
obstacles which it encounters in its flight ; that in the water
which flows through the channel of a mill is accumulated the
work which it yields up to the wheel® ; and that in the carriage
which is allowed rapidly to descend a hill is accumulated the
work which carries it a considerable distance up the next hill,
Itis when the pressure under which any work is done, exceeds
the resistance opposed to it, that work is thus accumulated
Ina moving body; and it will subsequently be shown (Art., 69.)
that in every case the work accumulated is precisely equal to

. * This remark applies more particularly to the under-shot wheel, which
' earried round by the rush of the water. ‘
¥ 2
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the work done upon the body beyond that necessary to over-
come the resistances opposed to its motion, a principle which
might almost indeed be assumed as in itself evident.

65. The amount of work thus accumulated in a body moving
with a given velocity, is cvidently the same, whatever may
have been the circumstances under which its velocity has been
acquired. Whetherthevelocity ofaball has been communicated
by projection from a steam gun, or explosion from a cannon, or
by being allowed to fall freely from a sufficient height, it matters
not to the resuit; provided the same velocity be communicated
to it in all threc cases, and it be of the same weight, the work
accumulated in it, estimated by the effect it is capable of pro-
ducing, is evidently the same,

In like manner, the whole amount of work which it is
capable of yielding to overcome any vesistance is the same,
whatever may be the nature of that resistance.

66. To ESTIMATE THE NUMBER OF UNITS OF WORK ACCU-
MULATED IN A BODY MOVING WITH A GIVEN VELOCITY.

Let w be the weight of the body in pounds, and » its
veloeity in feet.

Now suppose the body to be projected with the velocity @ in
a direction opposite to gravity, it will ascend to the height £
from which it must have fallen, to acquire that same velocity ?
(Art. 47.) ; there must then at the instant of projection have
been accumulated in it an amount of work sufficient to raise
it to this height 4; but the number of units of work requisite
to raise 2 weight w to a height 2, is represented by wh ; this
then is the number of units of work accumulated in the body
at the instant of projection. But since % is the height through
which the body must fall to acquire the velocity », therefore

2
v?==2gh (Art. 47.); therefore k:% ; whenee it follows that
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if U represent the number of units of work accumulated,

Moreover it appears by the last article that this expression
represents the work accumulated in a body weighing w pounds,
and moving with a velocity of v feet, whatever may have been

the circumstances under which that velocity was accumu-
lated,

The product ( %)v“ is called the vis viva of the body, so

that the accumulated work is represented by half the vis viva,

the quotient (T;—}) is called the mass of the body.

67. To estimate the work accumulated in a body, or lost by it,
as it passes from one velocity to another.

In a body whose weight is w, and which moves with a
velocity o, there is accumulated a number of units of work

represented (Art. 66.) by the formula k%’v“. After it has
Passed from this velocity to another V, there will be accumu-
lated in it a number of units of work, represented by §'£V‘,

so that if its last velocity be greater than the first, there wdl
have been added to the work accumulated in it, a numbel' of

units represented by 4 nvﬂ—«;—d’ or if the second velocity

be less than the first, there wﬂl have been faken from the
work accumulated in it a pumber of units represented by

w w
3 g Vi ‘V2 So that generally if U represent the work accu-

mulated or lost by the body, in passing from the velocity o
to the velocity V, then

U:#-}E{V*—v“} ve oo (45),
F3
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where the =+ sign is to be taken according as the motion s
accelerated or retarded.

68, The work accunadated in o body, whose motion is accele-
rated through any given space by given forces is equal {o the
work which it would be necessary to do upon the body to
cause it to move back again throwugh the same space when
acted upon by the same forces.

For it is evident that if with the velocity which a body has
-, acquired througl any space AB by the action
R of any forces whose divection is from A towards
h B, it be projected hack again from B towards
=2 A, then as it returns through each successive
stnall part or element of its path, it will be retarded by pre-
ciscly the same forces as thosc by which it was accclerated
when it before passed through it ; so that it will, in returning
through each such element, lose the same portion of its velocity
as hefore it gained there ; and when at length it has traversed
the whole distance BA, and reached the point A, it will have
lost between B and A a velocity, and therefore an amount of
work (Art, 67.), precisely equal to that which before it gained
between A and B. Now the work lost between B and A 38
the work necessary to overcome the resistances opposed to
the motion through BA. The work accumnulated from A to
B is therefore equal to the work which would be necessary
to overcome the resistances between B and A, or which would
be necessary to move the body from a state of rest, and
with a uniform motion, in opposition to these resistances,
through BA, Let this work be represented by U; also
let » be the velocity with which the body started from A, and

V that which it has acquired at B. Then will %%V(Vﬁ-vg)

represent the work accumulated between A and B,

\d - 24U
Sy (V—)=U, e Vi
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If the body, instead of being accelerated, had been refarded,
then the work lost being that expended in overcoming the
retarding forces, is evidently that necessary to move the body
uniformly in opposition to these retarding forces through
AB; so that if this force be represented by U, then, since

W

?(L‘Q—Vg) is in this case the work lost, we shall have

1
2

29U
PP=V2iz -T‘qvw Therefore, generally,

where the sign = is to be taken according as the motion is
accelerated or retarded.

69. The work accumulated in a body which has moved through
any space acted upon by any force, is equal to the excess
of the work which has been done upon it by those forces
which tend to accelerate its motion above that which has
been done upon it by those which tend to retard its motion.

For let R be the single force which would at any point
P (sce last fig.) be necessary to move the body back again
through an exceeding small element of the same path (the
other forces impressed upon it remaining as before); then it
follows by Art. 54. that the work of R over this element of
the path is equal to the excess of the work over that ele-
ment of the forces which are impressed upon the body in
_the direction of its motion above the work of those impressed
in the opposite direction. Now this is true at every point of
the path; therefore the whole work of the foree R neces-
sary to move the body back again from B to A is equal to
the excess of the work done upon it, by the impressed
forces in the direction of its motion, above the work dome
upon it by them in a direction opposed to its motion; whence

¥ 4 :
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also it follows, by the last proposition, that the accumulated
work is equal to this excess, Therefore, &e.

*70, If P represent the force in the direction of the motion
which at a given distance S, measured along the path, acts t0
accelerate the motion of the body, this force heing understood
not to be counteracted by any other, or to be the surplus force
in the direction of the motion over and above any resistance

S
opposed to it, then will ‘/' PdS be the work which must be
i
done in an opposite direction to overcome this force through

S5
the space 8, or U;deS,
o

9./ Pas
.". by equation (46), V“—?J?:i,,,,_“;v._. e e (4T

71. If the force P tends at first towards the direction in
which the body moves, so as to accelerate the motion, and
if after a certain space has been described it changes its diree-
tion so as to refard the motion, and U, represent the value
of U in respect to the former motion, and V, the velocity
acquired when that motion has terminated, whilst U, is the
value of U in respect to the second or retarded motion, and
if » be the initial and V the ultimate or actual velocity, then

229U
V=200,
Tt W

R 2__2«9U2,
Vi-Vi=—
. Vi_va:f?ﬂ%@. .. (A8)

As Uy increases, the actual velocity V of the body continually
diminishes ; and when at length Uy=U,, that is, when the
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whole work done (above the resistances) in a direction opposite
to the motion, comes to equal that done, before, in the
direction of the motion, then V ==v, or the velocity of the body
returns again to that which it had when the force P began to
act upon it. This is that general case of reciprocating motion
which is so frequently presented in the combinations of

machinery, and of which the crank motion is a remarkable
example. :

*72. If the force which accelerates the body’s motion act
always fowards the same centre S, and Sb be taken equal to
. SB, it has been shown (Art. 55.) that the work ne-

cessary to move the body along the curve from B to
s A,is equal to that which would be necessary to move

it through the straight line bA. The accumulated
work is therefore equal to that necessary to move the
body through the difference bA of the two distances

SA and SB (Art. 68.). If these distances be repre-
sented by R, and R, and P represent the pressure with which
the body’s motion along 5A would be resisted at any distance R

from the point S, theg/l PdJR will represent this work. More-
over the work accumulated in the body between A and B is
represented by g_(v 2__p%), if V represent the velocity at

B and o that at A

73. The work accumulated in the body while it descends
the curve AB, is the same as that which it would acquire.in
falling directly towards S through the distance Ab, for both of
these are equal to the work whick would be necessary { torsise
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the body from 5 to A. Since then the work accumulated by
the body through AB is equal to that which it would accunon-
late if it fell through A&, it follows that velocity acquired by
it in falling, from rest, through AB is equal to that which it
would acquire in falling through Aé. For if V represent
the velocity acquired in the one case, and V), that in the other,
then the accumulated work in the first case is represented by

1

w Wy
;E?V‘l, and that in the secopd case by %—g—vr, therefore

v, W
%?.Vz = é—; V1%, therefore V=V,.

From this it follows, that if 2 body descend, being 1)‘:03%*»’3‘1
obliquely into free space, or sliding from rest upon any curved
surface or inclined plane, and be acted upon only by the
force of gravity (that is, subject to no friction or resistance of
the air or other retarding cause), then the velocity acquired
by it in its descent is precisely the same as though it had
fallen wertically through the same height.

74. DeriniTioN, The ANGULAR vELOCITY of a body which
rotates about a fixed axis is the arc which every particle of
the body situated at a distance unity from the axis describes
in a second of time, if the body rovolves uniformly ; oI, if the
body moves with a weriable motion, it is the arc which it
would describe in a second of time if (from the instant when

its angular veloeity is measured) its revolution were to be-
come uniform.

75. THE ACCUMULATION OF WORK IN A BODY WHICH
ROTATES ABOUT A FIXED AXIS.

Propositions 68 and 69, apply to every case of the
motion of a heavy body. In every such case the work
accumulated or lost by the action of any moving force of
pressure, whilst the body passes from any one position to
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another, is equal to the work which must be done in an
opposite direction, to cause it to pass back from the second
position iato the first. Let us suppose U to represent this
work in respect to a body of any given dimensions, which
has rotated about a fixed axis from one given position into
another, by the action of given forces.

Let « be taken to represent the ANGULAR VELOCITY of the
body after it has passed from one of these positions into
another. Then since « is the actual velocity of a particle at
distance unity from the axis, therefore the velocity of a par-
ticle at any other distance p, from the axisis ap;, Let g
represent the weight of each unit of the volume of the body,
and m, the volume of any particle whose distance from the
axis is p;, then will the weight of that particle be pm, ; also
its velocity has been shown to be ap, therefore the amount
of work accumulated in that particle is represented by

m a
-%%la‘lpﬁ, or by %“957“1?1‘-

Similarly the different amounts of work accumulated in the
other particles or elements of the body whose distances from
the axis are represented by pg, ps, - - - and their volumes by

Mgy Mgy My . « . ., are represented by -};a“gmgpgﬂ, '}aﬂgmgpsn, &c,;

so that the whole work accumulated'is represented by the

sSum -%a,g&ml P lﬂ -+ éugﬁ'wgﬂ + -%HQ‘E' 39 4 ¢ e s s s g O by
g g g :
%ﬂg{m]ple + map® +maps”+ . 000 W

The sum mp,? 4+ mgps? +mgps + - - . ., oF Zmp? taken in
Tespect to all the particles or elements which compose the
body, is called its MOMENT OF INERTIA in respect to the
particular axis about which the rotation takes place. Let it

be represented by I; then will a”. (;—') . I, represent the

whole amount of work accumulated in the body whilst it has
been made to acquire the angular velocity 2 from rest. If
therefore U represent the work which must be done in an
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opposite direction to cause the body to pass back from its
last position into its first,

%QQ(E)I:U,

~oae=e(D)Y L e
T

If instead of the body's first position being one of rest, it

had in its first position been moving with an angular velocity

«; which had passed, in its sccond position, into a velocity

a; and if U represent, as before, the work which must be

done in an opposite direction, to bring this body back from

its second into its first position, thenis la? (‘“)I-— tag? (;) I,
g

or %(g) (a2 — 2?1, the work accumulated between the first and

second positions ; thercfore

(;-")(aﬂ—ae)lziu,

a?:aﬁiﬁ(i)pf e (B,

where the sign =+ is to be taken according as the motion is
accelerated or retarded between the first and second positions,
since in the one case the angular velocity inereases during

the motion, so that & is greater than «,%, whilst in the latter
case it diminishes, so that o is less than «,2,

76. If during one part of the motion, the work of the im-
pressed forees tends to accelerate, and during another to
retard it, and the work in the former cage be represented by
U;, and in the latter by Us, then

o=t () -a(0)%
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T'rom this equation it follows that when U=, or when
the work U, done by the forces which tend to resist the
mation at length, equals that done by the forces which tend
to accelerate the motion, then «=a,, or the revolving body
then returns again to the angular velocity from which it set
out. Whilst, if U never becomes equal to U, in the course
of a revolution, then the angular velocity « does not return to
its original value, but is increased at each revolution; and on
the other hand, if U; becomes at each revolution greater
than U, then the angular velocity is at each revolution
diminished.

The greater the moment of inertia I of the revolving
mass, and the greater the weight g of its unit of volume (that
i, the heavier the material of which it is formed), the less
is the variation produced in the angular velocity « by any
given variation of U or U,— U, at different periods of the
same revolution, or from revolution to revolution; that is, the
more steady is the motion produced by any variable action of
the impelling force. It is on this principle that the fly-wheel
is used to equalize the motion of machinery under a variable
operation of the moving power, or of the resistance. Itis
simply a contrivance for increasing the moment of inertia of
the revolving mass, and thereby giving steadiness to its revo-
lution, under the operation of variable impelling forces, on the
principles stated above. This great moment of inertia is
given to the fly-wheel, by collecting the greater part of its
material on the rim, or about the circumference of the wheel,
so that the distance p of each particle which composes it,
from the axis about which it revolves, may be the greatest
possible, and thus the sum Zmp?, or I, may be the greatest
possible. At the same time the greatest value is given to the
quantity g, by constructing the wheel of the heaviest material
applicable to the purpose.

‘What has here been said will best be understood in its
application to the crRANK.
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77. If we conceive a constant pressure Q to act upon the
arm CB of the crank in
the direction AB of the

__crank rod, and a constant
resistance R to be op-
posed to the revolution

of the axis C always at the same perpendicular distance from

that axis, it is evident that since the perpendicular distance at
which Q acts from the axis is continually varying (being at
one time nothing, and at another equal to the whole length

CB of the arm of the crank), the effective pressure upon the

arm CB must at certain periods of each revolution exceed the

constant resistance opposed to the motion of that arm, and at
other periods fall short of it; so that the resultant of this

pressure and this resistance, or the unbalanced pressure P

upon the arm, must at one period of each revolution have ifs

direction iz the direction of the motion, and at another time
opposite to it. Representing the work done upon the arm in
the one case by U, and in the other by U,, it follows that if

U;=U, the arm will return in the course of each revolution,

from the velocity which it had when the work U, began to be

done, to that velocity again when the work U, is completed.

If on the contrary U, exceed Ug, then the velocity will in-

crease at each revolution ; and if 17, be less than U,, it will

diminish. It is evident from equation (52), that the greater
is the moment of inertia I of the body put in motion, and the
greater the weight p of its unit of volume, the less is the
variation in the value of a, produced by any given variation
in the value of U, —Uy; the less therefore is the variation 12
the rotation of the arm of the crank, and of the machine t0
which it gives motion, produced by the varying action of the
forces impressed upon it, Now the fly-wheel being fixed
upon the same axis with the crank arm, and revolving withit,
adds 'its own moment of inertia to that of the rest of the
revolving mass, thercby increasing greatly the value of I, and
therefore, on the principles stated abaove, equalizing the
motion, whilst it does not otherwise increase the resistance to

£1.
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be overcome, than by the friction of its axis, and the resist~
ance which the air opposes to its revolution.®

8. The rotation of a body about a fixed axis when acted upon
by no other moving force than its weight.

Tet U represent the work necessary to raise it from its
second position into the first if' it be descending, or from its
first into its second position if it be ascending, and let «; be
its angular velocity in the first position, and « in the second ;
then by equation (51),

omere3(2) ().

Now it has been shown (Art. 60.), that the work necessary to
raise the body from its second position into the first if it be
descending, or from its first into its second if it be ascending
(its weight being the only force to be overcome), is the same
as would be necessary to raise its whole weight collected in
its centre of gravity from the one position into the other
Position of its centre of gravity. Let CA represent the one,
and CA, the other position of the body, and
S G and G, the two corresponding positions of
WTRG Ok the centre of gravity, then will the work neces-
‘ sary to raise the body from its position CA to
its position CA,, be equal to that which is
DecessaTy to raise its whole weight W, supposed eollected in
G, from that point to G,; which by Article 56. is the same
as that necessary to raise it through the vertical height GM.
Let now CG=CG, =4, let CD be a vertical line through
C, et G;CD =4, and GCD =4, in the case in which the body
descends, and conversely when it ascends; therefore GM =
NN, =CN —CN,=# cos. § =% cos. f, when the body descends,
Or =} cos, 8,~4% cos. § when it ascends from the position AC.
to AC,, since in this last case GCD =6, and G,CD =0, There-

B
1

* We shall hereafter treat fully of the crank and fiy-wheel
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fore GM= *k(cos., §—cos. §)), the sign = being taken ac-
cording as the body ascends or descends.

Now U=W . GM=+WAi (cos. l—cos. §,),

*. by equation (51) «?=2,2+ (jE—Jfk)(cos §—cos. bp).

If M represent the volume of the revolving body M =W,

. a.‘z— 2 (~Q’]IV[)( €08, § ~ cos. 5) _____ (53)

When the body has descended into the vertical positions
0=0, so that (cos. §—cos. §;)=1 —~cos. §, =2 sin.?}§,. When
it has ascended into that position §=m, so that (cos. § —cos. h)
=—{1 +cos. b)) = =2 cos,2 4.

In the first case, therefore,

49hM
w?+ (T )sm WL (54).
In the second case,
4ghM
—_ cos238 . .. L, (55).

When the body has descended or ascended into the hori-
zontal position 6_2, so that (cos, § —cos. §)) = —cos. 4,. But
it is to be observed, that if the body have descended into the
horizontal position, 6, must have been greater than g, and

therefore cos, 8, must be negative and equal to —cos. BCG

so that if we suppose 4, to be measured from CB or CD;
according as the body descends or ascends, then (cos.f—

cos. §))=xkcos. 6}, and we have for this ecase of descent of
ascent to a horizontal position

2ghlN
a? = oy? i-‘g'l—— cos by . ..., (56).

If the body descend from a state of rest, «, =0.

2
.. by equation (58) :ﬂ?—{(cos. b—cos. &) . . . (57)
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Thus the angular velocity acquired from rest is less as the
moment of inertia I is greater as compared with the volume

M, or as the mass of the body is collected farther from its
axis.

Tue MoMENT oF INERTIA.

79, Having given the moment of inertia of a body, or system
of bodies, about an axis passing through ifs centre of gravity,
to find its moment of inertia about an axis, parallel to the
firsty passing through any other point in the body or system.

Let mq be any element of the body or system, mAG a
» plane perpendicular to the axis, about which
P the moments are to be measured, A the
qjﬁ/’"‘\‘\ point where this plane is intersected by that
T axis, and G the point where it is inter-
sected by the parallel axis passing through the centre of
gravity of the body. Join AG, Am;, Gm,, and draw mM,
Perpendicular to AG., Let Amy=p, Gm=7, GM,=x,
AG=h.

Now (Euclid, 2—12.), Am*=AG2+Gm?+2AG . GM,,

or p2 =h* + 72+ 2ha,.

If therefore the volume of the element be represented by
7y, and both sides of the above equation be multiplied by it,
p12my =hPmy + r 2my + Rhoymy,

And if my, mg, my, &e. represent the volumes of any other
elements, and pg, 74, o3 pa» Tay Tay &C. be similarly taken in
respeet to those elements, then,

Pg'lmg =hmg + roPmy + 2hxqammg,
patma=hmg + ratmy + Lhayms,

e, =&e. :
Adding these equatmns we have, p,*m; + pg"‘mg +patmst ...
= (my+mg +mg+ . . )+(r,9m,+rg g+ TalMat .00 o)+

2}"( lml + mg?ng + wams + . ),

or Zpim =k Zm + Er'm + 2h2mm.
G
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Now Zaxm is the sum of the moments of all the elements‘ of
the body about a plane perpendicular to AG, and passing

through the centre of grevity G of the body. Therefore
{Art. 17.) Sxm =0,

e Zp'm=bZm A4 Zrim.

Also S5 is the moment of inertia of the hody about the
given axis passing through A, and Zr'm is the moment of
inertia about an axis parallel to this, passing through the
centre of gravity of the body. Let the former moment be
represented by 1), and the latter by 1; and let the volume
of the body Em be represented by M,

o L=RMaT L L. (58)

From which relation the moment of inertia (I;) about any
axis may be found, that (I) about an axis parallel to i, and

passing through the centre of gravity of the body being
known,

80. THE RADIUS OF GYRATION. If we suppose %, to be
the distance from the axis passing through A, at which dis-
tance, if the whole mass of the body were collected, the
moment of inertia would remain the same, so that "M =l
then k, is called the RADIUS OF 6YRATION, in respect to that
axis,

1f % be the radius of gyration, similarly taken in respect to
the axis passing through G, so that 22M =1, then, substitut-
ing in the preceding equation, and dividing by M,

EP=RB . ..., (59).

The following are examples of the determination of the
moments of inertia of bodies of some of the more ccn:tmﬂ_n
geometrical forms, about the axes passing through ther
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centres of gravity: they may thence be found about any
other axes parallel to these, by equation (59).

*81. The moment of inertia of ¢ thin uniform rod about an
axis perpendicular to its length and passing through its
middle point.

Let m represent an element of the rod contained between
. two plene sections perpendicular to its
————=""3* faces, the area of each of which is x, and
:_u_agl_H@_W whose distance from cne another is Ap,
and let x and Ap be so small that every

point in this element may be considered to be at the same
distance p from the axis A, about which the rod revolves.
Then is the volume of the element represented by xAp, and
its moment of inertia about A by xp2Ap. So that the whole
moment of inertia I of the bar is represented by Zxp?Ap, or,
since » is the same throughout (the bar being uniform), by
xZp"Ap; or since A p 1s infinitely small, it is represented by the

[ s

L
definite integral x_f p?dp, where [ is the whole length of the
=¥

bar,
o I=x 3P — 3= 10°),
orI=genl ... .. (60).

*82. The moment of inertia of o thin rectangular lamina
about an aaxis, passing through its centre of gravily, and
Pparallel to one of its sides.

It is evident that such a lemina may be conceived to be

made up of an infinite Wumber of slender

= rectangular rods of equal length, each of

=] which will be bisected by the axis'AB,
and that the moment of inertia of the
a2 :
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whole lamina is equal to the sum of the moments of inertia
of these rods. Now if x be the section of any rod, and 7 the
length of the lamina, then the moment of inertia of that rod
is, by the last proposition, represented by {;»f°; so that if
the section of each rod be the same, and they be » in number,
then the whole moment of inertia of the lamina is {zmed’s
Now #x is the area of the transverse section of the lamina,
which may he represented by K, so that the momentum of

inertia of the lamina about the axis AB is represented by the
formula

—1Z

I=Kb ... .. (61,

*83. The moment of inertia of a rectangular parallelopipedon

about an axis, passing through its centre of gravily, @t
parallel to either of its edges.

Let CD be a rectangular paraliclopipedon, and AB an
axis passing through its centre of gravity and
parallel to either of its edges; also let ab be
an axis parallel to the first, passing through
the centre of gravity of a lamina contained by
planes parallel to either of the faces of the
parallelopiped.  Let @, b, ¢, represent the
three edges ED, EF, EG, of the parallelopiped, then will
the momentum of inertia of the lamina about the axis ab be
represented by 5Kb% where K is the transverse section of
the lamina (equation 61), Now let the perpendicular dis-
tance between the two axes AB and ab be represented by
x. Then (by equation 58) the momentum of inertia of the
lamina about the axis AB is represented by the formula
M + #; Kb, where M represents the volume of the lamina.
Let the thickness of the lamina be represented by A3

< M=abAz,K=aAz; .*.m'in® of lam* =aba? Az + {Lab’ AT;
.. whole m* in* of parallelopiped =abZa?Ax + L, alPEAx; O
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taking A infinitely small, and representing the moment of
inertia of the parallelopiped by L

+4c +ie
I=ab) 2*dx + {50t ) dx;
Sy Sy

or T= ab{3(3)*— H—$0)°) + pab (o) = (— o)}
= Labe® + Lab’e,

o I=deabe(B2 4% .. L. (62).

*81. The moment of inertia of an upright triangular prism
about a vertical axis passing through its centre of gravity.

Let AB be a vertical axis passing through the centre of
N gravity of a prism, whose horizontal section is
\—s an isosceles triangle having the equal sides ED

¢ | and EF.

SEED Let two planes be drawn parallel to the face

\'\]/b/ DF of the prism, and containing between them a

J thin lamina pg of its volume. Let Cm, the per-

pendicular distance of an axis passing through

the centre of gravity of this lamina from the axis AB, be

represented by z; also let Ax represent the thickmess of the
lamina,

Let DF=a, DG =5, and let the perpendicular from the

;r)ertex E to the base DF of the triangle DEF be represented
PR

Em
. EC= éc,Em-%c—m alsoDFzMw
<. pg :g(‘gt:—w) ; also transverse section K of lamina =bAux.
*. volume M of lamina =%b(§c-—m)Am. Therefore by equ'a'-_'
tions (58) and (61), ‘ '
m' in® of lam® about AB— .f(§c—:n)m‘3Aa:+ ﬁbﬁ(ﬁcﬂw)‘m
G 3
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. ) ab (¥ . ba® o1
.. mtin®of prismabout AB =7 /E%c—- x)e dx + Tlg—?,-;ﬁ%c—-m) de.
e —
Performing the integrations here indicated, and represent-
ing the inertia of the prism about AB by I, we have

I=pabe(fa?+3¢?) . . . . . . (63).

*85. The moment of inertia of a solid cylinder aboul its axis
of symmetry.

Let AB be the axis of such a cylinder, whose radius AC
is represented by e, and its height by & Con-
ceive the cylinder to be made up of eylindrical
rings having the same axis ; let AP=p be the
internal radius of one of these, and let its thick-
ness PQ be represented by Ap, so that g+ Ap
the external radius AQ of the ring. Then wil
the wolume of the ring be represented by wb(p + Ap)? —mwbp?, OF
by wb[RpAp+ (Ap)?] ; or if Ap be taken exceedingly small, s
L that (Ap)’ may vanish as compared with 2pAp, then is the
volume of the ring represented by BxbpAp,

Now this being the case, the ring may be considered as aft
element AM of the volume of the solid, every part of which
element is at the same distance p from the axis AB, so that
the whole moment of inertia Zp?AM of the eylinder =3
(Rabpdp) =2xbZp A,

. I:Q’frbb/la“a’,,o::sz'bab4 ..... (64).

*86. The moment of inertia of a hollow eylinder ubout s
axis of symmetry.

Let @, be the external radius AC, and a, the internal
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radius AP, and b the height of the cylinder;
then by the last proposition the moment of
inertia of the cylinder CD, if it were solid, would
be laba,t; also the moment of inertia of the
cylinder PR, which is taken from this solid to
form the hollow cylinder, would be }xbast. Now
let I represent the moment of inertia of the hollow cylinder
CP, therefore I+ $wbay' =3xba,?,
. I=dwb(ay? — ap®) = 1nb(ar® — ) (ay® + a,?) =xb(a) —ag)
(a1 + ag{ay® +ag?).

Let the thickness a,—a, of the hollow cylinder be repre-
sented by ¢, and its mean radius 4(a;+as) by R, therefore
e;=R+4e, a;=R~1lec.

Substituting these values in the preceding equation, we
obtain

I=2xbcR{R®+4e%} . . . . . (65).

*87. The moment of inertia of a cylinder about an axis pass-
ing through ils centre of gravity, and perpendicular to ils
axis of symmetry. .

Let AB be such an axis, and let PQ represent a lamina
contained between planes perpendicular to
this axis, and exceedingly near to each other.
Let CD, the axis of the cylinder, be repre-
° sented by b, its radius by @, and let CM =x.
Take Az to represent the thickness of the
lamina, and let MP=g. Now this lamina
may be considered a rectangular parallelopiped traversed
through its centre of gravity by the axis AB; therefore by
equation (62) its moment of inertia about that axis is repre-
sented by 2 (Az)b(2y){0* + (2y)'} = b {Py+4°} Ax.  Now
:ﬂhe whole moment of inertia I of the cylinder about AB
1s evidently equal to the sum of the moments of inertia of ail
such laming ; ' .

L I=pEpy s b ae=i0 ) By +hde
o4 ' '
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Also, since x and y arve the co-ordinates of a point in 2
cirele from its centre, therefore y::(a'"—u."l}%. Substituting
this value of y, and integrativg according to the well known
rules of the intcgral caleulus, we have

I=jwba®(c®+46%) . . . . . (GO).

*88. The moment uf inertia of @ cone aboul its axis of
symmetry,

The cone may be supposed to be made up of laminze, such
as PQ, contained by planes perpendicular to
the axis of symmetry AB, and each having U8
centre of gravity in that axis. Let BP=®%
and let Ax represent the thickness of the la-
mina, and y its radius PR. Then, since it may
be considered a cylinder of very small height,
its moment of inertia about AB (equation 64)
is represented by 4xy*Ax. Now the moment of inertia I of

the whole cone is cqual to the sum of the moments of all
such élements,

oo = EytAg,
Let the radius of the base of the cone be rcprcsented by
a, and its height by &; therefore f:é , therefore szgtlyi
¥ a

.. I:éwéﬁy"éy:.%wtf /‘v}‘*dy;
a ),
ol=Ferbet L L L L (BT

89. The momentum of inertia of a sphere about one of its
diameters,

Let C be the centre of the sphere and AB the diameter
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about which its moment is to be determined.
~ Let PQ be any lamina contained by planes
perpendicular to AB; let CM=u, and let Az

S represent the thickness of the lamina, and y
its radius; also let CA=qa; then since this lamina, being
exceedingly thin, may be considered a cylinder, its moment
of inertia about the axis AB is (equation 64) fxy*Ax; and
the moment of inertia I of the whole sphere is the sum of
the moments of all such laminze,

+a
R =3 £ -V AV :a}fﬁ‘dx‘.

Now by the equation to the circle y2=a?—x? therefore
y'=a*—2a%2 4+ x*. If this value be substituted for y*, and
the integration be completed according to the common me-
thods, we shall obtain the equation,

I=Eme® . ... (68).

90. The moment of inertia of a cone about an axis passing
through. its centre of gravity and perpendicular to its axis
of symmetry.

Let CD be an axis passing through the centre of gravity
G of the cone, and perpendicular to its axis
of symmetry, and let GP the distance of the
/5 lamina from G, measured along the axis, be
represented by & ; also let the thickness of the
lamina be represented by A«. Now this lamina
may be considered a cylinder of exceedingly
small thickness, If its radius be represented by g, its mo-
mentum of inertia about an axis parallel to CD passing
through its centre, is therefore (equation 66). represented by
17y {y? + $(Ax)?} A, or if Ax be assumed exceedingly small,
1t is represented by 3ry*Ax. Now this being the momentum
of the lamina about an axis parallel to CD, passing through
1ts centre of gravity, and the distance of this axis from CD
being , and ‘also the volume of the lamina being =y?Aux, it
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follows (equation 58), that the moment of the lamina abont
CD is represented by my2r?Ax + dayt Ao =#{y'x® + 1y} 4%

Now the moment L of the whole cone about Ch equals
the sum of the moments of all such elements,

» I ==Z2(2® + Ly Ax,
Now if & be the radius of the base of the eonc and b its
height, then since BG~36
2bh—x b

y Ta
W= -'WEE {&3(’3&-9)292+i94} Ay,

b ofor b
~a / { 2e—yPy + iy } dy,

S 1 = g‘ﬁ'ﬂ'a[“'b{ﬂ‘z + %bQ} ------ (69)-

b
L= (%a—J) and Ax=—-B0y;

91. The moment of inertia of a segment of @ sphere about 6
diameter parallel to the plane of section.

Let ADBE represent any such portion of a sphere, and
AB a diameter parallel to the plane of gection.
Let CD =g, CE =5, and let PQ be any lamind
contained by planes parallel to the planc of
section: let the distance of the lamina from
C=ux, and let its thickness be Ax and its ra-
dius y. Then considering it a cylinder of exceeding small
thickness, its momentum of inertia about an axis paSSlﬂg
through its centre of gravity and parallel to AB, is repre-
sented (equation 66) by {=y*{y®+ 3(Ax)}} Aw, or (neglecting
powers of Ax above the first) by dwy*adz. Hence, therefore
the moment of this lamina about the axis AB is represented
(equation 58) by xy (Ax)a® + {my* Az, or by ={y2a?+ %y“}ﬁ"" !
now the whole moment I of inertia of ADBE about AB i
evidently equal to the sum of the moments of all such lamin,

fa
I:wﬁ{y"xq+:}y"}dm - wf(yﬂm‘zhky‘)d“"
=5
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Now y2=a2—a?, therefore ya®+ }y*=4{20°2*—3x*+a*}.
Substituting this value in the integral and integrating, we have

I =g7{16a* + 15a'b+ 102763 —96°} . . . . . (70).

THE ACCELERATION OF MOTION BY GIVEN
MOVING FORCES.

92. Ir the forces applied to a moving body in the direction

of its motion exceed those applied to it in the opposite direc-
tion (both sets of forces being resolved in the direction of a
tangent to its path), the motion of the body will be accele-
rated ; if they fall short of those applied in the opposite
dircction, the motion will be refarded. In either case the
excess of the one set of forces above the other is called the
MOVING FORCE upon the body: it is measured by that single
Pressure which being applied to the body in a direction
opposite to the greater force, would just balance it; or which,
had it been applied to the body (together with the other forces
impressed upon it) when in a state of rest, would have main-
tained it in that state; and which therefore, if applied when
its motion had commenced, would have caused it to pass from
a state of variable to one of uniform motion. Thus the moving
force upon a body which descends freely by gravity, is mea-
sured by its weight, that is, by the single force which, being
applied to the body before its motion had commenced in a
direction opposite to gravity, would just have supported it,
and which being applied to it at any instant of its descent,
would have caused its motion at that instant to.pass from a
state of variable to a state of uniform motion. If the resist-
ance of the air upon its descent be taken into account, then
the moving force upon the body at any instant is measured
by that single pressure which, being applied wpwards, would,
together with the resistance of the air at that instant, just .
balance the weight of the body. R
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A moving foree being thus understood to be measurcd by
a pressure®, being in fact the unbalanced pressure upon the
moving body, the following relations between the amount of 8
moving foree thus measured, and the degree of acceleration
produced by it will becowe intelligible. These are lows of
motion which kave become known by experiment upon the
motions of the bodies immediately around us, and by obsery-
ation upon those of the planets.

93. When the moving force upon a body rcmains eon-
stantly the same in amount (as measured by the equivalent
pressure) throughout the motion, or is a uniform moving
force, it communicates to it equal additions of velocity in
equal successive intervals of time. Thus the moving force
upon a body descending freely by gravity (mcasured by its
weight) being constantly the same in amount throughout its
descent (the resistance of the air being neglected), the body
receives from it equal additions of velocity in equal suecessive
intervals of time, viz. 32% fect in each successive second of

time (Art. 44.).

94. The increments of velocity communicated to equal
bodies by unequal moving forces (supposed wniform as above)
arc to one another as the amounts of those moving forees
(measured by their equivalent pressures).

Thus let P and P, be any two unequal moving forces upont
two equal bodies, and lct them act in the directions in which
the bodies vespectively move; lct them be the enly forees
tending to communicate motion to these bodies, and remaid
constantly the same in amount throughout the motion. Also
let /" and f; represent the additicnal velocities which these
two forces respectively communicate to those two equal bodies
in each successive second of time; then it is a law of the
motion of bodies, determined by observation and experiment,

that P : Py f: £

* Pressure and woving force are indeed but different modes of the
operation of the same principle of force.
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If one of the moving forces, as for instance P,, be the
weight W of the body moved, then the value f; of ‘the in-
crement of velocity per second corresponding to that movmg
force is 32% (Art. 44.) represented by g,

P:W:f:g,

R I (4 V)
rid (71)

95. If the amount or magnitude of the moving force does
not remain the same throughout the motion, or if it be a
variable moving force, then the increments of velocity com-
municated by it in equal successive intervals of time are not
equal; they increase continually if the moving force increases,
and they diminish if it diminishes.

If two unequal moving forces, one or both of them, thus
variable in magnitude, become the moving forces of two equal
bodies, the additional velocitics which they would communi-
cate in the same interval of time to those bodies, if at any
period of the motion from wariable they become uniform, are
to one another (Art. 94.) as the respective moving forces at
that period of the motion.

Thus let £ and f, represent the additional velocities which
would thus be communicated to two equal bodies in one
sccond of time, if at any instant the pressures P and P,
which are at that instant the moving forces of those bodies,

were from variable to become constant pressures, then
{Art. 94.),

P:Paf: A
This being true of any two moving forces, is evidently true,
if one of them become a constant force. Let P; repre-
sent the weight W of the body, then will f; be represented
by g,
P .. 'W . f . g
Let the moving force P be supposed to remain constant
during a number of seconds or parts of & second, represented
by At, and let AV be the increment of velocity in the-time



94 RELATIONS OF

At on this supposition. Now f represents the increment of
veloeity in each second, and AV the increment of velocity
in A¢ seconds : moreover the force P is supposed constant
during A¢, so that the motion is uniformly accelerated during
that time (Art.44.).

AV
e fAt:AV, .',f::TA—t'.
Now this is true (if the supposition, that P remains constant
during the time A#, on which 1t is founded, be true), however
small the time Af may be. But if this time be infinitely
small, the supposition on which it is founded is in all cases
true, for P may in all cases be considered to remain the same
during an infinitely small period of time, although it does not
remain the same during any time which is not infinitely
AV d
AT de

small. Now when Az is infinitely small, generally

av

therefore f=g
if V increase as the time 2 increases, or if the motion be
accelerated, then i s necessarily a positive quantity. 1f, on

. dv .
the contrary, V diminishes as the time increases, then Ry

negative ; o that, generally,

av
f=t g (1),

the sign =+ being taken according as the motion is accelerated
or retarded. Substituting this value of fin the last propor-

tion we have in the case, in which P represents a varisble
pressure,

W dv
P:i—g* qr v (73).

The principles stated above constitute the fundamental rela-
tions of pressure and motion.



PRESSURE AND MOTION. 95

96. The velocity V at any instant of a body moving with
a variable motion, being the space which it would deseribe in
a second of time, if at that instant its motion were to become
uniform, it follows, that if we represent by A¢ any number
of seconds or parts of a second, beginning from that instant,
and by AS, the space which the body would describe in the
time A, if its motion continged uniform from the commence-
ment of that time, then,
AS
Var=48, V=,
Now this is true if the motion remain uniform during the time
At, however small that time may be, and therefore if it be
infinitely small. But if the time A# be infinitely small, the
motion does remain uniform during that time, however variable
maybe the moving force; also when A¢is infinitely small,%t =
ds
4+ Therefore, generally,

ds _
= e (T4,

The equations (78) and (74) are the fundamental equations
of dynamics : they involve those dynamiecal results which have

been discussed on other principles in the preceding parts
of this work.*

Tue Descent or o Bopy uvpoN a CURVE.

*U1. If the moving force P upon a body varies directly as ils

* Thus if the latter equation be inverted, and multiplied by the former,
We obtain the equation
a8_ W avy _ WV
Pa=%g 7V ‘T‘) T\ )
cdVe

. 2
. d—sﬂ:t:ﬁp,

8,
. Vit ui% { Pus,

which is identical with equation (47).
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distance af any time from a given puint towards which i
Jalls, then the whole time of the body's falling to that pomnt
will be the same, whaterer may be the distance from which
it falls.

Let A be the point from which the body falls, and B s

A point {owards which it falls along the path APB,

A which may be either curved or straight ; also let
N . .

N the body be acted upon at each point P of 1ts

“--r path, by a force in the dircction of its path at
that point which varies as its distance BP, mcasured along
the path from B ; the time of falling to I3 will be the same,
whatever may be the distance of the point A from which the
body falls.

For let BP=3S, and let the force impelling the body to-
wards S be represented by ¢S, where ¢ is a constant quantitys
suppose the body, instead of falling from A towards B, to be
projected with any velocity from B towards A, and let o be
the velocity acquired at P, and V that at A, and let BA=Su
then by equation (47),

w

Qg £ ,
Viegt= —'\*;;’r ¢SdS=—"9(8,2- 82,

Suppose now the velocity of projection from B to havt

been such as would only just carry the body to A, so that
V=0,

. vﬁ:{{r(slusz) ..... (15).
Now by equation (74),
dt_t ., _ 4dS
s~y S

/' dS
o= f e ey
J () E=s)

and if }T represent the whole time in seconds occupied in
the ascent of the body from B to A,

Wit % as w3
AT ={ — 5 eyl — =1 &"" JI‘Q }
3 (cg) O(Slz_bg)% (cg) {co.s 5, cos. g [
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o %T:(E)%E.

cg/ 2
It is clear that the time required for the body's descent
from A to B is equal to that necessary for the ascent from B
to A, so that the whole time required to complete the ascent

and descent is equal to T, and is represented by the formula
_ (W
T_..(.ég) x v (T6).

Now this expression does not contain Sy, é.e. the distance
from which the body falls to B; the time T is the same
therefore, whatever that distance may be.

Tue SMpLE PENDULUM.

98. If a heavy particle P be imagined to be suspended from a
point C by a thread without weight, and allowed to oscillate
Jreely, but so as to deviate but little on either side of the
vertical, then will its oscillations, so long as they are thus
small, be performed in the same time whatever their ampli-
tudes may be.

For let the inclination PCB of CP to the vertical be repre-

. sented by 0, and let the weight w of the particle P,
, /i which acts in the direction of the vertical VP; be
/ resolved into two others, one of which is in the
/| direction CP, and the other perpendicular to that
™| direction; the former will be wholly counteracted
by the tension of the thread CP, and the latter will
bf’ represented by w sin. VPC=w sin. §; and, acting in the
fllrection in which the particle P moves, this will be the whole
lmpressed moving force upon it (Art. 92.). .Now so long
as the are § is small, this arc does not differ sensibly from its
sine, so that for small oscillations the impressed moving force -

upon P is represented by wé, or by 'ﬁ%@, or by ‘Eg, il rgpre-:._'

sent the length CP of the suspending thread, and S the length:
4
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of the are BP',  Now in this expression « and / are constant
throughout the oscillation, the moving foree varies therefore
as 5. Hence by the last proposition, the small oscillations on
either side of CB are isochronous, since so long as they are
thus small, the impressed moving force in the direction of the
motion varies as the length of the path BP from the lowest
point B.  Since in the last proposition thic moving foree was
assumued equal to ¢S, and that here it is represented by

q;S, therefore in this case c:?f . Substituting this value in

equation (76),

T=(;)%ﬁ e (T

A single particle thus suspended by a thread without
weight, is that which is meant by a simeLe rENDULUM. 1838

evident that the time of oscillation increases with the length
! of the pendulum.

Impursive Forck.

99, If any number of different moving forces be applied 10
as many equal bodies, the velocities communicated to them
in the same excecdingly swall interval of time, will be to one
another as the moving forces. For let P,, P,, represent the
moving forees, and 7, /3, the additional velocities they would
communicate per second if each moving force remained col-
tinually of the same magnitude {Ari. 93.), then would tfis
tf2, be the whole velocities communicated on this supposition

in ¢ seconds; let these be represented by V,, Vy; therefore
by Art, 94,

PriPenfitfortfi itV Y,
The proposition is therefore true on the supposition thet
Py and P, remain constant during the interval of time ¢; but

if ¢ be exceedingly small, then whatever the pressures Py and
P, may be, they may be considered to remain the same during
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that time, Therefore the proposition is true generally, when,
as above, the moving forces are supposed to act on equal
bodies, or successively on the same body, through equal ex-
ceedingly small intervals of time.

Moving forees thus acting through exceedingly small in-
tervals of time only, are called IMPULSIVE FORCES,

Tur PARALLELOGRAM OF MoTION,

100, If two impulsive forces Py, Py whose directions are AB
. and AC, be impressed at the same time upon &
"/ body at A, which if made to act upon it sepa-
o rately would cause it o move through AB and
AC in the same given time, then will the body be made, by
the simultaneous action of these impulsive forces, to describe
in that time the diagonal AD of the parallelogram, of
which AB and AC are adjacent sides.

For the moving forces P; and Py acting separately upon
the same body through equal infinitely small times, communi-
cate to it velocities which are (Art. 99.) as those forces,
therefore the spaces AB and AC described with these velo-
cities in any given time are also as those forces. Since
then AB and AC are to one another as the pressures P, and

Py, therefore by the principle (Axt. 2.) of the parallelogram
of pressures, the resultant R of P; and Py is in the direction
of the diagonal AD, and bears the same proportlon to P, and
Py that AD does to AB and AC.

Therefore the velocity which the resultant R of P, and
P; would communicate to the body in any exceedingly small
time is to the velocities which P, and P, would separately
communicate to it in the same time as AD to AB and AC
(Art. 99.), and therefore the spaces which the body would de-
scribe uniformly with these three velocities in any equal times
are in the ratio of these three lines. But AB and AC are
the spaces actually described in the equal times by reason of
the impulses of P, and P;. Therefore AD is the epece de-

H 2
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scribed in that time by reason of the impulse of R, that 1s
by reason of the simultaneous impulses of P, and Py

101. THE INDEPENDENCE OF SIMULTANEOUS MOTIONS.

It is evident that if the body starting from A had been

. made to describe AB in a given time, and then
[~/ had been made in an cqual time to deseribe
™ BD, it would have arrived precisely at the same

point D to which the simultaneous motions AC and AB have
brought it, so that the body is made to move by these sir
multaneons motions precisely to the same point to which it
would have been brought by those motions, communicated to
it successively, but in half the time. The following may be
taken as an illustration of this principle of the independente
of simultaneous motions. Let a canal-hoat be imagined 0
e e P eXtend actoss the whole width of the
{ " canal, and et it be supposed thata person
standing on the enc bank at A is der
sirous to pass to a point D on the opposite bank, and that
for this purpose, as the boat passes him, he steps into it, and
walks across it in the direction AR, arriving at the pﬂiﬂt B
in the boat precisely at the instant when the motion of the
boat has carried it through BD; it is clear that he will be
brought, by the joint effect of Ais own motion across the boat
and the boat’s motion along the canal, to the point D (having
in reality described the diagonal AD}, which point he would
have reached in double the time if he had walked across 3
bridge from A to B in the same time that it took him to

walk across the boat, and had then in an equal time walked
from B to D along the opposite side.

g

Tur Poryvcon or MoTioN.

102. Let any number of impulses be communicated simul-
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taneously to a body at O, one of which would
cause it to move from A to O in a given time,
another from B to O in the same time, a
third from C to O in that time, and a fourth
from D to O. Complete the parallelogram of
which AO and BO are adjacent sides; then the impulses' AO
and BO would simultancously caunse the body to move from
E to O through the diagonal EO in the time spoken of.
Complete the parallelogram EOCF, and draw its diagonal
OF, then would the impulses EO and CO, acting simultane-
ously, cause the body to move through FO in the given time:
but the impulse EQ produces the same effect on the body as
the impulses AO and BQ; therefore the impulses AO, BO,
and CO, will together cause the body to move through FO in
the given time. In the same manner it may be shown that
the impulses AQ, BO, CO, and DO, will together cause the
body to move through GO in a time equal to that occupied
by the body’s motion through any one of these lines.

It will be observed that GD is the side which completes
the polygon OAEFG, whose other sides OA, AE, EF, FG,
are respectively equal and parallel to the directions OA, OB,
OC, and OD, of the simultaneous impulses.

Instead of the impulses AO, &ec. taking place simulta-
neously, if they had been received ‘successively, the body
moving first from O to A in a given time; then through A,
which is equal and parallel to OB, in an equal time; then
through EF, which is equal and parallel to OC, in that time;
and lastly through FG, which is equal and parallel to OD, in
that time, it would have arrived at the same point G, to
which these impulses have brought it simultaneously, but
after a period as many times greater as there are motions, so
that the principle of the independenee of simultaneous motions
obtains, however great may be the number of such motions.

THE PRINCIPLE or_D'Ai.Eunzn-r.

103, Let Wh W W, &e. rep.rmnt, the Weighta ofmy
T S8 e e
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number of bodies in motion, and P,, P,, Py, &c. the moving
Jorces (Art. 92.) upon these bodies at any given instant of
the motion (i. e. the unbalanced pressures, or the pressures
which are wholly employed in producing their motion, and
pressures equal to which, applied in opposite dircetions,
would bring them to ‘rest, or to a state of uniform motion).
Then (Art. 95.), P,:g'j}, Pg:\—gg » PS:YE%’ &c, where
Ju Jor f3, &e. represent the additions of velocity which the
bodies would receive in each second of time, if the moving
forec upon each were to become, at the instant at which it is
measured, an wniform moving force. Suppose these bodies,
whose weights are W,, W,, W, &c. to form a system of
bodies united together by uny conceivable mechanical eon-
nection, on which system are impressed, in any way, certain
forces, whence result the unbalanced pressures Py, Py, P &e.
on the moving points of the system. Now conceive that to
these moving points of the system there are applied pres-
sures respectively equal to Py, Py, Pi, &c. but ecach in 2
direction opposite to that in which the motion of the corte-
sponding point is accelerated or retarded. Then will the
motion of each particular point evidently pass into a state of
uniform motion, or of rest (Art. 92.). The whole system of
bodies being thus then in a state of uniform motion, or of
rest, the forces applied to its different clements must be forces
in equilibrium,

Whatever, therefore, were the forces originally impressed
upon the system, and causing its motion, they must, together
with the pressures P, P,, P, &e. thus applied, produce a state
of equilibrium in the system ; so that these forces (originally
impressed upon the system, and known in Dynamics as the
IMPRESSED FORCES) have to the forces P,, P,, P,, &e. when
applied in directions opposite to the motions of their several
points of application, the relation of forces in equilibrium.
The forces Py, P,, P, &c. are known in Dynamics as the
EFFECTIVE FORCES. Thus in any system of bodies mechanically
connected in any way, so that their motions may mutually
influence one another, if forces equal fo the effective forces
were applied in directions opposite to their actual directions
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these would be in equilibrium with the impressed forces, whick
is the principle of d' Alembert.

104, The work accumulated in a moving body through any
space is equal to the work which must be done wpon t, in
an opposite direction, to overcome the gffective force upon il
through that space.

This is evident from Arts. 68 and 69., since the effective
force is the unbalanced pressure upon the body.

If the work of the effective foree be said to be done upon
the hody *, then the work of the effective force wpon it is
equal to the work or power accumulated in it, and this work
of the effective force may be all said to be actuaily accumulated
in the body as in a reservoir.

MoTiox oF TRANSLATION.

DrriniTron.  When & body moves forward in space,
without at the same time revolving, so that all its parts move
with the same velocity and in parallel directions, it is said to
move with a motion of translation only.

105. In order that a body may move with o motion of transia-
tion only, the resultant of the forces impressed upon if must
have its direction through the centre of gravity of the body.

For let w,, wg, wg, &c. represent the weights of the parts
or elements of the body, and let f represent the additional
velocity per second, which any element receives or would
receive if its motion were at any instant to become uniformly
accelerated. Since the motion is one of translation only, the
value of f is evidently the same jn respect to every other
element, The effective forces Py, Py, Py, &c. on the dlfferent

clements of the body are therefore represented b} —f, fs
Wy .
gf y &C. &'.C.

* This cannot perbaps be correctly said, since work supposes resistarce,
. ]
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Now the forces Py, Iy, Py, &c. are evidently parallel pres
sures, Let X be the distance of the centre (sce Art. 17.) of
these parallel pressurcs from any given plane ; and let x;, Ty
x3, &e. be the perpendicular distances of the clements awy, Wy
wd, &ec. that is, of the points of application of Py, Py Iy, &e.
from the same plane. Therefore (by equation 18),

{P1+P2+P3+ e e }X:P1$1+}’21‘9+P3.T3+ « e e
. YW, We, Wy — " Ystpit oo
T {yﬁ AN AN }X* gfot gt
Sotwmtwetwgt .. }szl.rl-;—wgmg—f—ws.ra—l- . e
X i e T Wally
T owtwatwet ..

But this is the expression (Art. 19.) for the distance of the
centre of gravity from the given plane ; and this being true of
any plane, it follows that the centre of the parallel pressures
Py, Py, Py, &e. which are the effective forces of the system,
coincides with the centre of gravity of the system, and there-
fore that the resultant of the cffective forces passes through
the centre of gravity, Now the resultant of the effective
pressures must coincide in direction with the resultant of the
impressed pressures, since the effective pressures when ap-
plied in an opposite direction are in equilibrium with the
impressed pressures (by d'Alembert’s principle). The I_'f«'-
sultant of the impressed pressures must therefore have its
direction through the centrc of gravity. Therefore, &c.

Motion oF ROTATION ABOUT A FIXED AXIS.

106. Let a rigid body or system be capable of motion
about the axis A. Let m,, m,, my, &c. represent the volumes
of elements of this body, and g the weight of each unit of
volume, Also let f;, fa, f3, &e. represent the increments of
velocity per second, communicated to these elements respec-
tively by the action of the forces impressod upon the system.
Let P, Py, P, &e. represent these impressed forces, and
1> Py &c. the perpendicular distances from the axis at whick
they are respectively applied.



MOTION OF ROTATION. 105

Now since pm,, pmy, pmg, &e. are the weights of the ele-
ments, and fi, fi, &c. the inerements of velocity they receive

m m,
per second, it follows that % b Hr%j;, ot o &c. are the

g g
effective forces upon them (Art. 103.), Let py, ps, 25, &e.

represent the distances of these elements respectively from
the axis of revolution, then since their effective forces are
in directions perpendicular to these distances, the moments

. m
of these effective forces about the axis are F—y-lﬁpl, %@_ﬁpg,

Hf?f:';pg, &e.  Also Pipi, Popy, Paps, &c. are the moments of
the impressed forces of the system about the axis. Now the
impressed forces Py, Py, Py, &e. together with the resistance
of the axis, which is indeed one of the impressed forces, are
in equilibrium with the effective forces by d’Alembert’s prin-
ciple. Taking then the axis as the point from which the
moments are measured, the sum of the moments of Py, Pg, &e.
must equal the sum of the moments of the effective forces, or
P’?ﬁf?l‘l-%%fgfg‘f' coe =P+ Pypet+ ...

Now let f represent that value of f;, fo &c. which cor-
responds to a distamce unity from the axis. Since the
system is rigid, and f, fi, fo» &ec. represent arcs described
about it in the same time at the different distances 1, p;, pg,
&e. it follows that these arcs are as their distances, and
therefore that Sisfors fe=fpas fa=fpss &e. Substituting these
values in the preceding equation, we have:

f;mlfF19+gmgfpg“+ e o =P+ Pepat ...
. fg{mlpltz'{‘ﬂlgﬁgﬁ-}‘ PR .}:P;P;+ngg+ s ey
qrf%ﬁmﬁ“_—_EPp oo a sy

=9 2P @8,
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where T represents the moment of inertia of the mass about
its axis of revolution.*

107. If the impressed forces P be the weights of the parts
“ns, of the body and § be, in any position of the
o2 e Bl body, the inclination to the vertical Ay of
the line AG, drawn from A to the centre of
gravity G, then since the sum of the mo-
ments of the weights of the parts is equal
to the moment of the weight of the whole
mass collected in its centre of gravity (Art. 17.), we bave,
representing AG by G,

EPp=Mp . GG;=Mu . G.sin. §;

Therefore (equation 78.), MG .+ (79).

:9-—1—51:1.6. ..

108. T find the resultant of the eflective forces on & body
whick revolves about a fixed axis.

The resultant of the effective forces upon a body which
revolves about a fixed axis, is evidently equal to that single
force which would just be in equilibrium with these if there
were no resistance of the axis. Let R be that single force,
then the moment of R about any point must equal the sum
of the moments of the effective forces about that point.

* If @ represent the angular velocity, or the velocity of an element 8t

distance unity, then by equation (12, f= +%‘;, a%::= +—£I?-PP"5
- T

{3
R %al‘lmé‘rz‘lﬂi-&E Ppad&‘.
sl
Now pa is the velocity of a point at distance », therefore Ppa is the work
(Art. 50.) of the force P per second ; therefore f I;pm‘lt is the work of
» - H u
P (equation 40) in the time ¢, which is represented by U, therefore

20U wh ]
gy = i"f-l— ich corresponds with the result already obtained.

See equation (51).
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Take a point in the axis for the point
A R + about which the moments are measured,
i and let I. be the perpendicular distance
from A of the resultant R. Now, as in
Art, 106. it appears that the sum of the
moments of the effective forces about A is

represented by f %Emp“,

RL:ngmp" e ... (80).
To determine the value of R let it be cbserved that the

effective force ;fm]p, on any particle m,, acting in a direc-

tion nym,, perpendicular to the distance Am, from the axis
A, may be resolved into two others, parallel to the two rect-
angular axes Ay and Ax, each of which is equal to the
product of this effective force, whose direction is »m,, and
the cosine of the inclination of mm, to the corresponding
axis. Now the inclination of mn, to Az is the same as
the inclination of Am, to Ay, since these two last lines are
perpendicular to the two former. The cosine of this inclina-

tion equals therefore Aril or %, if AN;=y;. Similatly
1 1
_ AM, = .
th inclinati for >
e cosine of the inclination of nym, to Ay equals Amy o pl i

AM,=z,. The resolved parts in the directions of Ay and

- # yl
Az of the effective force !;-fm;h are therefore }f‘mlp o) and

gfmlf’l‘zl or fm g’
P 9f 1% an gfmla:l.
Similarly the resolved parts in the directions of Ax and

Ay of the effective force upon g are %fme?!e and %fmﬂ'”e’ and
3o of the rest.

The sums X and Y of the resolved forces in the directions
of Az and Ay respectively (Art. 11.) are therefore

L;fmlyx+§fmgyg+%fmsya+ N
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and P;fm.x1+;frfagx2+§fw33x3+ co. =YX
or %[{mly1+m~2ya+m3y3+ Ce. e 1=X,

and %f{m‘x1+¢n2xg+m3r3+. .. .1=Y.

Now let (3| and G, represent the distances GG and GiG
of the centre of gravity of the body from Ay and Ax re-

spectively, and let the whole volume of the body be repre-
sented by M,

.". (equation 18), MGy =my, + oyt Mgyt » o -
MG =m 2, +mgitg + mgg+ « + + 3

# TR
ce X=" MG, Y==fMG,..... 81).
x={ /M6, Y=trua, (

Now (Art. 11), R=X® + Y7, thercforc
R=L/M/G G

Now if G be the distance AGw?f_ Lhe
centre of gravity from A, G =,/ G,>+Gs

Substituting in equation (82) the value of J from equation
(78), we have

And substituting in equation (80) for R its value from
equation (82),

-‘_” —
/-MGL= ﬁ;z,

where L is the distance of the point of application of the
resultant of the effective forces, from the axis.
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Now let § be the inclination of the resultant R to the
axis Az,

. (Art. 1L), R cos. =X, R sin. 0=Y,
Y .
.. tan, B:K; but by equations (81),

Y G, AG,
X:ngm_mn' AGG],

.. tan 9= tan. AGG,, .. i=AGG,.

The inclination of the resultant R to Ax is therefore equal
to the angle AGGy, but the perpendicular to AG is evi-
dently inclined to Az at this same angle. Therefore the
direction of the resultant R is perpendicular to the line
AG, drawn from the axis to the centre of gravity, More-
over its magnitude and the distance of its point of applica-

tion from A have been before determined by equations (83)
and (84)_

Tor CENTRE oF PERCUSSION.

109. 1t is evident, that if at a point of the body through
which the resultant of the effective forces upon it passes, there
be opposed an obstacle to its motion, then there will be pro-
duced upon that obstacle the same effect as thongh the whole
of the effective forces were collected in that point, and made
to act there upon the obstacle, so that the whole of these
forces will take effect upon the obstacle, and there will be

" 1o effect of these forces produced elsewhere, and there-
fore no repercussion upon the axis. It is for this reason
that the point O in the resultant, where it cuts the
line AG drawn from the axis to the centre of gravity, is
called the cENTRE oF PERCUSSION. Its distance L from
A is determined by the equation
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which is obtained from equation (84) by writing MK? for [
{Art, 80.), K being the radius of gyration. If at the centre
of percussion the body receive an impulse when at rest, then
since the resultant of the cffective forces thereby produced
will have its direction through the point where the impulse
is communicated, it follows that the whole impulse will take
effect in the production of those effective forees, and m
portion be expended on the axis.

THE CENTRE oF OsCILLATION.

110, Tt has been shown (Art, 98.) that in the simple per-
dulum, supposed to be a single exceedingly small element of
matter suspended by a thread without weight, the time of
each oscillation is dependent upon the length of this thread,
or the distance of the suspended element from the axis about
which it oscillates. If therefore we imagine a number of
such elements to be thus suspended at different distances from
the same axis, and if we suppose them, after having been at fm‘t
united into a continuous body, placed in an inclined positions
all to be released at once from this union with one anothet
and allowed to oscillate freely, it is manifest that their oscilla-
tions will all be performed in different times. Now let

these elements again be conceived united in one oscillating
mass. Al being then compelled to perform these oscillations
in the same time, whilst all zend to perform them in diﬁ'erel}f'
times, the motions of some are manifestly retarded by theif
connexion with the rest, and those of others accelerated, the
former being those which lie near to the axis, and the others
those more remote; so that between the two there must be
some point in the body where the elements cease to be 1¢
tarded and begin to be accelerated, and where therefore th.e}f
are neither accelerated nor retarded by their connexion with
the rest; an element there performing its oscillations prée
cisely in the same time as it would do, if it were not connected
with the rest, but suspended freely from the axis by a thread
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without weight. This point in the body, at the distance of
which from the axis a single particle suspended freely, would
perform its oseillations precisely in the same time that the
body does, s called the CENTRE OF OSCILLATION.

The centre of oscillation coincides with the centre of
percussion.

111. For (by equation 79) the increment of angular velo-
city per second f of a body revolving about an horizontal
axis, the forces impressed upon it being the weights of

s s . MG |,
/O,J its parts only, is represented by the formula g——sin. §,

\J where ¢ is the inclination to the vertical of the line AG,
drawn from the axis to its centre of gravity. But (by equa-

tion 84), L = M%’ where L is the distance AO of the centre

of percussion from the axis,

. fL=gsin, 0.

Now it has been 'shown (Art. 98.), that the impressed -
moving foree on a particle whose weight is w, suspended from
a thread without weight, inclined to the vertical at an angle
%, is represented by w sin. §; moreover if f represent the in-

. . w, .
crement of velocity per second on this particle, then; fis

the effective force upon it. Therefore by d’Alembert'’s prin-
ciple, '

w sin, ﬂrz;ff’, o f=gsing, .. f=fL
Now fL is the increment of velocity at the centre of
Percussion, and f’ is that upon a single particle suspended
freely at any distance from the axis. If such a particle were
therefore suspended at a distance from the axis equal to that

4
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of the centre of percussion, since it would receive, al the
same distance from the axis, the same increments of velocity
per second that the centre of percussion does, it would mani-
festly move exactly as that point does, and perform its oscil-
lations in the same time that the body does. Therefore, &.

112. The centres of suspension and oscillation are recéprocal'

0 Let O represent the centre of oscillation of a body when
“*{ suspended from the axis A; also let G be its centre of
jﬂ\ gravity, Let AO=1, AG=G, OG=G,; also let the
i°1 J radius of gyration about A be represented by K7 and that
. about G by 4% Therefore (equation 59), K=G*+#

st

.. (equation 85), L:&giz G+ - -v - - (87,

et
- G+G1=G’+G,

2

k
GI:G v e ... (88)

Now let the body be suspended from O instead of A ; W?’e“
thus suspended it will have, as before, a centre of oscillation-
Let the distance of this centre of oscillation from O be L

k?
. by equation (87), Ly=G;+ &

ll
k‘l
.*. by equation (88), L, =gt G=L.

Since then the centre of oscillation in this second case is 8
the distance L from O, it is in A ; what was before the centre
of suspension has now therefore become the centre of oscilla-
tion. Thus when the centre of oscillation is converted into
the centre of suspension, the centre of suspension is thereb_j’
converted into the centre of oscillation. This is what #
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meant, when it is said that the centres of oscillation and sus-
pension are reciprocal.

ProJsecTILES.

113, To determine the path of a body projected obliquely
in vacuo.

Suppose the whole time, T seconds, of the flight of the body
7 to any given point P of its
/’1"’/ o path, to be divided into equal
) %ﬁ"gﬁ"/ﬂlq exceedingly small intervals,
Mg represented by AT, and con-
¥ i ™% ceive the whole effect of gra-
~ vity upon the projectile during
cach one of these intervals to be collected into a single im-
pulse at the termination of that interval, so that there may
be communicated to it at once, by that single impulse, all the
additional velocity which is in realify communicated to it by
gravity at the different periods of the small time AT.

Let AB be the space which the projectile would describe,
vf'ith its velocity of projection alone, in the first interval of
time; then will it be projected from B at the commencement
of the second interval of time in the direction ABT with a
velocity which would alone carry it through the distance
BK=AB in that interval of time; whilst at the same time it
teccives from the impulse of gravity a velocity such as would
'd.lone carty it vertically through a space in that interval of
time which may be represented by BF. By reason of these
two impulses communicated fogether, the body will therefore
deseribe in the second interval of time the diagonal BC of the
Parailclogram of which BK and BF are adjacent sides. At
the' commencement of the third interval it will therefore have
arrived at C, and will be projected from thence in the direc-
tion BCX,, with a velocity whick would alene carry it through
CX=BC in the third interval; whilst at the same time it
Teceives an impulse from gravity communicating to it a velo-
city which would alone carry it through a distance represented.

1
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by CG=BF in that interval of time. Thesc two impuls'es
together communicate therefore to it a velocity which carries
if through CD in the third interval, and thus it is made to
describe all the sides of the polygon ABCD . .. P in succes-
sion, Draw the vertical DT, and produce AB, BC, CD, &e. to
meet it in T, N, O . . ., and produce GC, HI), &e. to meet
BT in K, L, &e.

Now, since BC is equal to CX, and CK is parallel to XL,
therefore KL is cqual to BK or to AB.

Again, since CD is equal to DZ, and DL is parallel to
ZM, therefore LM is equal to KL or to AT ; and so of the
rest.

1t thevefore there be n intervals of time eqgual to AT, %0
that there are 2 sides AB, BC, CD, &c. of the polygon, and
n divisions AB, BK, &c. of the line AT, then AT =nAB and
BT=(r—-1)AB,

. TN=(n—1)KC=(r—1)BF.

Similarly CN=(n—2)CX, thercfore NQ=(n~—2)DX=
(r—2)BF; and so of the remaining parts of TP.

Now these parts of TP are (n—1) in number, therefore
TP =(n—D)BE + (0= 2]BF + (0 — 8JBF +. .. {(n~ 1) terms};
or TP={(n—=1)+(®=—2) + . . }E}'T‘

Therefore, summing the series to (n—1) terms,
-1 —
TP={2(n—1)—(n—2)} (” - ) - FF,

’_*i’féil)gf_

Now g represents the additional velocity which gravity would
communicate to the projectile in each second, if it acted
upon it glone. AT is therefore the velocity which it woul'd
communicate. {o it in each interval of AT scconds. gAT i
therefore the velocity communicated to the body by each of

the impulses which it has been supposed to receive from
gravity.

o TP —=
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Now BF is the space through which it would be carriedin
the time AT by this velocity,

. BE=(gAT)AT =g(AT),
.. TP=ignin—1) ATy

Also AT :2,
n

T2 1
o TP=lgn(n—1),3=4g(1—;) T

Now this is true, however small may be the intervals of time
ATy and thercfore if they be infinitely small, that is, if the
impulses of gravity be supposed to follow one another at in-
finitely small intervals, or if gravity be supposed to act, as it
really does, continuously.

But if the intervals of time AT be infinitely small, then
the number » of these intervals which make up the whole
finite time T, must be infinitely great. Also when = is in-

finitely great, ;1'%':0.

In the actual case, therefore, of a projectile continuafly
defiected by gravity, the vertical distance TP between the
tangent to its path at the point of projection, and its position
P after the flight has continued T seconds, is represented by
the formula

Moreover AT =nAB, and AB is the space which the body
would describe uniformly with the velocity of projection in
the time AT, so that »AB is the space which it would
describe in the time n . AT or T with that velocity. Ifthere-
fore V equal the velocity of projection, then

AT=V . T....50);

so that the position of the body after the time T 18 the

same as though it had moved through that time with the

velocity of its projection alone, deseribing AT, and bad then

fallen through the same time by the force of gravity alone,

describing TP (see Art. 101.). P
12
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114, Let AM =2, MP =y, angle of pro-
jection TAM =g, velocity of projection
. =V.

o.owsee, a=AT=V . T, .- T:‘LV“:—-'
wtan, a~y=MT—-MP=TP=14T% . . . . (91,
Substituting the value of T from the preceding equation,

xr?* sec? a
xian. a=—y—=ig- v

2 ’

Let H be the height through which a body must fall freely
by gravity to acquire the velocity V, or the height due to

o2
that velocity ; then V2=2gH (Art.47.), therefore 4H ‘—"§"

Jooy=a tan, a—

therefore, by substitution,

sec,?y

y=atan a— —pa® L L L (92).

115. Yo find the time of the flight of a projectile.

It has been shown (equation 91), that if T represent the

time in scconds of the flight toa point whose co~ordinates are
a and y, then

2
3T = tan, a—y, .-, TQZE{‘” tan. ¢~y

2 2

Now, g aI=T6 nearly, ... T=}/x tan. x—y nearly-

If the projectile descend again to the horizontal plane from
which it was projected, and T be the whole time of its flights
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and X its whole range upon the plane, then, since at the ex-
piration of the time T, =0 and x =X,

Tzf\/g,/x tan. @ = }4/ X. tan. = nearly,

116, To find the greatest horizontal distance X, to which a
projectile ranges, having given the elevation « and the
velocity V of its projection.

When the projectile attains its greatest horizontal range,
its height y above the horizontal plane
becomes 0, whilst the abscissa & of the
point P, which it has then reached in its -
path, becomes X. Substituting these
values 0 and X, for y and z in equation

% 2
(92), we have 0=X tan. a— X :;;LE,

. X =4H tan. « cos.2 « =4I sin. & cos. «.
. X=2H sin. 22 . . . . (94).

'If' the body be projected at different angular elevations, but
with the same velocity, the horizontal range will be the

. . T x
greatest when sin. 2« is the greatest, or when 2a =g ora=j.

“7' To find the greatest height which a projectile will attain
in its flight if projected with a given velocity, and at a given
inclination to the horizon.

Multiplying both sides of equation (92)
by 4H cos..2 a, we have 4H cos? a , y=—=

Vs i
//_n‘—a? 4H cos.? atan. a , —2'=2H (2 cos. 2
// N P, sine 2) p—a?=2H sin. 22 . 0—2 Sub-
# o3 tracting both sides of this equation from

2
H?2 sjp.2 22, we have

H?sin2 22 —4H cos.? 2 . y =H? sin? 20—~2H sin. 2a . z4-2%
. I 3
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But sin.? 2a=4 sin.” « cos.? «,
o 4H cos olH sin® a—yl={H sin. 2u—x}* . . . (95)

Now the second member of this equation is always 3
positive quantity, being a square. 'The first member is therc-
fore always positive; therefore H sin.2 «—y is always positive.
Whence it follows that 4 can never exceed H sin.? &, so that
it attains its greatest possible value when it equals H sin. 4,
a value which it manifestly attains when the second member
of the above equation vanishes, or when x=H sin. 22, that i
when 2 becomes equal to half the greatest horizontal range
as Is apparent from the last proposition ; so that the greatest
height BD of the projectile is represented by H sin?a,
height which it attains when AD cquals half the horizontal
range.

118, The path of a projectile in vacuo is a parabola.

e Liet B be the highest point in the flight

g of the projectile, and BD its greatest
height.  Draw PM, perpendicular 10
BD. Let BM =z, M,T =y,

v ey =BD—M,D=BD—PM=H sin.? a~—1,
N =DM=AM—AD=a—H sin. 2.

Substituting thesc values in equation (95),

yn*=4H cos.’a . x; . . .. . (96),

which is the equation to a parabola whose vertex is I
A, whose axis coincides with AD, and whose parameter 15
4H co0s.? a,

The path of a projectile in vacuo is therefore a parabold,
whose vertex is at the highest point attained by the pro-
Jjectile, and whose axis is vertical.
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119, To find the range of a projectile upon an inclined plane.

Let R represent the range AP of a projectile upon an
.-——r—" inclined plane AB, whose inclination is «.
-~ {7~ Then Il and « being taken to represent

w—"% the same quantities as before, and x, ¥

being the co-ordinates of P to the horizontal axis AC, we
have

2=AM=AP cos, PAM=R cos. 1,
y =PM=AP sin. PAM=R sin. ..

Substituting these values of « and g in the general equa-
tion (92) to the projectile, we have

R2 cos.? 1 sec.? 2

411
Dividing by R, multiplying by cos. a, and transposing

R sin.: =R cos. s tan, e—

R cos. t see. &

"4-H

=08, 4 Sin, @—sin. ¢ cos. a==sin. (e—1)

Ry SlETCOn gy,
cos.? .
Now sin, (2= ij—sin. 1 =sin, {a+ (z—1)} =sin. {a—(a—1)}=
2 sin. (e=—1) cos. a
Substituting this value of 2 sin. (x—3) cos. « in the pre-
ceding equation, we have

R:zH{Si“'(Q"i'—'J)"Si“"} e . (98)

cos.2

Now it is evident that if « be made to vary, : remaining
the same, R will attain its greatest value when sin, (2a—;) is

x
greatcst, that is when it equals unity, or when Ra—i=g» OF

when ez 3t ‘; This, then, is the angle of elevation corre-

sponding to the greatest range, with a given velocity upon an
inclined plane whose inclination is 4.
14



:
:
P
|
]

ia.b

w’%i

120 PROJECTILES.

If in the preceding expression for the range we substitute

K . .
{5"(“—‘) }for «, the value of the cxpression will be found
to remain the same as it was before ; for sin. (2z~) will, by
this substitution, beeome sin, {7 —@(a~—)— it =sin. {z—{2e

—)1=sin. (R«—i). The value of R remains thevefore the
ki3
same, whether the angle of elevation be =z or (;""(“"')'

And the projectile will range the same distance on the plane;
whether it be projected at one of these angles of elevation oF
the other.

Let BAC be the inclination of the planc on which the
projectile ranges, and AT the dirce-
tion of projection. Take DAS equal to
BAT. Then BAT=TAC—BAC=

w
¢ a—i. And SAC:DAC-—DAS'—'—:Q

Eat
e
AP B
= T
T A

—BAT:S-—(@:—-—:), The range AP is therefore the same

whether TAC or SAC be the angle of elevation, and therefore
whether AT or AS be the direction of projection.
Draw AF bisecting the angle BAD, then the angle EAC=

BAC+BAL=BAC+3BAD = +J§(Z§_;) =3+

The angle EAC is therefore that corresponding to the
grealest range, and A is the divection in which a body should
be projected to range the greatest distanee ou the inclined
plane AB.

It is evident that the directions of projection AS and AT,
which correspond to equal ranges, are equally inelined to the
direction AF corresponding to the greatest range.

120. The velocity of a projectile at different points of s
path. 1t has been shown {Art. 56.), that if a body move in
any curve acted upon by gravity, the work accumulated or
lost is the same as would be accunulated or lost, provided
the body, instead of moving in a curve, had moved in the direc-
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tion of gravity through a space equal to the wertical projec-
tion of its curvilinear path.

Thus a projectile moving from A to P will accumulate or
lose & quantity of work, which is equal to that which it would
accumulate or lose, had it moved vertically from M to P, or
from P to M, PM being the projection of its path on the
direction of gravity. Now the work thus accumulated or lost
equals one half the difference between the wires vive at the
comwencement and termination of the motion.

Let V equal the veloeity at A, and o equal the velocity at

W. W

P, therefore the work =3 Tq—Vﬁ - %?v*. Moreover, the work

W. w
donc through PM=W . PM, therefore %?VQ—%?ﬁ:
W. PM, therefore V*—?=2yMP. Let PM=y,

Loer=V2_2y .. ... (99),

which determines the velocity at any point of the curve.

CenrTrirucar FoRcE.

121, Let a body of small dimensions move in any curvi~
linear path AB, impelled continually towards
a given point S (called a centre of force) by a
given force, whose amount, when the body
has reached the poiut P in its path, is re~
presented by F.*  Let PQ be an exceedingly
. small portion of the path of the body, and
conccive the force F to remain constant and parallel to itself,
whilst thig portion of its path is being described. Then, if
iR b € a tangent at P, and QR be drawn parallel to SP,
R s the space which the body would have traversed in the
Ume of deseribing PQ, if it had moved with its velocity of
Projection from P alone, and had not been attracted towards

* ‘s .

o The force here spoken of, und represented by F, is the moving foree,
o ressure on the body (see Art. 92.), and is thercfore equal to that
Pressure which would just sustain its attraction towards S, -
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S, and RQ or PT (QT being drawn parallel to RPY is the
space through which it would have fallen by its attraction
towards S afone, or if it had not been projected at all from
P.%  Let » represent the velocity which it would have ac-
quired on this last suppesition, when it rcached the point T.
Therefore (Art. 66.), if w represents the weight of the body,
Fx DT=1"
“g

Now the veloeity », which the body would have acquired i
falling through the distance PT by the action of the counstant
force I, is equal to Lalf that which would cause it to describe
the same distance wwiformfy in the same time. §

Representing therefore by V othe actual veloeity of the
body in its path at P, we have

v PT o~ PT
e oy coe=2V .,
VPR S PR
Substituting this value of ¢ in the preceding equation,
5 Wy, (PTN? wys QR
N —ao. Vo S =2y .
FxPT=27 wi) VR

Now let a cirele PQV be deseribed having o common
tangent with the curve AB In the point P, and passing
through the point Q.  Produce PS to interseet the circum
ference of this circle in V, and join QV; then are the tri-
angles PQV and QPR similar, for the angle RQP is equal
to the angle QPV (QR and VP being parallel), and the
angle QPR is equal to the angle QVP in the alternatc
QR _IPQ .
PQ TPV’

* See Art. 113. (equations 89 and 90) ; what is proved there of a body
acted upon by the force of gravity which is constant, and whose direction
is constantly parallel to itsclf, is evidently true of any other constant force
similarly retaining a dircetion parellel to itself. To apply the same de-

monstration to any snch casc, we have only indeed to assume gt I‘epr'ff‘Sf’“t
another number than 324.

T Iff represent the additional velocity per sceond whichk F would com-
municate to the body, and ¢ the time of describing PT, then (Art. #4.)

v==f 3 but (Avt.46.)) 1’T=-,!1-ﬂ~‘=(‘f) :35; so that © is the veloclty
ik . 5 g

with which P'T would be described wniformdy in the thne &

segment of the civcle.  Therefore therefore
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QR (2Q)

v Substituting this value of QR in the last

equation, we have F=

g V3 PQ) ?
“gPV (ﬁ{

Now this is true, however much PQ may be diminished.
Let it be infinitely diminished, the supposed constant amount
and parallel direction of ¥ will then coincide with the actual

case of a variable amount and inclination of that force, the
h)

ratio },—f% will become a ratio of equality, and the circle

PQV will become the ecircle of curvature at P, and PV
that chord of the eircle of curvature, which being drawn
from P passes through 8. Let this chord of the circle of
curvature be represented by C,
w V?
) F:QE R (100).

The force or pressure F thus determined is manifestly
exactly equal to that force by which the body tends in its
motion continually to fly from the centre S, and may there-
fore be ealled its centrifugal force. This term is, however,
generally himited in its application to the case of a body re-
valving in a eircle, and to the force with which it tends to
recede from the centre of that eirele ; or if applied to the case
of motion in any ather curve, then it means the force with
which the body tends to recede from the centre of the eircle
of curvature to jts path at the point through which it s, at
Wy time, moving, When the body revolves in a circular
l)ﬂ:ﬁh: the circle of curvature to the path at any one poiut
evidently coincides with it thronghout, and the chord of cur-
‘ature Lecomes one of its diameters. Let the radius of the
eircle which the body thus describes be represented by R,
then C=2R, )

_wV?
.—g B: .

.Smce in whatever curve a body is moving, it may be con-
Ceived at any point of its path to be revolving in the cirele of
clrvature to the curve at that point, the force F, with which

" F . .. . (101)
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it then tends to recede from the eentre of the circle of cur-
vature is represented by the above formula, R being taken
to represent the radius of curvature at the point of its path
through which it is moving.

If « be the angular velocity of the body’s revolution about
the centre of its circle of curvature, then V=all;

S F=YeR L. (109,
4

122. By transposition of equation (100) we obtain

V2:%(%}> C :Q(F‘q)(.ic)-

w

Now (Art. 94.) I:} represents the additional velocity per
sccond f, which would be communicated to a body falling to-
wards 8, if the body fell freely and the foree F remained con-
stant. Morcover, by Art. 47, it appears, that V is the whole
velocity which the body would on this supposition acquires
whilst it fell through a distance equal to 3C, or to one quarter
of the chord of curvature. Thus, then, the velocity of a body
revolving in any curve and attracted towards u centre of foree
is, at any point of that curve, equal to that which it would
acquire in falling freely from that point towards the centre of
force through one quarter of that chord of curvaturc which
passes through the centre of force, if the force which acted
upon it at that point in lhe curve remained constant during ifs
descent. It is in this sense that the velocity of a body
moving in any curve about a centre of force is said to be
THAT DUE TO ONE QUARTER THE CHORD OF CURVATURE.

123. The centrifugal force of a mass of finite dimensions.

Let BC represent a thin lamina ot slice of
such a mass contained between two planes
> excecedingly near to one another, and both
M—if—’/—— N perpendicular to a given axis A, about which

THETTTT 4he mass s made to revolve,
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Through A draw any two rectangular axes Ax and Ay,
let m, be any element of the lamina whose weight is w,,
and let AM, and AN, co-ordinates of m,, be represented by
@ and g, Then by equation (91), if « represent the angular
velocity of the revolution of the body, the centrifugal force

2
on the clement m, is represented by % w,Am,. Let now this
9

force, whose direction is Am, be Tesolved into two others,
whose dircctions are Ax and Ay. The former will be repre-

2 2
sented by f_wlm cos. Ay, or by % wx;, and the latter by
2 9 g
q
on all the other elements of the lamina being similarly re-
solved, we shall have obtained two sets of forces, those of the

I a .
w Amy; cos. yAmy, or by 2wy, ; and the centrifugal forces

2
one set being parallel to Az, and represented by %wlmh

!

'S 2
“éwsﬂ?a, o;wdms, &c. and those of the other set parallel to Ay
Iepresented by ffwlyl, fwaye’ .'fwags, &e.

g g

Nth if X and Y represent the resolved parts parallel to
the dircctions of Az and Ay, of the resultant of these two
sets of forces, then (Art. 11.)

2 2 2 2
X‘:a-wlwl + iwﬂe + f'fﬂ'ﬂa'l’ . s :?_Ewm ::i-WG'l H
g g g g g

2 Q2 ] P
Y:c;—wlyl + %Wﬂg + E;w;gyg‘f'- - .Z%Ewy‘:%wc}m

Gy and @G, represent the co-ordinates AG and AGy of the
centre of gravity G of the lamina, and W its weight (Axt. 18.).

Now the whole centrifugal force F on the lamina is the
resultant of these two sets of forces, and is represented by
VAT YT (Are, 11),

F:/\/;‘—:WQG,? +;—:W9Gg :fJ;WV/Glﬁ_!.(}gﬂ' or
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where G is taken to represent the distance AG of the centre
of gravity of the lamina from the axis of revolution.

Moreover the direction of this resultant centrifugal foree is
through A, since the directions of all its components are
through that point.

124. From the above formula it is apparent, that if a bedy
« . revolving round a fixed axis be conceived to be
s divided into laminax by planes perpendicular
/f to the axis, then the centrifugal force of each
7 such lamina is the same as it would have been
if the whole of its weight had been collected in

its centre of gravity; so that if the centres of
gravity of all the laminm be in the same plane passing
through the axis, then, since the centrifugal force on each
lamnina has its direction from the axis through the centre of
gravity of that lamina, it follows that all the centrifugal
forces of these laminae are in the same plane, and that the:y
are PARALLEL forces, so that their resultant is equal to thetr
sum, those being taken with a negative sign which correspond
to lamina whose centres of gravity ave on the opposite side
of the axis from the rest, and whose centrifugal forces are
therefore in the opposite directions to those of the rest. Thus
if ¥’ represent the whole centrifugal force of such a mass

2
then FF="_SWG. Now let W represent the weight of the
g
whole mass, and G the distance of its centre of gravity from
the axis, therefore EWG=W'G/;
2
SOF=SWeE L L L (104)
g
In the case, then, of a revolving body capable of being
divided into laminax perpendicular to the axis of revolutlon,
the centres of gravity of all of which laminze are in the same
plane passing through the axis, the centrifugal force is the
same as it would have been if the whole weight of the body
had been collected in its centre of gravity, the same property
obtaining in this case in respect to the whole body as obtains
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in respect to each of its individual laminze, Since, more-
over, the centrifugal forces upon the lamine are parallel forces
when their centres of gravity are allin the same plane passing
through the axis of gravity, and since their directions are all
in that plane, it follows (Art. 16.), that if we take any point O
in the axis, and measure the moments of these parallel forces
from that point, and call & the perpendicular distance OA of
any lamina BC from that point, and H the distance of their
resultant from that point, then

2 2
H‘i WG = %EWG&-,

H_EWG .. (105).

The equations (93) and (94) determine the amount and the
point of application of the resultant of the centrifugal forces
upou the mass, upon the supposition that it can be divided
into laminze perpendicular to the axis of revolution, all of
which have their centres of gravity in the same plane passing
throuUh the axis,

It is evident that this condition is satisfied, if the body be
Symmetrical as to a certain axis, and that axis be in the same
Plane with the axis of revolution, and therefore if it intersect
or if it be parallel to the axis of revolution.

If, in the case we have supposed ZWG =0, that is, if the
tentre of gravity be én the axis of revolution, then the centri-
fugal force vanishes, This is evidently the case where a body
evolves round its axis of symmetry.

- 1f the centres of gravity of the laminz into which ihe
5, Pody is divided by planes perpendicular to the
" axis of revolution be nof in the same plane (as in the
') figure), then the centrifugal forces of the different
A laminz will not lie in the same plane, but diverge
//‘“ from the axis in different directions round it. The

amount and direction of their resultant cannot in

h ‘ this case be determined by the equations W}“"h
ave heen given above.
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Tug PRINCIPLE OF VIRTUAT VELOCITIES.

126. If any pressure U, whose point of application A is made
to move through the straight line AB, be resolved into three
others X, Y, Z, in the dircctions of the three rectanguler
axes, O, Qy, Oz; and if AC, AD, ond AL, be the projections
of AB upon these axes, then the work of P through AB i
equal o the sum of the works of X, Y, Z, throuyh AC,_AJDJ
and AE respectively, or X | AC+Y . AD+Z . A=
P . AM.

Let the inclinations of the direction
of P to the axcs Ox, Oy, Oz respect-
ively, be represented by =, B, vy, and the
inclinations of AD to the same axes by
oy, ﬁl: Y1s

o (A1t 12) X=Peos. ¢, Y=P cos. 8, Z=P cos. y; also AC
=AB cos. &y, AD=AB cos. 8,, AlL=AD cos. 71
. X.AC=P.ABcos,acos. 2y, Y.AD =P . A cos. 3 cos.fu
Z.AL=P.AB COS. Y CO%. 7,
. X.AC+Y.AD+Z.AE=P, AB{cos. & cos. a1+005-ﬁ
cos. 3 +cos. y cos. 1}

But by a well known theorem of trigonometry, cos. « tos-%

+eos, B cos. B + cos. y cos. ¥, —cos, PAR,
XL ACHY D ADSZ . AN =T . AB cos. PAB;
but AB cos, PAB=AM ;
. X.AC+Y . AD+Z . AE=P. AM.

But (Art. 52.) the work of P through AM jis equal to it8

work through AB. Therefore, &c.*

* 'This proposition may readily be deduced from Art. 53., for pressures
equal and opposite to X, Y, Z, would just be in equilibrinm with P, and
these tending to mave the point A in ove direction along the line AR, P
tends to move it in the opposite direction, therefore in the motion of the
point A through AB, the sum of the works of X, Y, Z, must eqﬂﬂi the
work of P.  But the work of X as its point of application moves through
AB is equal (Art. 52.) to the work of X through the projection of AB
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127, If any number of forces be in equilibrium (being in any
way mechanically connected with one another), and if, sub-
Jject to that connection, their different points of application
be made to move, each through any exccedingly small dis-
tance, then the aggregate of the work of those forces, whose
points of application are made to move towards the directions
in which the several forees applied to them act, shall equal
the ugyregate of the work of those jforces, the motions of
whose points of application are opposed to the directions of
the forces applied to them.

_ For let all the forces composing such a system be resolved
Into three sets of forces parallel to three rectangular axes,
and let these three sets of parallel forces be represented by
A, B, and C respectively. Then must the resultant of the
parallel forces of each set equal nothing, For if any of these
resultants had a finite value, then (by Art.12.) the whole
three sets of forces would have a resultant, which they can-
hot, since they are in equilibrium,

Now let the motion of the points of application of the
forees be conceived so smail that the amounts and directions
of the forces may be made to vary, during the motion, only
by an exceedingly small quantity, and so that the resolved
forces upon any point of application may remain sensibly un-
changed.  Also let Uy, U, Us, Tepresent the works of these re-
solved forces respectively on any point, and Zu; the sum of
all the works of the resolved forces of the set A, Zu, the sim
of all the works of the forces of the set B, and Zug of the
%t C. Now since the parallel forces of the set A have no

—_—
-

Upm.‘ Az, that is, through AC; similarly the work of Y, a8 its point of
application moves through AR, is equal to its work through the projec-
ton of AR upon Ay, or through AD ; and so of Z. The sum of the
v;rlorks of X; Y, and Z, as their point of application is made to move
through AB, is therefare equal to what would have been the sum of their
Wo:-ks had their points of application been made to move separately through
ig’ AD, AE; this last sum js therefore equal to the work of P through

» which is equal to the work of P through AM, AM being the projec-

tou of AB upon the direction of P. :

K
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resultant, therefore (Art. 59.) the sum of the works of those
forces of this set, whose points of application are moved fo-
wards the directions of their forces, is equal to the sum of the
works of those whose points of application are moved from
the directions of their forces, so that Su, =0, if the values of
#, which compose this sum, be taken with the positive OF
negative sign, according to the last mentioned condition.
Similarly, Bu,=0 and Suz=0, .-, S(uy+uy+ ug) =0
Now let U represent the actual work of that force P, the
works of whose components parallel to the three axes are ¢
presented by wy, uy, u3; then by the last proposition,

Uy + Uy + ey =1,
SLSU=0. . ... (106);

in which expression U is to be taken positively or negatively
according to the same conditions as uy, g, uy; that s, accord-
ing as the work at each point is done in the direction of the
corresponding force, or in a direction opposite to it. Henee
therefore it follows, from the above equations, that the SU}“
of the works in one of these directions equals their sum 1
the opposite dircetion, Therefore, &e.

The projection of the line described by the point of appli-
cation of any force upon the dircetion of that force is called its
VIRTUAL VELOCITY, so that the product of the force by its
virtual velocity is in fact the work of that force; hence
therefore, representing any force of the systemn by I, and
its virtual veloeity by p, we have Pp=U, and therefore
SPp =0, which is the prineiple of virtual velocities.®

128. If there be a system of forces such that their points o
application being moved through ceriain consecutive posi-
tions, those forces are in all such pesitions in eguilibriumf
then in respect lo any finite motion of the poinfs of appl-
cation through that series of posilions, the aggregate of the

* This proof of the principle of virtual velecities is given Lieve for the
first time.
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work of those forces, which act in the directions in which
their several points of application are made to move, is equal
to the aggregate of the work in the opposite direction,

This principle has been proved in the preceding proposi-
tion, ouly when the motions communicated to the several
points of application are excecdingly small, so that the work
done by each force is done only through an exceedingly
small space. 1t extends, however, to the case in which each
point of application is made to move, and the work of each
foree to be done, through any distance, however great, pro-
vided only that in all the different positions which the points -
of application of the forces of the system are thus made to
take up, these forces be in equilibrium with one another; for
it is evident that if there be a series of such positions im=
mediately adjacent to one another, then the principle obtains
in respect to each small motion from one of this set of posi-
tions into the adjacent onc, and thercfore in respect to the
sum of all such small motions as may take place in the system
In its passage from any one position into any other, that is,
In respeet to the whole motion of the system through the
Intervening series of positions. Thercfore, &e.

Tur PrivcieLE oF Vis Viva.

129. If the forces of any system be not n equilibrium ewith
ore another, then the difference between the aygregate work
of those whose tendency is in the direction of the motions
of their several points of application, and those whose ten-
dency is in the opposite direction, is equal to one half the
aggregate vis viva of the system.

I_n ¢ach of the consecutive positions which the bodies com-
Dosing the system are made successively to take up, let there
¢ applied to each body a force equal to the effective jorce
Art, 108.) upon that body, but in an opposite direction }
SVery position will then become one of equitibrinm.
x 2
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Now, as the bodies which compose the system and the
various points of application of the hmpressed forees move
through any finite distances from one position into another
let Zu; represent the agpregate work of thosc im pressed
forces whose directions are towards the directions of the
motions of their several points of application, and let Zu, re-
present the work of those impressed forces which act in the
opposite directions ; also let Ewg represent the aggregate work
of forces applied to the system cqual and opposite to the effee-
Zive forces upon it; the dircctions of these forces opposite to
the effective forees are manifestly opposite also to the directions
of the motivns of their several points of application, so that
on the whole Z#, is the aggregate work of those forces whose
directions are fowards the motions of their several points of
application, and 2w, + Zu; the aggregate work opposed to
them. Since therefore, by d'Alembert’s principle, an equi-
librium obtains in every comsccutive position of the system, it
follows by the last proposition, that

B = Sae + Su;;,
Co By =Zup=Zuy ..., (107).

Now uy is taken to represent the work of a force equal and
opposite to the effective force upon any body of the systent;
but the work of such a force through any space is equal to
the work which the effective force (being unopposed} accumur
lates in the body through that space (Art. 69.), or it is
equal to one half the difference of the vires vivae of the body
at the commencement and termination of the time during
which that space is described (Art. 67.). Therefore Zus
equals one half the aggregate difference of the vires vivae of
the system at the two periods;

1
ﬁul—Euez%ﬁw(fv?—-vg?) .. ... (108).

"Thus then it follows, that the difference between the aggre-
gate work Zu, of those forces, the tendency of each of which
is towards the direction of the motion of its point of applica-
tion, and that Zu, of those the direction of each of which is
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opposed to the motion of its point of application (or, in other
words, the difference betwcen the aggrepate work of the
accelerating forces of the system and that of the retarding
Jorces), is equal to one half the vis viva accumulated or lost in
the system whilst the work is being done, which is the Pri~-
CIFLE OF VIs Viva.

130. One half the vis viva of the system measures its ac-
cumulated work ; the principle of vis viva amounts, therefore,
to no more than this, that the entire difference between the
work done by those forces which tend to accelerate the mo-
tions of the parts of the system to which they are applied,
and those which tend to retard them, is accumulated in the
moving parts of the system, no work whatever being lost, hut
all that accumulated which is done upon it by the forces
which tend to accelerate its motion, above that which is ex~
pended upon the retarding forces.

This principle has been proved generally of any mechanical
system ; it is thercfore true of the most complicated machine.
The entire amount of work done by the moving power, what-
ever it may be, upon that machine, js yielded partly at its
working points in overcoming the resistances opposed there
to its motion (that is, in doing its useful work), it is partly
expended in overcoming the friction and other prejudicial re-
sistances opposed to the motion of the machine between its
moving and its working points, and all the rest is accumulated
I the moving parts of the machine, ready to be yielded up
under any deficiency of the moving power, or to carry on

the machine for a time, should the operation of that power
be withdrawn,

13N, When the forces of any system (not in equilibrium in
very position which the parts of that system may be mwcl_e
lﬂl take up) pass through a position of equilibrium, the vit
Y of the system becomes @ mamimam OF G MINTMUIL

For, as in Art. 129, let the aggregate work done in the
K 3
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directions of the motions of the several parts of the system
be represented by Zu, and the aggregate work done in direc
tions opposed to the motions of the several parts by Zug, then
(Art. 129.),0ne half the acquired vis viva of system = Su; — 3t
Now as the system passes from any one position to any othet,
each of the quantities Zu; and Zu, is manifestly increased. If
Zuy increases by a greater quantity than Zu,, then the vis vive
is increased in this change of position; if, on the contrary, it
is increased by a less quantity than Nu,, then the vis viva is
diminished. Thus if AXe, and AZw, vepresent the incre-
ments of Zw andZw; in this change of position, then (2u+
ASu) =~ (Zug+ AZu), or (Sey—Zug) + (ASwy — AZuy), repre-
senting one half the vis viva after this change of position, 1t
is manifest that the vis viva is increased or diminished by the
change according as AZu, is greater or less than AZug; and
that if A=, be equal to AZu,, then no change takes place in
the amount of the vis viva of the system as it passes from the
one position to the other.

Now from the principle of virtual velocities (Art. 197, it
appears, that precisely this case occurs as the system passes
through a position of equilibrium, the aggregate work of
those forces whose tendency is to accelerate the motions of
their points of application then precisely equalling that of
the forces whose tendency is opposed to these motions. For
an exceeding small change of position thercfore, passing
through a position of equilibrium, AZu, —=ASu,, an r:quﬂ]it)r
which does not, on the other hand, obtain, unless the body do
thus pass through a position of equilibrium.

Since then the sum Zu,~ Zu,, and therefore the aggregate
vis viva of the system, continually increases or diminishes up
to a position of equilibrium, and then ccases (for a certain
finite space at least) to increase or diminish, it folows, that it
is in that position a maximum or a minimum. Therefore, &

132, When the forces of any system pass through a position of
equilibrium, the vis viva becomes a magimum or a minimums
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according as that position is one of stable or unstable equi-
{ibrium.

For it is clear that if the vis viva be a maximum in any
position of the equilibrium of the system, so that after it
has passed out of that position into another at some finite
distance from it, the acquired vis viva may have become
less than it was before, then the aggregate work of the
forces which tend to accclerate the motion between these
two positions must have been less than that of the forces
which tend to retard the motion (Art. 131.). Now suppose
the body to have been placed at rest in this position of
equilibrium, and a small impulse to have been communicated
to it, whence has resulted an aggregate amount of vis viva
represented by EmV2, In the transition from the first to the
sceond position, let this vis viva have become Zmo?; also let
the aggregate work of the forces which have tended to acce-
lerate the motion, between the two positions, be represented
by 2U), and that of the forces which have tended to retard
the motion by SU,; then, for the reasons assigned above, it
appears that ZU, is greater than ZU,.

Moreover, by the principle of vis viva,

13met 1 Zm V2 = ZU, =20,
L Eme? =3mV2—2(ZU,—2U,);

in which equation the quantity 2(2U,—=U)) is essentially
positive, in respeet to the particular range of positions through
which the disturbance is supposed to take place.*

For every one of these positions there must then be a
c?rtain value of ZmV?, that is, a certain original impulse and
disturbance of the system from its position of equilibriem,
Which will cause the second member of the above equation,

* Tﬂ“’ disturhance is of course to be limited to that particular range of
Positions to which the supposed position of equilibrium stands in the
relat ion of a position of maximum vis viva. If there be other positions of
?thb"m“ of the system, there will be other ranges of adjacent positions,
" réspect to each of which there obtains a similer telation of maximum of
WiniRG; vis vigg, 4

K 4
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and therefore its first member Eme? to vanish. Now every
term of the sum Zmv® is essentially positive; this sum can-
not therefore vanish unless each term of it vanish, that is
unless the velocity of each body of the system vanishes, or
the whole be brought to rest. This repose of the system can,
however, only be instantaneous ; for by supposition, the post-
tion into which it has been displaced is not one of equilib.rmm-
Moreover, the displacement of the system cannot be continued
in the direction in which it has hitherto taken place, for fhe
ncgative term in the second member of the above equa.tl‘ﬁﬂ
would yet farther be increased so as to exceed the pos1t:1V6
torm, and the first member Zme? would thus become negataves
which is impossible.

The wmotion of the system can then only be continued-b}r
the dircetions of the motions of certain of the elements which
compose it being changed, so that the corresponding quan~
tities by which ZU, and SU, are yespectively increased
may change their signs, and the whole quantity SUl“"qu
which before incrensed continually may now continually di
minish, This being the case, Sme? will increase again until,
when SU, ~ZU,=0, it becomes again equul to ZmV?; thf‘t
is, until the system acquires again the vis viva with which its
disturbance eommenced.

Thus, then, it has been shown, that in respect to every one
of the supposed positions of the system * there is a certain
impulse or amount of vis viva, which being communicated to
the system when in cquilibrium, will just cause it to OSC{l‘
late as fur as that position, remain for an instant at rest in ity
then return again towards its position of equilibrium, and re-
aequire the vis viva with which its displacement commenced-
Now this being true of every position of the supposed rangé
of positions, it follows that it is true of every disturbance oF
impulse which will not carry the system beyond this suppOSed
range of positions; so that, having been displaced by any
such disturbance or impulse, the system will constantly returnt

* That is, of that ramge of positions over which the supposed positio?
of equilibrium holds the relation of & position of maximum vis viva.
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again towards the position of equilibrium from which it set
out, and is $STABLE in respect to that pogition.

On the other hand, if the supposed position of equilibrium
be one in which the vis viva is a minimum, then the aggre.
gate work of the forces which tend to accelerate the motion
must, after the system has passed through that position, ex-
ceeds that of the forces which tend to retard the motion;
so that, adopting the same rotation as before, ZU, must
be greater than ZUg, and the second member of equation
essentially positive, Whatever may have been the original
impulse, and the communicated vis viva SmV3, Zmo® must
therefore continually increase; so that the whole system can
never come to a position of instantaneous repose*; but on
the contrary, the motions of its parts must continually increase,
and it must deviate continually farther from its position of
equilibrium, in which position it can neverrest. The position
Is thus one of unstable equilibrium. Therefore, &e.

FRICTION.

1.33. It is a matter of constant experience, that a certain
Yesistance is opposed to the motion of one body on the sur-
face of another under any pressure, however smooth may be
the surfaces of contact, not only at the first commencement,
but at every subsequent period of the motion; so that, not
only is the exertion of a certain force necessary to cause the
ohe body to pass at first from & state of rest to a state
of motion upon the surface of the other, but that a certain
force is further requisite to keep up this state’ of motion.

be resistance thus opposed to the motion of one body on
the surface of another, when the two are pressed together, is

e *. W j,thi" that range of positions over which the supposed pomhon of
Yilibrium holds the relation of minjmum vis viva. T
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called friction; that which opposes itself to the transition
from a state of continued rest to a state of motion is ca.lh.ed
the friction of quiescence; that which continually eccompanies
the state of motion is called the friction of motion.

The principal experiments on friction have been made by
Coulomb*, Vince, G. Rennict, N. Wood¥, and receflﬂf
{at the expense of the French Government) by M0r11‘1.§
They have reference, first, to the relation of the friction
of quiescence to the friction of motion; secondly, to the
variation of the friction of the same surfaces of contact \m@el‘
different pressures; thirdly, to the relation of the friction
to the extent of the surface of contact; fourthly, to the
relation of the amount of the friction of motion to the
velocity of the motion ; fifthly, to the influence of unguents
on the laws of frietion, and on its amount under the same
circumstances of pressure and contact. The following are the
principal facts which have resulted from these experiments;
they constitute the lqws of friction.

Ist. That the friction of motion is subject to the same
laws with the friction of quiescence (about to be stated), b_Ut
agrees with them more accurately, That, under the same ¢
cumstances of pressure and contact, it is nevertheless different
in amount. )

2ndly. That, when no unguent is interposed, the frictu{n
of any two surfices (whether of quiescence or of motion)
dircetly proportional to the force with which they are prﬁ‘ssed
perpendicularly together (up to a certain limet of that pres
sure per square inch), so that, for any two given surfaces
of contact, there is a constant ratio of the friction to the
perpendicular pressure of the one surface upon the other.
‘Whilst this ratio is thus the same for the same surfaces of
contact, it is different for different surfaces of contact, The
particular value of it in respect to any two given surfaces
of contact is called the CO-EFFICIENT of friction in ré-

* Mom. des Sav, Btrang. 1781, + Phil. Trans, 1820
1 A Practical Treatise on Rail-roads, 3d ed, chap, 76
§ Mém. de I'Institut. 1833, 1834, 1838,
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spect to those surfaces. The co-efficients of friction in respect
to those surfaces of contact, which for the most part form the
moving surfaces in machinery, are collected in a table, which
will be found at the termination of Art. 140.

3dly. 'That, when no unguent is interposed, the amount
of the {riction is, in every case, wholly independent of the
extent of the surfaces of contact, so that the force with which
two surfaces are pressed togegether being the same, and
not cxceeding a certain limit (per square inch), their friction
is the same whatever may be the extent of their surfaces of
contact.

4thly. That the friction of motion is wholly independent
of the velocity of the motion.* :

Sthly. That where unguents are interposed, the co-eflicient
of friction depends upon the nature of the unguent, and upon
the greater or less abundanee of the supply. In respect to
the supply of the unguent, there are two extreme cases, that
in which the surfaces of contact are but slightly rubbed with
the unctuous mattert, and that in which, by reason of the
abundant supply of the unguent, its viscous consistency, and
tbe extent of the surfaces of contact in relation to the in-~
SIStent pressure, a continuous stratum of unguent remains
Cf’_lltinually interposed between the moving surfaces, and the
fr_lc'*_ion is thereby diminished, as far as it is capable of being
Gminished, by the interposition of the particular unguent
used. Tn this state the amount of friction is found (as might
be ¢Xpected) to be dependent rather upon the nature of the
Unguent than upon that of the surfaces of contact; accord-
ngly M. Morin, from the comparison of a great number of
Pesz.ﬂts, has arrived at the following remarkable conclusion,
easily fixing itself in the memory, and of great: practical
Value: — « ghqy with unguents, hog'’s lard and olive oil, inter-
Posed in a continuous stratum between them, surfaces of wood
%% metal, wood on wood, metal on wood, and wetal on metal

es: b'{'his result, of so much importance in the theory of machives, is fully
ablished h_y the experiments of Morin. :
As, for instance, with an oiled or a greasy cloth.
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(when in motion), have all of them very nearly the same co-
efficient of friction, the value of that co-cfficient being in all
cases included between -07 and +08,

¢ For the unguent tallow, the co-efficient is the same as for
the other unguents in every case, except in that of metals upon
metals.  This unguent appears, from the experiments of Mo-
rin, to be less suited fo metallic substances than the others,
and gives for the mean value of its co-efficient under the sume
circumstances *10.”

134, Whilst there is 2 rcmarkable uniformity in the re-
sults thus obtained in respect to the friction of surfaces,
between which a perfect separation is effected throughout
their whole extent by the interposition of a continuous stra-
tum of the unguent, there is an infinite variety in respect
to those states of unctuosity which occur between the e
tremes, of which we have spoken, of surfaces mercly unctuous®
and the most perfect state of lubrication attainable by the
interposition of a given unguent. It is from this variety of
states of the unctuosity of rubbing surfaces, that so grea.ta-
discrepancy has been found in the experiments upon friction
with unguents, a discrepancy which has not probably resulted
so much from a difference in the quantity of the unguent
supplied to the rubbing surfaces in different experiments,
as in a diflerence of the relation of the insistent pressures
to the extent of rubbing surface. It is evident, that for every
deseription of unguent therc must correspond a certain pres-
sure per square inch, under which pressure a perfect separa
tion of two surfaces is made by the interposition of a con-
tinuous stratum of that unguent between them, and which
pressure per square inch being exceeded, that perfect separa-
tion cannot be attained, however abundant may be the supply
of the ungucnt.

The ingenious experiments of Mr, Nicolas Wood,f con-

* Or slightly rubbed with the unguent.
t Treatise op Rail-roads, 3d ed. p. 399.
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firmed by those of Mr. G. Rennie,* have fully established
these important conditions of the friction of unctuous surfaces.
It is much to be regretted that we are in possession of no ex-
periments directed specially to the determination of that par-
ticular pressure per square inch, which corresponds in respect
to each unguent to the state of perfect separation, and to the
determination of the co-efficients of frictions in those different
states of separation which correspond to pressures higher than
this.

It is evident, that where the extent of the surface sustain-
iug a given pressure is so great as to make the pressure per
square inch upeon that surface less than that which corresponds
to the state of perfect separation, this greater extent of sur-
face tends to increase the friction by reason of that adhe~
siveness of the unguent, dependent upon its greater or less
viscosity, whose effect is proportional to the extent of the
surfaces between which it is interposed. The experiments
of Mr. Wood+ exhibit the effects of this adhesiveness in a
remarkable point of view.

* Trans, Royal Soc. 1829,

.T It is evident that, whilst by extending the unctuous surface which sus-
fa1ns any given pressure, we diminish the co-efficient of friction up to a
certain limit, we at the same time increase that adkesion of the surfaces
Wh.id‘ results from the viscosity of the unguent, so that there may be a
Pomt where the gain on the one hand begins to be exceeded by the loss on
the other, and where the surface of minimum resistance under the given
Pressure is therefore attained,

Mr. Wood considers the pressure per square inch, which corresponds
to the minimum resistance, to be 90ibs. in the case of axles of wrought
ron turning upon cast irom, with fine neat's foot oil. The experiments of
Mz, Wood, whilst they place the genera results stated above in full evi-

ence,.can scarcely however be considered satisfactory as to the particula_r
Huttericai values of the constants sought in this inquiry. In thase experi-
Teuts, and in others of the same class, the smount of the friction is deter-
wined from the observed space or time through which & body projected
¥ith 4 given veloeity moves before all its velocity is destroyed, that is, before
1 accumulated work js exhausted. 'This is an easy method of experiment
liable to many inaccuracies. It is much to be regretted that the experi-
Wenls of Morin were not extended to the friction of unctuous surfaces,
relirence being had to the pressure per square inch.
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It 1s perhaps deserving of enquiry, whether in respect to
those considerable pressures under which the parts of the
larger machines are accustomed to move upon one another,
the adhesion of the ungucnt to the surfaces of contact, and
the opposition presented to their motion by its viscidity, are
causes whose influence may be altogether neglected as com-
pared with the ordinary friction. In the case of lighter
machinery, as for instance that of clocks and watches, these
considerations evidently rise into importance.

135, The experiments of M. Morin show the friction of
two surfaces which have been for a considerable time in con-
tact, to be not only different in its amount from the friction
of surfaces in continuous motion, but also, especially in this,
that the laws of friction (as stated above) are, in respeet to the
iriction of quiescence, subject to causes of wariation and uti-
certainty from whick the friction of motion is exempt. This
variation does not appear to depend upon the extent of the
surfaces of contact, in which case it might be referred to adhe-
sionj for with different pressures the co-efficient of the friction
of quiescence wag found, in certain cases, to vary exceedingly,
although the surfaces of contact remained the same.* The
uncertainty which would have been introduced into every
question of construetion by this cousideration, is removed by
a second very important fact developed in the course of the
same experiments, It is this, that by the slightest jar o
shoek of two bodies in contact, their friction is made to pass
from that state which accompanies quiescence to that which
accompanies motion 5 and as every machine or structure, of
whatever kind, may be considered to be subject to Suc'h
shocks or imperceptible motions of its surfaces of contact, it 15
evident that the state of friction to be made the basis on
which all questions of statics are to be determined, should be
that which accompanies continuous motion, The laws stated
above have been shown, by the experiments of Morin, 1©

* Thus in the case of oak upon oak with parallel fibres, the co-efficient

of the friction of quiescence varied under different pressurcs upon the
same surfuce, from 55 te *76.
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obtain, in respect to that friction which accompanies motion,
with a precision and uniformity never bcfore assigned to
them ; they have given to all our calculations in respect to
the theory of machines (whose moving surfaces have attained
their proper bearings and been worn to their natural polish)
a new and unlooked-for certainty, and may probably be.
ranked amongst the most accurate and valuable of the con-
stants of practical science.

It is, however, to be observed, that all these experiments
were made under comparatively small insistent pressures as
compared with the extent of the surface pressed (pressures
not exceeding from one to two kilogrammes per square ceni~
timeter, or from about 143 to 286 lbs. per square inch).
In adopting the results of M. Morin, it is of importance to
bear this fact in mind, because the experiments of Coulemb,
and particularly the excellent experiments of Mr. G. Rennie,
carried far beyond these limits of insistent pressure®, have
fully shown the co-efficient of the friction of quiescence to in-
crease Tapidly, from some limit attained long before the
surfaces abrade. In respect to some surfaces, as, for in-
stance, wrought iron upon wrought iron, the co-efficient
tearly tripled itself as the pressure advanced to the limits of
abrasion. It is greatly to be regretted that no experiments
have yet been directed to a determination of the precise limit
about which this change in the value of the co-cfficient begins
totake place. Ttappears, indeed, in the experiments of Mr.

ennie in respect to some of the soft metals, as, for instance,
tin upon tin, and tin upon cast iron; but in respect to the
harder metals, his experiments passing at once from a pressure
?f 321bs. per square inch to g pressure of 1-66 cwt, per square
inch, and the co-efficient (in the case of wrounght iron for in-
stance) from about +148 to *25, the limit which we seek is
lost in the intervening chasm. The experiments of Mr.
Rennie have reference, however, only to the friction of qui-
escence. 1t seems probable that the co-efficient of the fric-

) * Mr. Reonie’s experiments were carried, in some cases, to from § ewt.
7 ewt. per square inch. :

.
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tion of motion remains constant under a wider range of
pressure than that of quiescence. Tt is moreover certain, that
the limits of pressure beyond which the surfaces of contact
begin to destroy one another or to abrade, are sooner reached
when one of them is in motion upon the other, than when
they are at rest: it is also certain that these limits are not
independent of the velocity of the moving surface, The dis-
cussion of this subject, as it conneets itsclf especially with
the friction of motion, is of grcat importance ; and it s to b.e
regretted, that, with the means so munificently placed at his
disposal by the French Government, M. Morin did not extend
his experiments to higher pressures, and direct them more pars
ticularly to the circumstances of pressure and velocity under
which a destruction of the rubbing surfaces first begins to
show itself, and to the amount of the destruction of surface
or wear of the material which corresponds to the same space
traversed under different pressures and ditferent velocities.
Any accurate observer who should direct his attention t0

these subjects would greatly promote the interests of practical
science,

SUMMARY OF THE LaAWs oF FRICTION.

136. From what has here been stated jt results, that if P
represent the perpendicular or normal force by which one
body is pressed upon the surface of another, F the friction of
the two surfaces, or the force, which being applied paraflel
to their common surface of contact, would cause one of them
to slip upon the surface of the other, and f the co-efficient of
friction, then, in the ecase in which no unguent is mter-
posed, f represents a constant quantity, and (Art. 133.)

F=fP ....(108);
a relation which obtains accurately in respect to the friction

of motion, and approximately in respect to the friction ©
guiescence. :
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137. The same relation obtains, moreover, in respect to
unctuous surfaces when merely rubbed with the unguent, or
where the presence of the unguent has no other influence
than to inerease the smoothness of the surfaces of contact
without at all separating them from one another.

In unctuous surfaces partially lubricated, or between which
a stratum of unguent is partially interposed, the co-efficient
of friction fis dependent for its amount upon the relation of
the insistent pressure to the extent of the surface pressed,
ot upon the pressure per square inch of surface, This
amount, corresponding to each pressure per square inch in
respect to the different unguents used in machines, has not
yet been made the subject of satisfactory experiments.

The amount of the resistance F opposed to the sliding of
the surfaces mpon one another is, moreover, as well in this
case as in that of surfaces perfectly lubricated, influenced by
the adhesiveness of the unguent, and is therefore dependent
upon the extent of the adhering surface; so that, if S repre-
sent the namber of square units in this surface, and « the
adberenco of each square unit, then a8 represents the whole
adherence oppoesed to the sliding of the surfaces, and

F=fP+aS .....(110);

: . . P
where £ is a function of the pressure per square unit g and

% Is an exceedingly small factor dependent on the viscosity of
the unguent,

THr LiMITING ANGLE OF RESISTANCE.

We shall, for the present, suppose the parts of a solid
ody to cohere 5o firmly, as to be incapable of separation by
the action of any force which may be impressed upon them.
The Timits within which this supposition is true will be dis-
cussed herenfter,
t 12 not to this resistance that our present inquiry has
L
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referenee, but to that which results from the friction of the
surface of bodies on one another, and especially to the direc-
tion of that resistance.

138. dny pressure applied fo the surface of an immoveable
solid body by the intervention of another hody moveabie
upon it, will be sustained by the resistance of the surfaces
of contact, whatever be its direction, provided only the
angle which that direction makes with the perpendicular to
the surfaces of conlact do not exceed a certain angle called
the TIMITING ANGLE OF RESISTANCE of fhose SURFACES
This is true, however great the pressure may be. Ao, if
the inclination of the pressure to the perpendicular exceet
the limiting angle of resistance, then this pressure will not
be sustained by the resistance of the surfaces of contact;
and this is true, however small the pressure may be.

Let PQ represent the dircction in which the surfaces of
) two bodies are pressed together at Q, and let
/}r QA be a perpendicular or normal to the sur-
£ ///’/:a faces of coutact at that point, then will the pres-
& sure PQ be sustained by the resistance of the
‘\é surfaces, however great it may be, providc& its
direction lic within a certain given angle AQB,

called the limiting angle of resistance; and it will not be sus
tained, however small it may be, provided its direction Lie
without that angle. Yor lot this pressurc be l‘epresented by
PQ, and let it be resolved into two others AQ and RQ, of
which AQ is that by which it presses the surfaces together
perpendicularly, and RQ that by which it tends to eaus
them to slide upon one another, if therefore the friction F
produced by the first of these pressures cxceed the second
pressure RQ, then the one body will not he made to slip
upon the other by this pressure PQ, however great it may be;
but if the friction F, produced by the perpendicular pressure
AQ, be less than the pressure RQ, then the one body will be
made to slip upon the other however small PQ may be. Let
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the pressure in the dircction PQ be represented by P, and
the angle AQP by 0, the perpendicular pressure in AQ is
then represented by P cos. §, and therefore the friction of the
surfaces of contact by fP cos.6, f representing the co-efficient
of friction (Art. 136,). Moreover, the resolved pressure in the
direction RQ is represented by P osin, 8. The pressure P
will thercfore be sustained by the friction of the surfaces of
contact or not, according as

P sin. 8 is less or greater than fP cos. 93

or, dividing both sides of this incquality by P cos. 8, accord-
ing as

tan, § is less or greater than f.

Let, now, the angle AQB equal that angle whose tangent is
fiand let it be represented by ¢, so that tan. p=f. Substi-
tuting this value of f in the last inequality, it appears that
the pressure P will be sustained by the friction of the sur-
faces of contacr or not, according as

tan, § is less or greater than tan. ¢,

that is, according as

8 is less or greater than ¢,
or according as

AQP is less or greater than AQB.

Therefore, &e. [@-E.D.]

Tue Cone oF RESISTANCE.

139, If the angle AQB be conceived to revolve about the
axis AQ, so that BQ may generate the surface
‘of a cone BQC, then this cone is called the
CONE OF RESISTANCE: it is evident, that any
pressure, however great, applied to the sur-
. faces of contact at Q will be sustained by the
fesistance of the surfaces of contact, provided its direction be
8Ny where within the surface of this cone; and that it will
L2
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not be sustained, however small it may be, if its direction lie
any where without it,

Tue Two STATES BoRDERING upox MoTioN,

140. 1f the direction of the pressure coincide with the
surface of the cone, it will be sustained by the friction of the
surfaces of contact, but the body to which it is applied will
be upon the point of slipping upon the other,  The state of
the equilibrium of this body is then said to be that BORDER-
NG UPON MOTION.  If the pressure I admit of being applied
in any dircetion about the point Q, there are cvidentiy a?
infinity of such states of the equilibrium bordering upet
motion, corvesponding to all the possible positions of I on the
surfuce of the cone,

H the pressure P admit of being applicd only in the same
plane, there are but two such states, corresponding to those
directions of P, which coincide with the two intersections of
this planc with the surface of the cone: these are called the
superior and inferior states bordcring upon niotion. In the
case In which the direction of P is limited to the plave
AQD, BQ and CQ represent its dircetions correspouding
the two states bordering upon motion,  Any direction of P
within the angle BQC corresponds to a state of equilibrium;
any dircction, without this angle, to a state of motion,

141, Sinee, when the direction of the pressure I coincides
with the surface of the cone of resistance, the equilibrium is
in the state bordering upon motion; it follows, converselys
and for the same reasons, that this is the direction of the
pressure sustained by the surfaces of contact of two bodies
whenever the state of their equilibrium is that Hordering upot
motion, This being, moreover, the direction of the pressuré
of the one body upon the other is manifestly the direction of
the resistance opposed by the second body to the pressure of
the first at their surface of contact, for this single pressur®
and this single resistance are forces in equilibrium, and there:
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fore equal and opposite. All that has been said above of the
single pressure and the single resistance sustained by two sur-
faces of contact, is manifestly true of the resulfant of any
number of such pressures, and of the resultant of any number
of such resistances. Thus then it follows, that when any
number of pressures applied to a body moveable upon another
whicl is fixed, are sustained by the resistance of the surface of
contact of the two bodies, and are in the state of equilibrium
bordering upon motion, then the direction of the resultant of
these pressures coincides with the surface of the cone of ressst-
ance, as does that also of the resultant of the resistances of the
different points of the surface of contwct™, that is, they are
both inclined to the perpendicular to the surface of contact {at
the point where they intersect it), at an angle equal to the
limiting ungle of resistance.

TanLe L
I'viction of plane surfaces, when they have been some time in coutact.

| end] X5
i 2 N 1 1t1 5 f Lth Co- cient| Angle
BT o Rl Bl el ol
ance.
Exrgninuents or M, Mogin. R i
1_ parailel w:’:;::m 062 319 487
. 'rubbed with :
H s 4
[ ditto dry soap 0-44 23 45
i perpendicu- [ | without 054 o8 23
Oak upon nak - < lar unguent
| ditto Iwithwater ~| 072 |85 29
: endways of I -
one upen .
the fat o] "‘;“:;‘;m } 043 |23 16
i i | surface of 1
the other o
; Ok upon el . 7| parallel ! ditto 038 {2 40
i ditto 1 dit:;d b 069 84 a7
i En upen oak - ditto mgry wi ‘541 22 18
perpendi- witheut o5t |29 41
cular unguent
* Th

Ststanee, wer
in the (& e first

: first given by the author of th
ambridge Philosophical Transactions, vol. v.

L3

€ properties of the limiting angle of resistance and the cone of re-
is work in a paper published
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Surtaces in Contact.
EXPERIMENTS OF \I. JIURI\\
— continued. L
Ash, fir, Dbeech, services i
tree, upon oak !

Tanned leather upon oak

Black apon. & pth

04

1 . ‘
§ Digposition of |

the Fibres.

parallel

ithe leather
flat

the [eather”

length-
wiays, but
sidewayy

i ;
dressed smﬁwc } | parallel {

Oak upon calcareous
| oolite

# The surfaces rehmmg some um-tuousnec;q

1 When the coutact has ne

§ When the contact has lasted lonr
hack the surfaces 0 an uncteous state,

leather, upnn a round-
or strap ; crpendi-
\ Df p Pen
feather. ed surlacf. } cular
par-ﬁh\l
Hemp matting upon oak
i dlttu
I
Hewp cords upon oak -, (ditta
!
Tvon upon oak - ' ditto
Cast-iron upon oak - | ditto
Copper upon oak - ditto
Ox-hide as a piston sheath { | flat or side-
upon cast-iron ways
Black dressed Jeather, or
strap leather, upon a
east-iron pulley
Cast-iron upon east-iron - | ditto
Iron ypan cast-ivon -t ditto
Qak, elm, yoke elm, iron,
cast-iron, and brass, i
sliding two and two, [ H1H0
one upon another
Caleareous ocolite stone’
] ¢ ditto
upon calesreous oolite
TTard calearcous qtone,‘!
called muschelkalk, up- ditto
on caleareous oolite J
Brick uwpon calcarcous
solite } ditto

wood end-

i
5

i
|
'
'

i
{
|
{

State of the

E

1‘Cr,-eﬂ‘u‘.'u:n't

Surfaces. l of Friction,
i e
|
without 053
unguent  fi i
ditto 0-Gl
- ditto | 043
P steeped  in 70
water ‘-
without o4
unguent H
ditta 0-47
, ditto 050
: steeped in 087
water
! without 030
| unguent
: it 062
| steeped in 05
i water v
 ditto a65
without 7 062
: unguent =
steeped in 062
water -
with oil,
tallow, or 012
hog s lard
without 048
unguent
steeped Q38
withiout | 016
unbuent i
ditto L0
i with tallow 01071
with oil, or i
hog's Tard [ | 0154
without .
unguent } 074
ditto 095
ditto 067
ditto 063

ways

t lasted

H

Limiting
Anghe of
Resist.
ance.
27° 56" |
I
31 23
23 16
38 13
36 30
25 11
26 94
41 2
38 40
31 48
33 2
33 £
31 48
a1 48 |
(1
15 89
o0 49
9 &
10 46
43
32
35 80
36 52
33 30
32 13

long enough to express the grease.
& enough to express the grease, and bring




FRICTION. 151

1 D £ | State of th tc eff onaia o
. -Disposition ¢ of the ient ngle o
i Surfaces in Contact. !‘[:gog-'ﬂ;m: Surfaces, og- y,-,f{ion, lhg'm-
i ) B ance.
ExrernrExTs of M. Moris l
— continued. .
R without
Lron upon caleareous oolite | flat { :mgllient } 049 %7 7
Hard calecareous stone, or .
‘ muschelkalk, upon ! ditto ditto 070 3 0
musehelkalk -
Calearcous  oolite  stone i
3 - 36 52
upon wuschelkalk ditto ditto 0178 5 s
i Brick upon muschelkatk - ditto ditto 067 33 50,
| Iron npon muschelkalk - ditto ditto 0-42 22 47
I Oak upon muschelkalk - | ditto ditte 064 32 38
with a coat-_l
l inrge of mor-
| Calearcons , tar, of three .
Voot J| G0 Y ol o] 07479 90
| 1 rareous golite sand and
: one part of
1 1| slack lime

* After a contact of from ten to fifteen minutes.

3 Co-cificient | Limiting

Nature of Bodies and Unguents. of Friction,| Angle.

' Soft culeareous stone, well dressed, upon the same -1 o4 36° 80°
) }‘[ard calcareous stone, ditto - - -] 05 86 52
Comunon briek, ditto - - - -1 087 33 50
: O:le, endways, ditto - - - -| 063 52 13
¢ Wrouglst ivon, ditto - - - -| o9 2 7
- Hard caleareous stone, well dressed, upon hard calcareous
" stone - - . - .| 070 35 O
| Soft, ditto - - - - 078 36 52
; Comman brick, ditto - - -i 067 838 50
- Oak, endways, ditto - - - -| 064 |82 87
‘ Wrought iren, ditto - - - - | 042 22 47
i Soft caleareons stone upon soft calearecus stome, with
¢ fresh mortar of fine sand - - -1 074 186 30

i LxPERIMENTS BY DIFFERENT OBSKRVERS.
| Smooth froe-sto i 071 |85 23
" free-stone wpon smooth free-stone, dry (Rennie)

- Ditto, with fresh mortar (Rennie) - .l 066 135 26

i‘HﬂTd polished calcarcous stone wpon hard polished cal-
| tareous stone -

! Caleareons stone B - - ad

‘ pon ditto, both surfaces heing made
| \poueh with the chisel { Bonchardi) - .| 078 |37 58
L Well dressed granite upon rough granite (Rennic) -| 068 33 26

058 a0 7

g:]tto,fmth fresh morter, ditto (Rennie) - - 0'.49 23 '; :
| Di:t of wood upon pavement ( Hegnier) - - 0_53 '?8 46
| Ll 0 upon beaten earth (Herbert) - -t 083 18 12
g Ditf ge stone upon a bed of dry clay - - 0:5‘ :
+ 1itto, the clay being damp a.mfsoﬂ. 034 18 47.

: Dltto the cla 5 - e
i 2! y being equally damp, but covered with
i ‘th‘mk sand (Gréve)g 1 y. P - -

040 | 21 487

L4




Priction of planc surfaces in motion one upon the other,

Surfaces in Contact,

ExreriMENTs or B, Mokix,

_

Qak upon oak - -4

Elm upon oak -

Ash, fir, beech, wild pear-
tree, and service-tree,
upon oak

Iron upon oak - -

Cast-iron upon oak -

Copper upon ok -

Iron upon elm - -

Cast-Iron upun elm -

Black dressed leather |
upon oak

Tauned leather upon oak

Tanned Jeather upon cast- |
iron and brass

I ditto

FRICTION.

Tavrre IL

Disposition of
the Yibres.

paraliel

perpendi -
cular

ditto

wood  end-
:'l)- 8 Qn
wood
length-
ways
para.!lcl
perpendi-
cular
parallel

ditte

ditte {
[
1

ditto

ditto

ditto
ditto

ditto

ﬂat or
lenyth-
ways and
edgeways

: with water

i
: ditto l’
L

State of the
Surtaces.

without
unguent

rubbed with
dry soap

steeped in
water

\vithmxt.
unguent

ditto
ditto
ditto

ditto

dittey
with water

rubbed with
dry soap
without
unguent
with water
ribbed with
dry soap }
without
lm[_,uent }

diten
ditey

ditto

dittn

without
unguent
steeped in
water
greased and
steeped in
water
with oil

e md e,

Co-efficient
‘of Frietion.

‘without !
unguent  f

019

043
045
025

026 to
040

062
026

0-21
049
O-a2
019
062

025
020

a-27

1o

)
=

Limiting
Angle of
Resist-

ance.

257 39

18 47

19 48
}21 49

i6 4
19 18
16 11
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|
,.{ 1 D f | Stateofthe {Coefficient I.fmilﬁn%
| . . . ik ta! o cien o
; Surfaces in Contact, t;:g'i’-’{.,',ﬁ,o mﬁf:ces.e ofo- Ie*ﬁt-'t'!ml-- ;gﬁi:t“
| =
ExrerivrErts oF M. Momix
— continuer,
: .
i without . o oot
!HemP, in threads or in parallel unguent } 032 e
| cord, upon oak p:g::d'- } with water 033 | 18 16
i Dak »
! 1ikm;:nd elm upon cast- parallel { witheut } 0-38 20 49
P unguent .
Wild pear-tree, ditto - | ditto ditto oH 23 45
}ron upon iron - - | ditto ditto 044 | 28 45°
| rir;a:pun cast-iron :1.11(1}1L ditto ditto o184+ | 10 18
| Casteiron, ditte - - | ditto ditto 015 | 8 32
“ upon brass - 1 ditto ditte 020 }11 19
! Brass { upon cast<iron - | ditto ditto 022 12 25
I upon iren - | ditto ditto oi6¢ | 9 6
| 7| greased in
‘ the usual
Oak, elm, yoke elm, wild ::;ly i 007to| f4 1
pear, cast-iron, wrought h ?wl,md, 008§ * 35
rom, steel, and moving ;| ditto < 28*
ng oil, soft
ane upon another, or on
theniselves it
| slightly
} greasy to 018 8 32
- the touech
; Valearcous  oolite  stone s without ¥
i upen ealeareous oolite } ditto, { unguent A
‘ Calcarcous stone, ealled 2
| muschelkalk, upon cal- ditto ditto 067 33 50
c taresus oolite
ammon brick upon eal- : i : |
! EENUUS oolite P ditto ditto 063 2
ak .
| eolite upon  calearecus { wood end-} ditto 038 20 49
. . . ways H
| g:.u)ught irom, ditto - | parallel ditto 09 | 3497
aleareons stone, called
nuschelkalk, upon mus- -] ditto ditto 038} 20 49
CChelka]k
alearcous  oolite stone i
upon muschelkalk ditto ditto 098 =
| “Pmunon brick, ditto. - | ditto ditto 060 | 30 58
Oak upon muschelkalk - { wood end«} ditto 038 20 49
ways
. ditto 24
fon upon muschelkalk - | parallel safumd 030 16 42
with water
_
* The surfac

| es wear when there is no greass. . .
1 The surfaces still retaining a little unctuousbess. t Ibid. .

§ When the grease is constantly renewed and uniformly distributed, this pro-
Pertion ean be redueed t 005,



Surfaces in Contact.

Cast-iron axles
in  cast-irong
bearings

——

Cast-iron axles, 4
ditto

!

Cast-iron axles
in lignum vitx 4
bearings

Wrought-iron J
axles in cast-
iron bearings l

Iron axles in l

brass bearings

bearmgs
Brass axles in

brassbearmgs
Brass axles in

cast-iron bear-

FRICTION.

TasLe 1I1.

Friction of gudgeons or axle ends, in motion, upon their bearings.
(TFrom the experiments of Morin, )

State of the Surfaces.

Co-efficient of Friction when

the {irease is rencewed.

In the usual

]
|
| Centinuously,
i

Way,
coated with oil of |
olives, withhog's |
lard, tallow, and 007 t0 008 0054
soft pom
with the same, "
and water Jl 008 028
voated with as- Y
phaltum } 0054 o-1e
greasy 0-14 - -
greasy and wetted 014 - -
coated with oil of
olives, with hog’s o
lard, tallow,and o 07 to 008 0051
soft rom i
| reasy Q16 { - -
| greasy and damped 018 *
searcely rreasy o019 *
without unguent LN ] - -
i with oil or hog’s
lard } - - Q090
| greasy with ditto 0-10 - -
: greasy, with a
mixture of hog’s
lard and molyh- 014 - .
i dana
’ coated with il
of olives, tallow, .
hogs lard, op | (O°O7to 008 0054
soft pom
[! coated with oil of
olives,hog’slard, | L 007 to 0:08 0054
or tallow
coated with hard
i Voo |- -
sreasy and wetted ol - -
scarcely greasy 025 *
coated with o, 01
or hog’s lard - "
greasy 0-19 - -
coated with oil Q10 - -
with hog's lard 009 - -
Coated with oil
or tallow } - = 1004510 04052

lngs

Tron axles in7 i
lignum vite

* "The surfaces begmmng to wear,

A

r-—/\—~
W o e =X -1

- —
[ W T e Pt B

— r—t—
—
1D B R D G WA G ~

=
L

hotn

w
To1 Sy > e &

5

W

@
o s S

e
W

L

(3

5
-

Limiti ng
Angle of
: Fesistance.

8
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Co-efficient of Friction when
the Grease is renewed. -
o Kinduog
Surfaces in Contact, | State of the Surfaces. uge
In t{x‘?;;?ual Continuously. Resistance.
Lignum vt coated with hog's 012 - - & 51
axles, ditto lard
. greasy 015 - - g 82
Lignum  vite
axles in lig- | [ coated with hog's
nym vite lard } - - 007 + 0
bearings

Tamie IV,

Co-efficicnts of friction under pressures increased continually up to the

limits of abrasion.

|
i
! Pressure per

Square Inch,
I

325 1b.

| Ll66ewt,

i 20

J 2733
66

1 300

T
366

t 400

“ 433

|

!

1

466
300
333
566
[0
633
6:66
7-00
733

From the experiments of Mr, G. Rennie.”

Co-efficients of Friction.

Wrought-iron | Wrought-iren

1 [

upon upan Steel npon Brss upon

Wrougpht-imn. CasE'mm, Cast-iron. Cast-iron.
140 174 166 157
250 275 -300 225
271 292 333 219
285 -321 340 214
297 329 *344 -2l
312 ‘333 347 215
*350 351 -351 208
376 353 353 205
376 365 *354 208
*395 *366 356 221
403 *366 357 223
409 367 *358 934
367 *359 234
367 -3617 235

-376 -403 ‘283
434 934 .
'235 .
332
* 278

* Phil, Trans. 1829, table 8. p.

159,
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THE RIGIDITY OF CORDS.

142, Tt is evident that, by reason of that resistance to de-
flexion which constitutes the rigidity
of a cord, a certain force or pressurt
must be ealled into action whenever
it is made to change its rectilineal
direction, so as to adapt itself to the
form of any curved surface over which
it is made to pass; as, for instance,
over the circumference of a pulley o
wheel.  Suppose such a cord to sustain tensions representéd
Yy by P, and Py, of which P} is on the point of preponderating,
! and let the frietion of the axis of the pulley be, for the pre-
sent, neglected. It is manifest that, in order to supply the

= force necessary to overcome the rigidity of the cord and te
i produce its deflexion at B, the tension P; must exceed Pa
! whercas, if there were no rigidity, P, would cqual Pas 0
: that the effeet of the rigidity in inereasing the tension i
the same as though it had, by a certain quantity, increased
the tension Po. Now, from a very numerous serics of ex-
periments made by Coulomb upon this subjeet, it appeas
that the quantity by which the tension P, may thus be cot
sidered to be inereased by the rigidity, is partly constant
and partly dependent on the amount of 1’,; so as to b[‘:
represented by an algebraical formula of two terms, o1 Oi_
which is a constant quantity, and the other the product of
a constant quantity by P,.  Thus if D represent the constant
part of this formula, and E the constant factor of Py, then ¥
, the effect of the rigidity of the cord the same as though the

tension Py were increased by the quantity D+ E . Py

‘When the cord, instead of being bent, under different
pressures, upon cireular arcs of equal radii, was bent upo?
circular arcs of different radii, then this quantity D+ E.FPa

ST
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by which the tension P, may be considered to be increased
by the rigidity, was found to vary inversely as the radii of

the arcs ; so that, on the whole, it may be represented by
the formula

D+E. P .
~+~«—R—-_‘ c el (111,
where R represents the radius of the circular arc over which
the rope is bent. Thus it appears that the yielding tension
P, may be considered to have been increased by the rigidity

of the rope, when in the state bordering upon motion, 5o as
to become

This formula applies only to the bending of the same cord
under different tensions upon different circular arcs : for dif-
ferent cords, the constants D and T vary (within certain
limits to be specified) as the squares of the diameters or of the
circumferences of the cords, in respect to new cords, wet or
dry; in vespect to old cords they vary nearly as the power i
of the diameters or circumferences.

Tables have been furnished by Coulomb of the values of
the constants D apd E. These tables, reduced to English
measures, are given on the next page.*®

* The rigidity of the cord exerts its influence to increase the resistance
onlyat that point where the cord winds upon the pulley; at the point where
't leaves the pulley its elasticity favours rather, and does not perceptibly
affect, the conditions of the equilibrium, ' .

In &l calculations of machines, in which the moving power is applied by-

l:.he intervention of a rope passing over a pulley, one half the diameter of repe

ts‘ t0 be added 1o the radius of the pulley, or to the perpendicular on th‘.’:direc-
fon of the rope from the point whence the moments are megsured, the pressure
upplied to the rope producing the same effect as though it were all exerted
along the axig of the rope, .

* 7
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TasLe V. Ricginiry or RoPEs.

Talble of the values of the constants D and B, according (o the cxpertments
of Coulomb (reduced to English measures).  The radius R of the pudley &

io he taken in feel,
No. 17

circumierence.

Cirewinderence of

the Rope in Inches, Value of D in 1bs.

‘131528
526108
2104451
8413702

0 O

Ne. 2. New ropes dipped in water.
tional to the square of the circumference.

New dry cords. Rigidity proportional to the square of the

Value of E in Ihs.

|

033533
‘023030
07375
*368494

Circumference of .
the Rope in Inches. \ Value of D in lbs.

‘263053
1052217
4208902
16°835606

o e -

% Value of E in 1bs.
I

0057576
0230303
‘0781755
‘3684860

Rigidity propor-

ares of propot
Sqr,‘ilam of lihc i
termediate €T
cumferences 10
those of the
tabie,

Propor- | Squares I

tions

———

Y 100

S S 141
13 i
13 re
i 19
13 | ®
16 v l
11 By
16 334
15 | s
20 9

L A—

No. 3. Dry half-worn ropes. Rigidity proportional to the square 100t

Circumference of

of the cube of the circumference.

i I
the Yope m Incles, i, Value of D in lbs, | Value of B in 1be.

1 146272
P) 413656
4 1:169641
8 3-308787

No. 4. Wetted half-worn cords.

0064033
‘0180827
‘0512115
‘1448238

Rigidity proportional | Lzerer |paxe®)

to the square root of the cube of the circumference.

Cireumference of .
the Rope in Inches, Value of 1) in Ibs.

Value of E in lbs.

292541
827328
2:339675
6616589

O e BD

! 006401
| o107

051212
‘ 144822

squereroptsof the
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ticns of the ¥
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cumferenee®
those O

]
b

e — ‘

S kil arrriert
I ToR SR T
-

&

)

A




THE RIGIDITY OF CORDS. 159

TarrLe VI
Tarred rope.  Rigidity proportional to the number of strands.

| Number of Strands,! Value of D in Ibs. l Value of E in lbs,

j 8 0°33350 0009305
e 15 017212 0021713
30 1'25204 0044983

Tp determine the constants D and B for ropes whose circumferences
are intermediate to those of the tables, find the ratio of the given circum-
ference to that nearest to it in the tables, and seek this ratio or proportion
in the first column of the auxiliary table to the right of the page. The
corresponding mumber in the second column of this auxiliary table is a
factor by whieh the values of D and E for the nearest eircumference in

the principal tables being multiplied, their values for the given circumfer-
ence will be determined.
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PART III.

THE THEORY OF MACHINES.

143. THE parts of a machine are divisible into those
which receive the operation of the moving power immediately,
those which operate immediately upon the work to be per-
formed, and those which communicate between the two, Of
which conduct the power or work from the mowing to the
working points of the machine. The first class may be called
RECEIVERS, the second oPERATORS, and the third comMmU-
NicaTors of work,

TrE TRANsMissTON OF WoRK By MACHINES.

144. The moving ppwer divides itself whilst it operates
in a machine, first, Into that which overcomes the prejudiciﬂz
resistances of the machine, or those which are opposed PY
friction and other causes wuselessly absorbing the work in it8
transmission.  Secondly, Into that which aqccelerates the
motion of the various moving parts of the machine; so long
as the work done by the moving power upon it exceeds t!lat
expended upon the various resistances opposed to the motiofh
of the machine (Art. 129.), Thirdly, Into that which over-
comes the wseful resistances, or those which are opposed to
the motion of the machine at the working point or points
by the useful work which is to be done by it. Thus, then:
the work done by the moving power upon the moving points
of the machine (as distinguished from the working poiﬂts}
divides itself in the act of transmission, first, Into the work
expended usclessty upon the frietion and other prejudicial
resistances opposed to its transmission, Secondly, Into that
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accumulaled in the various moving elements of the machine,
and reproducible. 'Thirdly, Into the useful work, or that
done by the operators, whence results immediately the useful
produets of the machine.

145. The aggregate number of units of useful work yielded
by any machine at its working points is less than the num-
ber received upon the machine directly from the moving
power, by the number of units expended upon_the prejudzfcial
resistances and by the number of wunits accumulated in the
moving parts of the machine whilst the work iz betng done,
Yor by the principle of vis viva (Art, 129.), if ZU, represent

the number of units of work received upon the machine

immediately from the operation of the moving power, Zu
the whole number of such units absorbed in overcoming the
prejudicial vesistances opposed to the working of the ma-
chine, SU, the whole useful work of the machine (or that
dote by its operators in producing the useful effect), and
1

%zw(@a-z__@lg) one-half the aggregate difference of the vires

Vivae of the various moving parts of the machine at the
commencement and termination of the period during which
the work is estimated, then, by the principle of vis Viva
{E‘quation 108),

SU,=SU, + Su+ 2-152@0@3_..@3) e {112);

i which v, and v Tepresent the velocities at the co:iunenc?-
ent and termination of the period, during which the work is
estimated, of that moving element of the machine whose
Weight is w, Now one-half the aggregate difference of the
*ites vivee of the moving elements represents the work acc-
mulated in them during the period in respect to which the
work is estimated (Art. 130.). Therefore, &c.

M
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146. If the same velocity of every part of the maching e
turn after any period of time, or if the motion be periodical;
then is the whole work received upon it from the moving power
during that time exactly egual {o the sum of the useful work
done, and the work cxpended upon the prejudicial vesistanees
For the velocity being in this casc the same at the com
mencement and expiration of the period during which the
work is estimated, Sw(e,*~v,?)=0, so that

EU]‘:EUQ'I"EM ¢ o n s s (113).
Therefore, &c,

The converse of this proposition is evidently true.

147. If the prime wmover in a machine be throughout the
motion in equilibrium with the useful and the prejudf:ml
resistances, then the motion of the machine is wuniform
For in this case, by the principle of virtual velocities
(Axt, 127.), EUi=2U,;+3Swu; therefore (cquation 112)
2o > —»")=0; whence it follows that (in the case sup-
posed} the velocities #, and v, of any moving clement of the
machine are the same at the commencement and termin-
ation of any period of the motion however small, or that
the motion of every such element is a uniform motion
Therefore, &ec.

The converse of this proposition is evidently true.

Tur Mopourus or A MACHINE MOVING WrTH A UNIFORM
OR PERIODICAL Mo7tioN.

148, The modulus of a wmackine, in the sense in which the
term és used in this work, is the relgtion between the work
constantly done upon it by the moving power, and that
constantly yielded at the working points, when it has at-
tained a state of uniform motion, if o admit of such a state
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of motion ; or if the nalure of ils motion be periodical, then
is its modulus the relation between the work done at its
moving and at ils working points in the interval of itme
which it occupics in passing from any given velocity to the
same velocity again,

The modulus is thus, in respect to any machine, the parti-
cular form applicable to that machine of equation 113, and
being dependent for its amount upon the amount of work Zu
expended upon the friction and other prejudicial resistances
opposed to the motion of the various elements of the ma-
chine, it measures in respect to each such machine the loss
of work due to these causes, and therefore constitutes a true
standard for comparing the expenditure of moving power ne-
cessary to the production of the same effects by different ma-
chines : it is thus a measure of the working qualities of ma-
chines, *

Whilst the particular modulus of every differently con=
structed machine is thus different, there is nevertheless a
general algebraical type or formula to which the moduli of
machines are (for the most part and with certain modifications)
referable.  That form is the following,

U,=A.U,+B.S .....(114),

where U, is the work done at the moving point of the
machine through the space S, U, the work yielded at the
working points, and A and B constants dependent for their
value upon the construction of the machine ; that is to say,
upon the dimensions and the combination of its parts, their
weights, and the co-efficients of friction at their various
rubbing surfaces,
It would not be difficult to establish generally this form of
the modulus under certain assumed conditions. As the mo-
ulus of each particular machine must however, i this work,
¢ discussed and determined independently, it will be better
to refer the reader to the particular moduli investigated in the

¥ The properties of the modulus of a machine are here, for the first
hmE, discugs EERL

M2
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following pages. He will observe that they are for the most
part comprised under the form above assumed; subjeet to
certain modifications which arise out of the discussion of cach
individual case, and wlich are treated at length.

149, There is, however, onc important exception 1o this
general form of the modulus, it occurs in the case of ma-
chines, some of whose parts move immersed in fluids. It
only when the resistances opposed to the motion of the parts
of the machine upon one another are, like those of friction,
proportional to the pressures, or when they are constant Ie-
sistances, that this form of the modulus obtains, If there be
resistances which, like those of fluids in which the moving parts
are immersed (the air, for instance), vary with the veloeity of
the motion, and these resistances be considerable, then must
other terms be added to the modulus. 'This subject will be
further discussed when the resistances of fluids are treated of:
It may here, however, be observed, that if the machine move
uniformly subject to the resistance of a fluid during & given
time T, and the resistance of the flujd be supposed to vary
as the square of the velocity V, then will the work expended
on this resistance vary as V2, 8, or as V2. T, since 3=V T
If then U} and U, represent the work done at the moving and
working points during the time T, then does the modulus
(equation 114) assume, in this case, the form,

Uy=A. U+B.V.T+C. V3. T ..... (l15)

Tre MopuLus oF A MACHINE MOVING WITH AN ACCELE-
RATED OR A RETARDED MoTION.

150. Tn the two last articles the work U,, done upon the
moving point or points of the machine, has been supposed to
be just that necessary to overcome the useful and pre.]'udiciﬂl
resistances opposed to the motion of the machine, either coR-
tinually or periodically ; so that all the work may be eX-
pended upon these resistances, and none accumulate in the
moving parts of the machine as the work proceeds, or else
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that the accumulated work may return to the same amount
from period to period. Let us now suppose this equality to
cease, and the work U, done by the moving power to exceed
that necessary to overcome the useful and prejudicial resist-
ances ; and to distinguish the work represented by U, in the
one case from that in the other, let us suppose the former
{that which is in excess of the resistances) to be represented
by U'; also let U, be the useful work of the machine, done
through a given space S, and which is supposed the same
whatever may be the velocity of the motion of the machine
whilst that space is being described ; moreover, let S, be the
space described by the moving point, whilst the space S, is
being deseribed by the working point.

Now since U, is the work which must be done at the
moving point just to overcome the resistances opposed to the
motion of that point, and U is the work actually done upon
that point by the power, therefore U'—U, is the excess of
the work done by the power over that expended on the re-
sistalices, and is therefore equal to the work accumulated in
the machine (Art. 130.); that is, to one half of the increase
of the vis viva through the space S; (Art. 129.); so that, if
) Tepresent the velocity of any element of the machine
(whose weight is ) when the work U! began to be done,

and v, its velocity when that work has been completed, then
(Art, 120,

. |
U‘-—Ul':é;ﬁw(vg*—v,’).
Now by equation (114) U, =AU, + BS,,
1 ;
ar U]=A-U2+B.Sl+ 2’?9273(1’9‘!—”1‘) LI (116)‘

If instead of the work U’ done by the power exceeding that
,Ul expended on the resistances it bad been less than it, then, °
Wstead of work being accumulated continually through the
SPace 3,, it would continually have been lost, and we should
have had the relation (Art. 129.), -

1 s
U,—Ulzgg'zw(t_’zn—ﬂz')s
M3
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so that in this case, also,
1 ,
-1, :Qéﬁw(vf—@{-).

The equation (116) applies thercfore to the case of a 16
tarded motion of the machine as well as to that of an acee-
lerated motion, and is the general expression for the modulus
of a machine moving with a variable motion. Whilst the
co-efficients A and B of the modulus are dependent wholly
upon the friction and other direct resistances to the motiol
of the machine, the last term of it is wholly independent of
all these resistances, its amount being determined solely by

the velocities of the various moving elements of the machines
and their respective weights.

THE VevLocity or A MACHINE MOVING WITH A VARIABLP
MoTioN.

161, The velocities of the different parts or elements of
every machine are evidently comnceted with onc another by
certain nvariable relations, capable of being expressed by
algebraical formule, so that, although thu,e relations are
different for different machines, they are the same for all
circumstances of the motion of the same machine. In a great
number of machines this relation is expressed by a constant
ratio, Let the constant ratio of the velocity »; of any element
to thut V) of the moving point in such a wmachine, be repre-
sented by A, so that »;=a V), and let ¢, and V, be any other
values of #y and V3 then v,=2V,  Substituting these values
of v; and », in equation (116), we have

1
U*:-_A.UQ+B.SI+2—£}(V;*V1‘A)2W@ e .. (117

in which expression Zwa? represents the sum of the weights
of all the moving elements of the machine, each heing mul-
tiplied by the square of the ratio A of its velocity to that of
the point where the machine receives the operation of its
moving power, For the same machine this co-cflicient Td’
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is therefore a constant quantity. For different machines it
is different. It is wholly independent of the useful or pre-
judicial yesistances opposed to the motion of the machine,
and has its value determined solely by the weights and dimen-
sions of the moving masses, and the manner in which they
are connceted with one another in the machine.
Transforming this equation and reducing, we have

U'—A.U,—B;.S
L R e RN LY

by which equation the velocity V, of the moving point of the
machine is determined, after a given amount of work U’ has
been done upon it by the moving power, and a given amount
U, expended on the useful resistances ; the velocity of the
moving point, when this work began to be done being given
and represented by V..

It is cvident that the motion of the machine is more
equable as the quantity represented by Swa? is greater. This
quantity, which is the same for the same machine and differ-
ent for different machines, and which distinguishes machines
from one another in respect to the steadiness of their motion,
independently of all considerations arising out of the nature
of the resistances useful or prejudicial opposed to it, may
with propriety be called the CO-EFFICIENT OF EQUABLE MO~
ToN.*  The actual motion of the machine is more equable
as this co-efficient and as the co-efficients A and B {sup-
Dosed positive) aro greater.

To pErERMINE THE Co-EFFICIENTS OF THE MoDULUS OF
A MacHINE.

15_9- Let that relation first be determined between the
"Moving pressure Py upon the machine and its working pressure
Py, which obtains in the state bordering upon motion by the

] * The co-efficient of equable motion is here, for the first time, itro.
"eed into the consideration of the theory of machines. '
M4
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prependerance of Py, This relation will, in all cases where
the constant vesistances to the motion of the machine in-
dependently of P, are small as compared with Py, be found
to be represented by formulse of which the following s the
general type or form: —

Pi=Py o +dy .. ... (L19);

where @, and b, represent certain functious of the friction
and other prejudicial resistances in the machine, of which the
jatter disappears when the resistances vanish and the former
does not; so that if &,@ and &,© represent the values of
these fumctions when the prejudicial resistances vanish, then
$, D=0 and &= a given finite quantity dependent for
its amount on the composition of the machine. Let P@ re-
present that value of the pressure P; which would be n
equilibrium with the given pressure P, if there were 10
prejudicial resistances opposed to the motion of the machine.
Then, by the last equation, P, =P, ¢ @,

But by the principle of virtual velocities (Art, 127.), if we
suppose the motion of the machine to be wniform, so that
Py and P, are constantly in equilibrium upon it, and if we
represent by 5, any space deseribed by the point of applica-
tien of Py, or the projection of that space on the direction of
P; (Art. 52.), and by S, the corresponding space or pro-
jection of the space described by Py, then P,® .8, =F,. Sa
Therefore, dividing this equation by the last, we have

. P
Bim g - oo e - (120,

Multiplying this equation by cquation (119),
J ) ) [ &, ]] oy . .
P5 - bi ﬁPQ. b-g . {(DI(O)} +891W6)J :P_.z . b i‘m} + E’l .(]73,
{

P
U‘:iii’i(—") R T A ¢ 11 )

which is the modulus of the machine, so that the constant A 10

; . i
cquation{114)is represented by (bﬂl"}’ and the constaut B by P
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The above equation has been proved for any value of B,
provided the values of P, and P, be constant, and the motion
of the machine uniform ; it evidently obtains, therefore, for an

exceedingly small value of S,, when the motion of the machine
is variable,

GuxeralL CONDITIOR OF THE STATE BORDERING UPON
MorioN 18y a Bopy ACTED UPON BY PRESSURES IN THE
SAME PLANE, AND MOVEABLE ABOUT A CYLINDRICAL AXIS.

153, If any number of pressures Py, Py, Py, &c. applied in the
same plane to a body moveable about a cylindrical axis, be
in the state bordering wpon motion, then is the direction
of the resistance of the axis inclined to its radius, at the
point where it intersects the circumference, at an angle equal
to the limiting angle of resistance.

For let R represent the resultant of P,, Py, &c.
Then, sinee these forces are supposed to be upon
1) the point of causing the axis of the body to turn-
'/ upon its bearings, their resuitant would, if made
. to replace them, be also on the point of causing the
¥ axis to turn on its bearings. Hence it follows

that the direction of this resultant R cannot be
fﬁ?tma-g/b the centre C of the axis; for if it were, then the
4%1s would be pressed by it in the direction of a radius, that
'S, perpendicularly upon its bearings, and could not be made
to turn upon them by that pressure, or to be upon the point
of turning upon them. The direction of R must then be on
one side of C, so as to press the axis upon its bearings in a
direction RY, inclined to the perpendicular CL (at the point
4 where it intersects the circumference of the axis) at a cer-
tin angle RILC, Moreover, it is evident (Art. 14L.), that
Sice this foree R, pressing the axis upon its bearings at Liis
Ubon the point of causing it to slip upon them, this in-
cination RLC of R to the perpendicular CL, is equal to the
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N limiting angle of resistance of the axis and s bearings.*
B Now the resistance of the axis is evidently cqual and oppo-
e site to the resultant R of all the forces P, P,, &e. impressed
upon the body. This resistance acts, therefore, in the direc-
tion LR, and is inclined to CL at an angle cqual to the
limiting angle of resistance, Therefore, &e.

Tur WHEEL axp AXLE.

T 154, The pressures P, and P, applied vertically
by means of parallel cords to @ wheel and axle
are in the state bordering upon motion by the
preponderance of Py, it ¢s required fo deter-
mine a relalion between Py and Py

The direction LR of the resistance of the axis is on that
_ side of the centre which is towards P, and is inclined to th_e
. ﬁ perpendicular CL at the point L, where it intersects the axis

':F“‘“"” at an angle CLR equal to the limiting angle of resistance.
Let this angle be represented by ¢, and the radius CL of the
axis by p; also the radius CA of the wheel by @), and that
CB of the axle by as; and let W be the weight of the wheel
aud axle, whosc centre of gravity is supposed to be C.  Now,
the pressures Py, Py, the weight W of the whecl and axle, and
the resistance R of the axis, are pressures in equilibrium.
Therefore, by the principle of the equality of moments
(Art. 7.), neglecting the rigidity of the cord, and cobsetving

that the weight W may be supposed to act through C, we
have,

P,.CA=P,. CB+R . Cnm.
: If, justead of P, preponderating, it had been on the point

* The side of C on which RL falls is mwanifestly determived by t'h.e
. direction towards which the motion is abount to take place. In this case it
o is supposed about to take place to the right of C. If it had been to the
: r . left, the direction of R would have been on the opposite side of C.
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of yielding, or P, had been in the act of preponderating, then

R would have fallen on the other side of C, and we sh'tfl_lld
have obtained the relation P, . CA=P; . CB—R . Cm;

being taken according as ) is in the superior or inferior state
bordering upon motion.

New CA=aqa,, CB=a,, Cm=CL sin. CLR =psin. ¢, and R
=P, +P,+ W, the sign + being taken according as the
weight W of the wheel and axle acts in the same direction
with the pressures ', and Py, or in the opposite direction;
that is, according as the pressures P, and Pp act vertically
downwards (as shown in the figure) or upwards;

[ Plal :Pgﬂg*!- (Pl + Pgi W)P gin. ?,
= Pa;—psin. ¢) =Pglag +p sin. 2)+ Wp sin. ¢.

Now the effect (Art. 142.) of the rigidity of the cord BP,

is the same as though it increased the tension upon that cord

from P, to (PQ+D—+§2'—PE) : allowing, therefore, for the

rigidity of the cord, we have finally

P . .
P\(a)~p sin, )= (PQ + D—+a—12—~—£) (@ +p sin. ¢) + Wpsin. ¢,

or reducing,

D . :
H D+ —+W Sin. @-
P1:P3(1+E Ggtpsin- ¢ (“f‘ f .. (122),

a-g a]_-P Sin. ? al—'F Sil‘l. @

which is the required relation between P, and Py in the state
bordering upon motion. '

Efl sin. ¢ and 5; sin. ¢ are in all cases exceedingly small ;

W may therefore omit, without materially affecting the re- °
sult, all terms involving powers of these quéntities above the
first ; we shall thus obtain by reduction

Rb () g (L) 2] 1 (it o o] 00
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155, The modulus of wniform motion in the wheel and axle.

It is evident from equation (122), that, in the case of Fhe
wheel and axle, the relation assumed in equation (1 14) obtains,

. i a2+95m ¢
s if we take ¢1:(1+a2)a1-—,ﬁ s o’
D+ (&;-_!-W)p sin, ¢

3

and &, =

—p s P
Now observing that ®,(® represents the value of &, when
the prejudicial resistances vanish (or when ¢ =0 and E=0),

we have (blm):'
43]

ot ap datpsin.g E +( ) —
b q)w)—(l ag’ @y —psin.p ( )sm-fP
491
Therefore by equation (121), ‘
S Ok I e I
1— (E;) sin.g f

which is the modulus of the wheel and axle.

Omitting terms involving dimensions of :* sin, ¢, and

. E
(%sm.q), and — above the first, we have

—Utl-l- +(al+—)psm ) + (]+ + )p sin, ¢}..(125)’

- 156, The modulus of variable motion in the wheel and axie.

1 If the relation of P, and P, be not that of either state
o bordering upon motion, then the motion will be continually
- accelerated or continually retarded, and work will continually
accumulate in the moving parts of the machine, or the work
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alrcady accumulated there will continually expend itself un- -
til the whole is exhausted, and the machine is brought to
rest. The general expression for the modulus in this state
of variable motion is (equation 116)
U'=AU.+BS, +g§§2w(ﬂaﬂ—”{’)‘
Now in this case of the wheel and axle, if V, and V re-
. _ present the velocities of P, at the
\ r——" commencement and completion; of
A \l the space S,, and 2 the angular ve-
a + 15, locity of the revolution of the wheel
i lf‘j and axle; if, moreover, the pres~
1 | sures P, and P, be supposed to be
! supplied by weights suspended from
the cords ; then, since the velocity of

v
P, is represented by %*‘, we have

2

.. Zwodt=P,V} +Pg(ggﬁ) + a1y
tatugly, if 1) represent the moment of inertia of the revolv-
ing wheel, and Iy that of the revolving axle (Art. 75.), and
if 4y represent the weight of a unit of the wheel and pg
of the axle; since Zwoy® represents the sum of the weights
of all the moving elements of the machine, each being mul-
tiplied by the square of its velocity, and that (by Art. 15.)
'."21”']]:: represents this sum in respect to the wheel, and a®u,1;
In respect to the axle, Now, V,=aa,, S

g | I
< a’:g_:s e 2’!!?‘!119‘-: 1V?+%V]9+%Yl_’*% 1=

. Pial®+ Poa® + ]y + poly
vp, [Retrle ppates }-

- 2+ ‘ ] -
Smularly E'ng, ___..‘V'g% { P[G|9 -+ Pﬂ;l:*'ﬂlll TP‘IQ} H |
) { Pia? -!PP_Z': + ply + -"'%Ii} '

L § -

Ew(%ﬂ_vlﬂ):(vga_vla

1 SubstitUting in the genergl.e_xpre'agimj(.équation 116}, we .:': :
layve ' . Pl L Lo
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1 P2, + Pyas® + ]y + pal -
U'=AU,+ BSI+2§(V22—V1’2){J£J%"Mﬁl'}ﬁﬁ]' - U8

a®
which is the modulus of the machine in the state of variable
motion, the co-efficients A and B being those already de-
termined (equation 124), whilst the co-efficient
' . Pa®+ Poa? + 1 I , . :
T Pual+ _ﬁz{‘ﬁ_yﬁ £2°2 55 the co-efficient Swa? (equation
o 1
117) of eguable motion. Ifthe wheel aud axle be each of them
a solid cylinder, and the thickness of the whecl be by, and the
length of the axle b2, then (Art. 83.) T, =lubat, To=4nbats"
Now if W, and W, represent the weights of the wheet sud
axle respectively, then W, =xa,%b,, Wom=magbouy; there-
fore py 1y =3 Wia,%, ol =4Waae®. 'Therelore the co-efficient
of equable motion is represented by the equation

Suprm D0 Patg? + 3 W02+ §Wory

P — G]g »

2
S =P iWot (R 3Wo(57) ... (2D

157, To determine the velocity acquired through a giver
space when the relation of the weights P, and Py, suspended

Jrom a wheel and axle, s not that of the state borderity
upon motion,

Let 8, be the space through which the weight P, moves
whilst its velocity passes from V, to Vg ohscrving that

U'=P,S,, and that Uy=P,S8, = Qb;a—g—, substituting 10
1

equation 126, and solving

that equation in respect to Vg W
have

. P, —A. Pou,—B
V2=V24+200,8 {_,ﬁ‘;_ the Tale— DOy 8}
g 1 G qu12+P2a22+ff-111+}LQIg}- .. (12 )

making the same suppositions as in formula 127, and repré-

) . . O
A senting the ratio 2. P¥ m, we have
i !

_ P,—A.Pm—B
V2=V.2 {_;._1____2’” )
TV 295, (Pn+éW1)+(Pg+%W;j‘ei§“}‘
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Tue Puriey.

158. If the radius of the axle be taken equal to that of the
wheel, the wheel and axle becomes a pulley.
Assuming then in equation 122, ), =ae=a,
we obtain for the relation of the moving
pressures P; and Py, in the state bordering
upon motion in the pullsy, when the strings
are parallel,

D
E 1+fsine| D+ (E:‘:W)pSiﬂ-P

P =P,14+= e -
' 9( +cz) 1—-£sin ¢ + e p 81D P
a .

. (129);

and by equation 124 for the value of the modulus,

D
I+_P-sin.:p D+(—+W)psin.p
U :U‘ E —L e * s 130 H
=t1+,) L i

Iu‘:;sin.cp

in which the sign + is to be taken according as the pressures
Pland P, act downwards, as in the first pulley of the preceding
figure ; or upwards, as in the second. Omitting dimensions

Of S‘n ® F sm. P and]i ahove the ﬁrst, we ha.ve by equa-

t}ons (123, 125)
Wy .

U=U [1 +E+2F sin, ‘P} %E{] + (?-+§)p sin. 45}. (132).

Also Qbsemng that a3 =dg, and Ig --0 the modulus ofvanable
motion (equation 126) becomes

U'=AU,+ BS + ﬁ(vga_vla){pﬁp;{;m Cee s (183),

and the velocity of varjable motion (“I“"““n 118, 127) ® ae-‘
termined by the equation -
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P,—-A.P,—-B
Pi+Py+W, jr e

in which two last equations the values of A and B arc thos
of the modulus of equable motion (equation 125).

Ve=V2+2¢8 {

SYSTEM OF ONE FIXED AND ONE MOVEARBLE PuLLEY.

159. In the last article {equation 131} it was
shown that the relation between the tensions Py
and P, upon the two parts of a string passing
over a pulley and parailel to one another, was
in the state bordering upon motion by the pre-
ponderance of P, represented by an expression
] of the form Py =aP,+5, where « and b are con-
®  stants dependent upon the dimensions of the

. pulley and its axis, its weight, and the rigidity
Pﬂ@j of the cord, and determined in terms of these
clements by equation 131; and in which ex-

pression b has a differcnt value according as the tension
upon the cord passing over any pulley acts in the same
direction with the weight of that pulley (as in the first pulley
of the system shown in the figure), or in the opposite direc~
tion {as in the second pulley): let these different vatues of b
be represented by b and b,. Now it is evident that before the
weight Py can be raised by means of a system such as that
shown In the figure, composed of one fixed and one move:
able pulley, the state of the equilibrium of both pulleys
must be that, bordering upon motion, which is deseribed in
the preceding article ; since both must be upon the point of
turning upon their axes before the weight P, can begin to be
raised. If then T and ¢ represent the tensions upon the two

parts of the string which pass round the moveable pulley, we
have

y
)

Ef

1

1
b3y
G

Py=aT +b, and T=at + b,

Now the tensions T and ¢ together support the weight Pa
and also the weight of the moveable pulley,

o T+t:Pg+W.
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Adding a'l' to both sides of the second of the above equa-
tions, and multiplying both sides by &, we have

' a(l +a)T =aX(T +1) +ab, = a*(Py+ W)+ ab,.

Also multiplying the first equation by (1 + ),

A +a)Pi=a(l +a)T + &1+ a)=a*(Py+ W)+ ab, + 51 +a),

)P2+--—~ 15 .. (185).

g

cop=(.Fa_
Pi= l+a

Now if there were no friction or rigidity, ¢ would evidently

0}

3 1
would become g5
a
the co-efficients of the modulus (Art. 152.) are thef"f‘f“m
. ____(53 @*W 4 5(1 + a) + ab; .
A—J(l +E)’ and B=——pr

become 1 (see equation 131), and Tq'_

i+a !
. a’ g Wbl 4+a)t+ab
o Ul :Q(Tn)Ue—i-‘—‘“*“l(‘;&’ )_—*”’IS]‘ » v+ B (136)’

which is the modulus of unifortm motion to the single move-
able pulley, *
) If this system of two pulleys had been ar-
EJ? ranged thus, with a different string passing over
I | each, instead of with a single string as shown in
] ﬁ the preceding figure, then, representing by ¢ the
4% tension upon the second part of the string to
: [ i which Py is attached, and by T that upon- the
~__ first part of the string to which P, is attached,

we have

=

-

-

Pi=at+b, T=aPy+d, Py+t+W=T.

Mﬂliiplying the last of thege equationé by a, and addmg it
to the first, we have Pyl+a)4+ Wa=Ta+ _b_::a"Pg-{- (14a)d;

':‘ The ]nodulus may be determined directly ﬁ‘()m equ'lﬁon v(ls‘s) ;'for i-t i‘
z\ldem that if 8, and 8, represent the spaces described. in the same time
Y Prand P,, then 8,=£8;. Multiplying both sides of equation (135) by
this equag_ion’ we have, P . s e

| R
P,s,me(%)p,sﬁ%%&;

"oW P\8,=U, and P,8,m U, therefore, &c.
H -
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@ Wa "
. .PI:(HJPQM—{M e (13T,

and for the modulus (equation 121),

. u . War aQ
LI:Q(I_’_(})LZ‘*’([J—I_F([)"HI LI R (LJS""

1t is evident that, since the co-cificient of the second term
of the moduius of this system is Jess than that of the first
system (equation 13G) {the (1liﬁl\tiliifs a and b Dbeing esseit
tially positive), a given amoant of work U, may be done b
a less expense of power Uy, or a miven weight Py muy be
raised to a given height with less work, by means of this
system than the other; an advantaze which is nof duc en-
tirely to the circumstance that the weight of the moveable
pulley in this case acts in furvour of the power, whereas in
the other it acts agaiest it ; and which advantage would exist

in a less degree, were the pulleys without weight,

A SYSTEM OF ONE PIXED AND ANY NUMBER OF MOVEABLE
PuiLreys,

T ’%*-J 160. Let there be a system of » moveable
“H i  puleys and one fixed pulley combined &
shown in the figure, a separate string passing
over cach moveable pulley ; and let the ten-
slons on the two parts of the string which passes
over the first moveable pulley be reprcsented
iz, by T, aud ¢, those upon the two parts of the
siring which passes aver the second by Ty and
foy &e.  Also, to simplify the calculation, Jet
all the pulleys be supposed of equal dimen

s%(;ns and weights, and the cords of cqual
rigidity ;

S T] :Gt1+b], a-nd T.2+W:r1‘| +t1 '
e @ ,
.. eliminating, Tl:(ijr&)Tg-}n Eﬁ;q:_-_b, e e (139)-
e
fl.ze; the co-efficients of this cquation be represented by #
and §;
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o Ty=al o+ 5.
Similarly, Ty =aTs+ 8, Ty=aT,+8, Ty=aT;+p, &c.=&e.,
T:e»—l :“TH + 83, T,; :ﬂPQ + ,B.

Multiplying these equations successively, beginning from
the sccond, by «, &%, &, &c., 2%, adding them together, and
striking out terms common to both sides of the resulting
equation, we have

Tl:tz'"Pg-i—ﬁ taf 3B+ .. 0. a8
or summing the geometrical progression in the second member,
. q?l —
TI:auPQ_*, ﬁ(&:l—') ..... (14‘{});

Substituting for = and B their values from equation (139),
and reducing,

T= (Ti—‘&)u Po+(Wa+by) { 1- (1___%5)“ } '
Now P,=oT,+6;

. a 2 a n

: -PIT«CL(IIE) Po+a(Wa+1) { 1- (1 +f—1> } +b ... (141)
Whence observing, that, were there no friction, a would

become unity, and (ﬁ d)ﬂz (é)” We have (equation

121) for the modulus of this system,

Za \» a \*
U] ::a(vl—_g Ug+ {a(Wa“}'bl){l - (m) } +b}Sl vea (14‘2).

161. If each cord, instead of having one of its
extremities attached to a fixed obstacle, had been
connected by one extremity to a moveable bar
carrying the weight Py to be raised (an arrange-
ment which is shown in the second figure), then,
adopting the same notation as before, we have

ﬂ Ty=at,+b, ate+b=Ty ~Te=Ti+t+W.

Adding these equations together, striking out
L. terms common to both sides, and solving in re-
@ spect to Ty, we have

N 2

W
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« 1 .
‘1:<r}- 41) = (}L + 1) W

in which equation it is to be observed, that the symbol b does

not appear ; thatelement of the resistance, (which Is constaﬂts‘)
affecting the tensions f; and ¢, equally, and theretore elimi-

«
WA nating with Ty and Ta.  Tet Pl be represented by 2 then

&
1-,::41‘9-—-9'(“7. Similarly, f,=afy~ W,
4 d f L. (143)-

2% -
tazﬂf.l_ fL‘V’ &C. :&C., tu——{:d‘(?t‘— a‘f‘i’

Eliminating between these equations preciscly as between

the similar equations in the preceding case (equation 140},

. ohserving only that here § is represeuted by —2W, and that
the equations {143) are n—1 in number instead of n, We have

i aW ran—t__1
tlza""‘lt"—“a*( R ) EEIPIR (1443.
Also adding the preceding equations (143) together, we have

aW
Wttt oo Hta=allattyg+ oL )~ (e

Now the pressure Py is sustained by the tensions fi fe
&c. of the different strings attached to the bar which carries
it.  Including in Py, therefore, the weight of the bar, we have

o tl+t9+ =’ +tﬂ-—1+tn:P2; . {1+tg+ .u +tu-'f:1)‘2~ ﬂ;
and b4 ... HE, =Pt

\id
oo Pyt =a(Po—t))— (n—1 ”_‘};_.

W
= (l—a)Py+at +n— 1)% :
o Substitating this value of ¢, in equation (114),

) H ﬂ—l__l
h=(1— &) 1Py + atty + (n— 1)‘,"__W aWar—l—

. a g a=—1

i . -
Frausposing and reducing,
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: w [ —an
1=ty =(1 —a)a™1Py 4+ - {nu"-—ufl)—-i } H

-
=z W] nan u}
I B gl B P el
] —e)an—l a—1—1
Now a=7 g e =1+ also s A ==
g1 att 1 1 @

a =a;
"dl—a a;

(il T =i (=T P =1
SR S ‘,’E{ S }
NF ey a1

Now P, —qt, +&;

B 7
PI:(I +(a"?)";f+\:, {(f—}'—_-ﬁf‘_);':l_a} +b...(145).
Whenee observing that when a=1, {(1+a~1)*—1 =23 —1,

we obtain for the modulus of uniform motion (equation
121y,

h= {(Tﬁ?;——l.;a__l}UQ-F [ (\;’) {(1_'_ d'jl),;;l-—a} +b} S;... (146).

A TackLe oF axy NUMBER OF SHEAVES,

162. If any number of pulleys (called in this case sheaves)be
made to turn on as many different centres in the same block A,
& and if in another block B there be similarly placed as
+=%=2 many others, the diameter of each of the last being
i one half that of a corresponding pulley or sheave in
|4 the first; and if the same cord attached to the
(. first block be made to pass in succession over all
§%;| the sheaves in the two blocks, as shown in the
1o | figure, it is evident that the parts of this cord 1, 2,
3, &c. passing between the two blocks, and as
¥l{ many in number as there are sheaves, will be pa.
% igrallel to each other, and will divide between them

"W the pressure of a weight P, suspended [rom the .

. lower block : moreover, that they would divide R
* this pressure between them equally were it not
; N3 o
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for the friction of the sheaves mpon  their bearings and
the rigidity of the rope; so that in this case, if there were

1
n sheaves, the tension upon each would be q’lpgi and a

pressure P, of that amount applied to the extremity of the cord
would be sufficient to mainftain the equilibrium of the state
bordeting upon motien.  Let Ty, Ty, Ty, &e. represent the ae-
tual tensions upon the strings in the state bordering on motion
by the preponderance of I', beginning from that which
passes from Py over the largest sheaf; then

Pi=a T+ by Ty=maa Ty by To—ag T+ ba
&eo=&e., T, _y=a, T, +0,;

where ayy @y, &¢,, fy, by, &ec., represent certain constant c0-
cificients, dependent upon the dimensions of the sheaves and
the rmgidity of the rope, and determined by equation (131)
Moreover, since the weight P, is supported by the parallcl
tenstons of the different strings, we have

P1:T1+TQ+. P +'1‘7¢'

It will be ghserved that the above equations are one more
in number than the quantities T, T, T, &e.; the latter may
therefore e climinated among them, and we shall thus ob-
tain a relation between the weight P, to he raised and that

- Py necessary to raise it, and from thenee the
modulus of the system,

To stmplify the caleulation, and to adapt
it to that form of the tackle which is com-
monly in use, let us suppose another at-
rangement of the sheaves. Instead of thet!
being of different diameters and piaced all
m the same plane, as shown in the last
figure, lot them bhe of egual diameter and
placed side by side, as in the acmmpanying
e fii_fi.n'o.‘, whick represents the common ackle.
r,A\.\._‘f'} Fhe iuconvenionce of this last wode of ar

_y (V_J,_J rangement s, that the cord has to pass from
~ ~~ the plane of a sheaf in one black to the plane
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of the corresponding sheaf in the other obliguely, so that
the parts of the cords between the blocks are not truly
parallel to one another, and the sum of their tensions is not
truly equal to the weight Py to be raised, but somewhat
greater than it.  So long, however, as the blocks are not very
near to one another, this deflection of the cord is inconsider-
able, and the error resulting from it in the calenlation may
be negleeted.  Supposing the different parts of the cord be-
tween the blocks then to be parallel, and the diameters of all
the sheaves and their axes to be equal, also neglecting the
influence of the weight of each sheaf in increasing the friction
of its axis, since these weights are in this case comparatively

small, the co-efficients @, @, @3 will manifestly all be equal; as
alSD bl} b% bS;

.. Pl:ﬁT1+b, leaTg“‘}‘b, TE:GT3+b, )
&C.:&c.’ Tﬂ-‘-]_:aTn“'b } LRI T I (14‘7) H
also Po=T 4+ Te+Ts+. .« .. + T,

Multiplying cquations (147) successively (beginning from
the second) by a, @7 @, and @*'; then adding them toge-
ther, striking out the terms common to both sides, and
summing the geometric scries in the second member (as in
equation 140), we have |

ar—1

B, :4:!."']:‘,1 -+ b_J:T'

Adding cquations (147), and observing that Ty+Te+

©+ « 4+ T,=P, and that Py+Ti+Tet. s+ 4 Tm= -
PH-PQ—T,,‘, we have |

P+ Po—To=aPs+nb.
Eliminating T, between this equation and the last,

a*=1.
Py=an{ P, —Pyla—1)~nb} +"b¢r—l '

; _aa—1) nba® b :
T b= =1 Pt i—a=1""""" (148).

To determine the modulus Jet it be observed, that, neg]ect;l.ng
. N 4
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friction and rigidity, @ becomes unity 5 and that for this vilue

aifa—1 < L. Tose value It
of a, a'—1 becomes a vanishing fractlon, whose vi

I )
determined by a well known methed to be e Henee (AT
152.9,

a'{la =11 bt

I3
T ; _ TN & 1))
U, =xn el Us+ Vo (.’——l}%l . (Lith

Hitherto no account has been taken of the work expended
in raising the rope which ascends with the ascending “'L‘ié%'hﬁ'
The correetion is, however, readily made. By Art. 6 3
appears that the work expended in raising this vope {ddifferent
parts of whicl are vaised diflirent heiglis) is precizely the
same as though the whole quantity thus raised had been
raised at ove lift through a height equal to that through
which its centre of gravity is actually raised. Now the cord
ralsed is that which may be conceived to lic between two
positions of P, distant from one another by the space Sy 50
that its whaole length is vepyesented by 28,3 and if p repre
sent the weight of each foot of it, its whole weight is repre
sented by pnS; 0 also its ceutre of gravity is evidently paised
between the first and second positions of P, by the distance
3553 so that the whole work expended in raising it is vepres

sented by junS,? or by %&”“l', since 8, =nS, Adding this

work expended in raising the rope to that which would be

¥ Dividing numerator and denominator of the fraction by (a—1)1t be-
Q’,.;:'J"_a%f*_“ |74y Which ovidently equals i when n=1. Tht
modulus may readily be determined from equation (146). Let S, and %
represent the spaces described by P, and P. in any the same time; theth
since when the Llocks are made to approach one ;mqtkv.:f by the distance
‘Sg, each of the » portions of the cord intercepted between the two blocks
is shortened by this distance 8y, it is evident that the whole length of cord
Intereepted between the two blocks is shortened by n%,; but the whole of
t?ﬁ” FOPd must have passed over the first sheat, thereﬁ;;e 8, =nd,  Mub
h?ﬁymg equation (1-48) by this erpration, and observing (hot U,=P%' and
Us= P8, we obitain the modutus as given above,

comes
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necessary to raise the weight Py, if the rope were without
weight, we obtain*
ala—1) nba® b i
T Y moa 2 K o ge
Ui=n at—1 Us+ {(L"——l_a-—l}' S‘+2n' Si# ... - (150),

which is the mopurLus of the tackle.

Tue MobuLus o A coMpouND MAcHINE,

163, Let the work of a machine be transmitted from one to
another of a series of movipg elements forming a compound
machine, until from the moving it reaches the working point
of that machine. Let P be the pressure under which the
work is done upon the moving point, or upon the first moving
element of the macline; P, that under which it is yielded
from the first to the sccond element of the machine; Pj, from
the secoud to the third element, &ec.; and P, the pressure
under which it is yielded by the last element upon the useful
Product, or at the working point of the machine. Then,
since cach element of the compound machine is a simple
wiachine, the relation between the pressures applied to that
elcntent when in the state bordering on metion will be found
to present itself under the form of equation (119) (Art. 152.),
i all cases where the pressure under which the work upon
cach element is donc is great as compared with the weight of
the}t clement (see Art. 166.).

Representing, therefore, by a1, ga-.- by, B By. ., certain
constants, which are given in terms of the forms and dimensions
of the several elements and the prejudicial resistances, we have

P:alP1+b|, Plzag].)g‘l'bg, Pl:ang';l-bsg
&e.==&e., P y=a.Pnt+bu
Eliminating the n—1 quantities P), Py, Pg.vvs Pp.yy be-
tween these n equations, we obtain an equation, of the form,

P=aP,+b . . . . . (151}

* A correction for the weight of the rope may be similarly applied to.
tht‘_ modulus of each of the other systems of puileys. The effect of: the .
«eight of the rope in incteasing the expenditure of work on the Jriction oF
the puileys js neglected as unimportant to the result. R
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where e =umaya; . . . 4, and } (150,
b=y . Gy by + @83« + Aysh ey + o+ @la 0,

If the ouly prejudicial resistance to which each clement is
subjected be conceived to be friction, and the limiting angle
of resistance in respeet to cach be represented by ¢ ; ther
considering each of the quantities ay, by, @, by 28 a function of?:
expanding each by Maclauwrin’s theorem into a series ascendllng
by powers of that variable, and ncglecting terms which 1n-
volve powers of it abeve the first, we have

) 5\ @
“1:‘31(0)+<d;<;) & b\:bi(())+((?;) B

(Ia () (Ib; v —Hap b
2p= a_z(ﬂ) +. (d;) (p, bg-'_:bﬂ(f)\l + (&?l> d¢’ &C. --?_\C. ]
where, @D, 5@, 2@, b0, represent the values of ¢y, & @

) 0}
by, &c., when =0 ang ((}‘ﬂ)(ﬂ' , (ﬁrb‘) , &c. repre-
dp de
sent the similar values of their first differential co-eflicients.
Let

da\ O ib,
d;) =y . g, ((Ilg)@:b""@'ﬁ" &e.=&e

Therefore a3 =a, ™1 4 a), b, =bO(148)), ag=a,(1 +as)s
ba= (1 +Bg),  &e.=Nc.; where @y, B, tg, Byy &eoy each
involving the factor ¢, are exceedingly small. Substituting
the values of a;, g &e. in the expression for g, and neglects

Ing terms which involve dimensions of ), ag, &, above the
first, we have

=0, . O b fagtagt ., .. . S (153)
Now the co-cflicient of the {irst term of the modulus is

represented (equation 121) by E?'%’ @ representing the ¢0-

t:efﬁcient of the first term of equation (119), also substitat-
ing the value of ¢ from equation (153), and observing that
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toy=a @ . a9 .. .. a,®, we have ;%)::{1 Fayt oot anl;

S U=l 4a +agtazt+ ... +a U, +5.8 . ... (154),
which is the modulus of a compound machine of n elements,
U representing the work done at the moving point, U,
that at the working point, S the space described by the

moving point, and b a constant determined by equation
(152).

164, Tz coNDrrioNs oF THE EQUILIBRIUM OF ANY TWO
PRESSURES P, AND P, APPLIED IN THE SAME PLANE TO
A BODY MOVEABLE ABOUT A FIXED AXIS OF GIVEN DIMEN-
SIONS,

In jfig. 1. the pressures P, and Py are shown acting
on opposite sides of
the axis whose centre
is C, and in fig. 2.
® ypon the same side,
Let the direction of
the resultant of P,
and P, be represented,
in the first case, by IR, and in the second by RL It

8 in the directions of these lines that the axis is, in the

two cases, pressed upon its bearings. Suppose the relation

between P, and P, to be such that the body is, in both
cases, upon the point of turning in the direction in which

P\ acts. This relation obtaining between Py and Py, it is

evident that, if these pressures were replaced by their re-

sultant, that resultant would also be upon the point of caus-

g the body to turn in the direction of P;. The direction

IR of the resultant, thus acting alone upon the body, lies,

thercefore, in the first cage, upon the same side of the centre

C of the axis as P, does, and in the second case it lies upon

the opposite side*; and, in both cases, it is inclined to the

* The arrows in the figure represent, not the directions of the

resullants, but of the resistances of the axis, which are opposite to the
Tesultants, i
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radias CK at the point K, where it intersects th.e axis at an
angle CKR, equal to the limiting angle of rcstst.ance (SCP
Ast. 153.5. Now, the resistance of the axis acts evidently 1n
both cases in a direction opposite to the resultant on 14
and Py, and is equal to it; let it be represented by R. .L'P”“
the divections of Py, Ty, and R, let fall the p(%rpendICUlm
CA,, CAg, and CL, and let them be rcpresenteﬂ% by ay, o
and . Then, by the principle of the cquality of moments,
since P, 5, and R arc pressures in equilibrium,
o P =P, + AR .

11P, had been upon the point of yielding, or P,on thc. pt)‘ﬁ}t

of preponderating, then R would have had its directiot {in

. N ne i ton
both cases) on the sther side of C; so that the last equat!
would have become

P[ﬂl + P\I{r: PQGQ'

- S s e i farior state
According, therefore, as 1 is in the superior or inferior s
bordering upon motion,

Pia, = Poay=(+ 1)K,
. . . ., ac
And 1f we assume X to be tuken with the sign + or—» 8

. . . . ¢-
cording as P, is about to preponderate or to yield, then §
nerafly

I”x(h—-P-._:ﬂ.z:}&}{ P (155)-

. . . .. - ant
Now, since the resistance of the axis is equal to the resull?

of Py and Py, if we represent the angle PU1Pa by % %
Lave (Art. 13)

R=vP2+2P Pycosi+ P,

Substituting this value of R in the preceding equation, and
squaring both sides,

(Piak'—PgQQ)Q: AQ(PIQ +2P1PQ Cos. + PQ ) H

* Care must be taken to measure thiz angle, so that I, and P, may

way bave their directions both fowards or both frone the angular [mintI

(s shown in the figurc), and ot one of them

towards that point and the
other from it.

Thus, ta the second figure, the jneljustion ¢ of the Pres
sures Py and P, is not the angie A TP,

. Uf
) < e the angle PV, It
impertance to observe this distinetion (sec note p, YO0
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transposing and dividing by Py,

(;‘)9(al-~_xz) —2(£l)(a1ag+ A" o i) = (a2 =AY ;

2 2

solving this quadratic in respect to (g-‘),

2
D1 (0102427 cos.a) = o/ 2y + 37 cos, 7= (@ =23 (a2 =A%)
1)‘2 al‘J —_—n
. Pl — (ﬂ]ﬁ!g + }\"\' CQSs. i) i A J(a‘gj__g_q_ﬁg?i)—s_fj—g—%‘it_ A‘l Sin_-f_l_
Py I Ja g ——

Now, let the radins CK of the axis be represented by p,
and the limiting angle of resistance CKR by ¢; therefore
A=CL=CK sin. CKR=psin. . Also draw a straight line
from A; to A, in both figures, and let it be represented by Li;

o —2a1a, cos, A CAy+ ag? =12 Now, sinee the angles at
A and A, are right angles, therefore the angles A;1A; and
A,CA; are together equal to tworight angles, or A;CAg+1==m;
therefore ACAy=%—4, and cos. A;CAg:=—cos. 1; therefore
Lﬂ:a{l-%f&alaq cos. +-+ag?: substituting these values of L2
and A in the preceding equation,
p={tp cos. csin. %) g sin. p (Lig? sin. 2si. 90 p (156,

{a,2—p2 sin, 29)
The two roots of the above equation are given by positive
and negative values of A, they correspond therefore {equa-
tion 135) to the two states bordering upon motion. Tht.ase
two values of A are, morcover, given by positive and negative
values of ¢ assuming therefore ¢ to be taken positively or
Tiegatively, according as P, preponderates or yields, we may
replace the ambiguous by the positive sign. The relation
above determined between P, and P, evidently satisfies the
conditiops of equation (119). We obtain therefore for the
modulus (equation 121)
Vie(%) | @oborcon. sin. o) (Lizmpt sin.tesin. 900 0 gy (5
W (a*—p sin. 2p) :

If terms involving powers of (&&) sin, ¢ above the first be
, A )

Beglected, that quantity being in all cases exceedingly small,
we haVe ) T
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p={ (44 )i e (39

L Ui:{l+(-"‘_L)sin.¢}Ul SRR § ¥574)3
- &y

; , CESHUTES
S 165. To determine the resultant R of any number of press N
. . and the cosi
' P, Py, Po- .o yin terms of those pressures, and the eos
of their inclinations to one another.

Tiet ay, #3, g &e. vepresent the il1c1iﬂ"i'“°;)IS

1 TAC, IBC, &e. of the several pressures P, ¥

) f} &c. to any given axis CA in the samc‘P}a‘ne‘

:'4—‘_"’“‘__” and let 1y, 10, 13, &e. represent the inclinations
©s of these pressures severally to one another.

o Now £ AIB=/21IBC— £IAC (Eue. I. 345

T

< QL. o2
e Top— ey 0, COS. 11T 008, @, CO8. g+ SI0, oy S
Similarly, cos, +,3=cos. #; cos. wy+ sin. «, sl %3
COB. 1y ==COS. @y COS. &+ sin. ey S10. &

Now R?=(D, cos. o, 4+ P, cos. a4 1% cos. azt - )S
Py (sin. o)+ Posin, 2 + Py sin. 2, 4. . ), (equation 9, Art. 1)

. . e the
Squaring the two terms in the second member, adding u
results, and abserving that cos. 2a, -+ sin. 2a, = 1,
RP=P2+ P2+ P2 ... +2P Pylcos «, cos.ayt sin.o sin. )
+ 2P P3 (cos. a; cos. oy +5in, &) sin. )+ « v o o5
RME PR EPRAL P + 2P, P, cos. i35+ 21 Py €05 ha
+ 2P Py cosi iz + &e. ... . (160).

* In which expression it is to be understood that the inclination Of\
the directions of any two forces is taken on the supposition that both the
forces act from or both act fowards the point in which they ingerseeh
and not one fowards and the other from that point;  so

N f.hat.. ™ the case represented in the accompanying figure, the
_ mclination v of the two forces P, and P, represented by the %
arrows, is not the angle P10, but the angle QIP,, since 1Q \
and. [P, are directions of these two forces, both tending from t]
. ) their poiny of intersection ; whilst the directions P,1 and 1P, are oné of
" them lowarde that point, and the other from it,
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168. 'Tur cONDITIONS OF THE EQUILIBRIUM OF THRER
PRESsURYES, P, Py, Py, IN THE SAME PLANE APPLIED TO
A BODY MOVEABLE ABOUT A FISED AXIS, THE DIRECTION
OF ONE OF THEM, Pj, PASSING THROUGH THE CENTRE OF
THE AXIS, AND THE SYSTEM BEING IN THE STATE BOR~
DERING UPON MOTION BY THE PREPONDERANCE oF Py

Let 11y 113, 133 represent the in-
clinations of the directions of the
. pressures P}, P, P; to one an-
\ other, e, and a, the perpendiculars
i) Iet fall from the centre of the axis

upon P; and Py, and A the per-
. pendicular let fall from the same
% " point upon the resultant R of

Py Py, Py Then, since R is equal and opposite to the re-
sistance of the axis (Art. 153.), we have, by the principle of
the equulity of moments, Pya,—~ P23 =AR, for P passes
througly the centre of the axis, and its moment about that
poiut therefore vanishes,

Substituting the value of R from equation (160),
Plal_—ljﬁll3=‘\{P}2+P22+P39+2P1Pg ¢o8. 13 +2P,P; cos. s+ 2P,P, Cﬁﬁ-‘ﬁ'}i
S‘lilal‘ing both sides of this equation, and transposing,

P02 = A1)+ 2P { Pyayaq + A*(P; €08, 119+ Pscos, 1g)} =

—Psag? + A P2 + Py + 2P, P; cos. i3}

If this quadratic equation be solved in respect to Py, and

terms which involve powers of A above the first be omitted, we

shall obtain the equation ‘
Pal=Paa 4y Pr(a7 + 2a,a;C08. g+ a2 )+ Do+ 2 P3P 30,(az CO8. tiaf- @ €08, 1} ;
O representing (as in Art. 168.) the line which joins the
feet of the perpendiculars, a, and a; by L, and the function

“ (,ai‘ €0S. 115+ @, €0S. igg) by M, and substituting for » its value
£ sln, 2y .

a i ] '
P~ (c:) P+ (%ﬁ){P{‘L“ + Pla2+ 2P, P M L (| (161).

* Tt will be shown in the appendix, that this equation is but a particular
¢45¢ of & more general relation, embracing the conditions of the equi-
hhr‘mm of any number of pressures applied to a body movabie about a
c¥lindrical axis of given dimensions. :




U P

192 AXES,

Representing (s in Art. 132} the value of Py when the
prejudicial resistances vanish, or when g =0, by Py, we have
P @@= (ET)PQ. Also by the principle of virtual veloeities
Py® .8, =P;. 8, Eliminating P, between these equations
we have 8= (Z;) Sa Multiplying equation (161} by this
P] Sl :Pgs-z + P;:I.: ?{ PQQSZQLQ + .‘3P-1P;5Sg:‘)1\{ + P;{zsgﬂaxg;i'
Substituting U, lfuzr P\S;, U, for P,S,, and observing tht

da
Sa= 8
2 @, 13

31 3 - o t ‘2'
U= Uy PP { Uk v, (4 )+ P } o (162

)y ]
which is the MmovurUs of the system,
. . ~an-
If Py be so small as compared with P, that in the cxpd

- . . . . . s leing
sion of the binomial radical (equation 161), terms involving
2

powers of sz above the first may be negleeted ; then,

e (5 {2}

which equation may be placed under the form

(G s G (e

Whence observing that the direction of P, being always
through the centre of the axis, the point of application of
that force does not move, so that the force P, does not work 33
the body is made to revolve by the preponderance of P13 "‘b’
serving, moreover, that in this case the conditions of equatio
(119) (Art, 152 are satisfied, we obtain for the modulus

lt- FL . -‘\ M 4 ]
Uil Ut (o0) (F) Puosivsing - 164
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167. The conditions of the equilibrium of two pressures Py and
P, applied to a body moveable about a cylindrical axis,
taking into account the weight of the body and supposing i
to be symmetrical about its axis.

The_ body being symmetrical about its axis, its centre of
gravity is in the centre of its axis, and its weight produces
the same effect as though it acted continually through the
ceatre of its axis. In equation (161.) let then Py be taken to
represent the weight W of the body, and 4 igs the inclina-
tions of the pressures P, and Py to the vertical. Th*en
Py = Zf)Png ”—31»:'7"’) [Pg2L9+2PgWM+W9a§} .. (165))

1

Also by the equation (162) we find for the modulus

i t
&1, a
Ui=Te+ (ﬁaﬂf) {U; L2+ QUQWSIM(;;:) + Wﬂsl*af} . (166.)

Andin the case in which P, is considerable as compared with
W, by equations (163, 164.)

b= (Zf){l +22 s, ¢}Pa+ (%f;) (£)W sin.¢ ... (167)

U=11425L 6o Mp VWS, sin. ... (168)
1 { +a1ag sin @}Ug-i- (aFL) | sin. @ (

168. A MACHINE TO WHICH ARE APPLIED ANY TWO PRESSURES
PE AND Pg’ AND WHICH 1S MOVEABLE ABOUT A CYLINDRICAL
AXIS, IS WORKEDP WITH THE GREATEST ECONOMY OF
POWER WHEN THE DIRECTIONS OF THE PRESSURES ARE
PARALLEL, AND WHEN THEY ARE APPLIED ON THE SAME
SIDE OF THE AXIS, IF THE WEJGHT OF THE MACHINE
ITSELF BE 80 SMALL THAT ITS INFLUENCE IN INCREASING
THE FRICTION MAY BE NEGLECTED. _

For, representing the weight of such & machine by W, B-ﬂd
neglecting terms involving W sin. ¢, it appears by equation
(166.) that the modulus is . ‘

- ;
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Ul"—‘Uﬂ{l-%a%sin. cp} ;

whence it follows that the work U,, which must be done a
the moving point to yield a given amount U, at the working
point, is less as L is loss.

Now 1., represenis
fig. 2. the distance AjA; be
: tween the feet of the
s perpendiculars CA; and

Nt CA,, which distance is
| evidently lcast when P,
= and P, act on the seme

side of the axis, as in fig. 2., and when CA, and CAq&®
in the same straight Jine; that is, when P, and Pq are paraliel

169. A MACHINE TO WHICH ARE APPLIED TWO GIVEN PRES
SURES P; AnD P, AND WHICH 1s MOVEABLE ABOUT &
CYLINDRICAL AXIS, IS WORKED WITH THE GREATEST
ECONOMY OF POWER, THE INFLUENCE OF THFE WEIGHT 0F
THE MACHINE BEING TAKEN INTO THE ACCOUNT, WHEN
THE TWO PRESSURES ARE APPLIED ON TIE SAME SIDE OF
THE AXIS, AND WHEN THE DIWFCTION OF THE MOVING
PRESSURE P} IS INCLINED TO THE VERTICAL AT A CERTAIN
ANGLE WHICH MAY BE DETERMINED,

Let Py be taken to represent the weight of the machine
and let its centre of gravity coincide with the centre of ifs
axis, then is its modulus represented (equation 166.) by

p sin.

¢ 1!
U,=U.+ aids [L U2l + 20U, PyS,M (zf) + PEFSF@Q} i

in which expression the work U, which must be done at the
mov1f1g point to yield a given amount U, of work at the
working point, is shown to he greater than that which must
have been done upon the machine 1o yield the same amount
of wotk if there had been no Jriction by the quantity

£ sin.

: '@f {UQ‘AL—! + 2U2P3S!M(g§) + Pazslaag'z} '
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The machine is worked then with the greatest economy
of power to yield a given amount of work, U, when this
function is a minimum. Substituting for L2 its value

2* + 2a,a4 €08. 1o+ a5, and for M its value a,{ag cos. 3+

@) C0S. 15} (see Art. 166.), also for S,( )11:9 value S it be-

comes
psm %)
{Uez(a +22,1,008. 1yt a2)+ 2 U, P, 8,2, (4, €08, 15+ @ CO8. g} + Pg? B’ } .. (169)

Now let us suppose that the perpendicular distance a, from
the centre of the axis at which the work is done, and the
inclination 1y; of its direction to the vertical, are both given,
as also the space S, through which it is done, so that the
work is given in every respect; let also the perpendicular dis-
tance ¢, at which the power is applied, and, therefore, the
space S, through which it is done, be given; and let it be
required to determine that inclination i of the power to
the work which will under these circumstances give to the
above function its minimum value, and which is therefore
consistent with the most economical working of the machine.

Collecting all the terms in the function (169.) which con-
tain (on the above suppositions) only constant guantities,
and representing their sum by C, it becomes :

P Sin. 4 { 2@1ﬁgUg(Ug COS, ll&+ PgSg COS. 'IS) + C}

227 2%

Now C being essentially positive, -this quantity is & mini-
um when 2a,a,Uq(Usg cos. i+ PaSq c08. 11) i8 3. minimum ;
or, observing that U, =P,S, and dividing by the constant fae-
tor 2a,25U,S,, when _7

Py cos. 139+ Py cos. 4 is & minimam, - -
/¢ From the centre of the axis € let lmea
Cp, Cp, be drawn parallel to the diréctions of
the pressures P; Py respechveiy** and whilet
Cpe and Cp, retain their positions, let the
angle p,CP, or is be conceived to increase
until P, attains & position in which the eon~
% dition P,cos. sig+ Pacos a=2 minimum: iD‘
o2 '
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satisficd.  Now p,CP. =p Cp—pCP, or ny=na—tn; sib*
stituting which value of 1,5 this condition becormes
Pocos i+ Py eos. (13==153) & minimnm,
or Pgeos. g+ Pgeos. 115008, 1z + Py sin g 510, 153 a minumuill
or (Pg+ Py cos. 135) cos, 13+ P sin. sgasin. ip; o minimuti.

Pysin.
Tet now [ 37078

o Pot s gy P
2 Pyt Pyeos. igg) cos. iy + (P4 Pycos.agg)tan.y §iTL 139 a niNimm,
or dividing by the constant quantity (I, + P cos. i75) and mul-
tiplying by cos. y,
COS. 113 €08, 7y + Silt, 415 8ilL 7 mcos, (hy=—7) 8 Minimum
e =y =7

-1 P, gin, iog .
g tan o rsmon g,
tig 7+ tan {1)‘3+Pd COS8. iy (1‘ )

R To satisfy the condition of a minimum, the angle PJCP‘Z
i must therefore be inereased until it excceds 180° by that

, B angle y whose tangent is represented by p;‘fﬁ%ﬁ . To

i determine the actual direction of P, produce then p oG
make the angle 4Cr equal to; and draw Cm perpcndiculat to
Cr, and equal to the given perpendicular distance @ of the
direction of P; from the centre of the axis. If mP, be then
drawn through the point m parallel to Cr, it will be in the
required direction of P,; so that being applied in this di-
v _ rection, the moving pressure P| will work the machine with
' o ' a greater economy of power than when applied in any other
T L Wy direction round the axis.

‘ It is evident that since the value of the angle 4 or pCpo
which satisfies the condition of the greatest economy of powe"
or of the least I‘ESiStance, i3 essentia]]y greater thal‘l twa Iight
angles, P and P, must, To saTIseY THAT conprTioN, BOTH

o BE APPLIED ON THE SAMFE SIDE oF THE AxIs. J1f s then?®
_ condition mecessary to the most economical working of @Y
machine (whatever may be its weight) which is moveablé

L~ about o eylindrical axis under two given pressures, that THE
‘ MOVING PRESSURE SHOULD BE APPLIED ON THAT SIDE OF
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THE AXIS OF THE MACHINE ON WHICH THE RESISTANCE I8
OVIKCOME, OR THE WORK DONE. [t is @ further condition
of the greatest economy of power in such ¢ machine, that the
direction in which the moving pressure is applied should be
inclined to the vertical at an angle w3, whose tangent -is
determined by equation (170.).

When iz, =0, or when the work is done in a verticel direction,
tan, y==0; therefore s;, ==, whence it follows that the moving
power also must in this case be applied in a vertical direction,

L3
and on the same side of the axis as the work, When iB=%

P .
or when the work is done borizontally, tan. 'Y=]§_’:;

S = % 4 tan. (—%:)

The moving power must, therefore, in this case, be applied
on the same side of the axis as the work, and at an inclin-
ation to the horizon whose tangent equals the fraction ob-

tained by dividing the weight of the machine by the working
pressure,

g H]
€08. 15 13 negative; and, for a like reasom, cos. 43 is also
In certain cases negative. Whence it is apparent that the
function (169.) admits of a minimum value under certain
conditions, not only in respect to the incliration of the
moving pressure, but in respect to the _drixmnee a of its
direction from the centre of the axis. ~If we suppose the
Space S, through which the power acts whilst the given
amount of work U, is done to be given, and substitute in
that function for the product Sga; its value Syag, and then
assume the differential of the function in respect to a; to
vanish, we shall obtain by reduction .

. 3=
Since the augle 4, is greater than = and less than —

U2 +2URS con g+ BUS?
) U,;’cos.s|g+'(;rgpasl‘5_03"m OO,

al:_

i we proceed in like mannor assuming the space' 8, instead
a3
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of 8, to be constant and substituting in the function (169.)
for 8,a its value S,a,, we shall obtain by reduction

P.a,
By sy £ T cos o
. It is easily seen that, if when the values of 1;; and 1y deter
i, mined by equation (170.) are substituted in these equations,
P the resulting values of a, are positive, they correspond in the
two cases to minimum values of the function (169.}, and
determine completely the conditions of the greatest economy

of power in the machine, in respect to the direction of the
moving pressure applied to it.

a.l=_

170, Tur PULLEY, WHEN THE TENSIONs UPON THE TW0

et EXTREMITIES OF TIE CORD HAVE NOT VERTICAL DI
! RECTIONS.

In the casein which the two parts of the string
which pass over a pulley are not parallel to ene
another, the relations established in Article 158
no longer obtain; and we must have recourse 0
equation (167.)to establish a relation between the
tensions upen them in the state bordering upo®
motion.  Calling W the weight of the pullels
@ its radius, and observing that the effect of the
rigidity of the cord, in increasing the tension
Py, is the same as though it caused the tensiod

P, to become Pg(1+%)+2 (Axt. 142.), W€
W have

Tp . ]
P,:{1+E; sm.cp} {PQ(1+§)+]£} +2§EWsin-¢-3

r

. pf1, E Le . D DL W,
: o Plv—(l-l-a)il-’ra.zsm.@}?g-l—& +=p Sin_¢+%«—7.psln'¢’

u3 'ZL
or,
e - E LF . D L ) ;
Pl"'(l'FZ{ {14‘52'5111-(?}]?21- t;{1+ EEJ,.%&I% Psin.cp}__,(ﬂz')

[}
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where L represents the chord AB of the arc embraced by
the string, and M =a*(cos. 113+ C0S. k), i3 and 1gs Tepresent-
ing the inclinations of Py and Py to the vertical: which in-
clinations are measured by the angles P{EP; and P,FP,,
or their supplements, according as the corresponding pres-
sures P and P, act downwards, as shown in the figure, or
upwards (see note to Article 165.); so that if both these
pressurcs act upwards, then the cosines of both the angles
become negative, and the value of M becomes negative;
whilst if one only acts upwards, then one term only of the
value of M becomes negative.

Substituting this value for M, observing that L=2a cos. 1,
where 2: represents the inclination of the two parts of the cord
to one another (so that 2 =+ + ig5), and omitting terms which

~ involve products of two of the exceedingly small quantities
bE '

— ! F .
P and 5 SIn. ¢, we have

E 2 D Wi (cos. 15+ €S, igg) SINL
Pl = {1 + G’, + ?IZ'P' CO8,. Siﬂ. ¢} Pg + E’ + - _P_(“'ﬁ' 21:;‘;6'573?)—*——?

U= § 1 +f+if’ cos. ¢ sin, ¢ }U,+ {%_}.XVP_(SP_S:WLCPS_-'QM}S, .o (178.);

24008, t

which last equation is the modulus to the pulley, when the

two parts of the string are inclined to the vertical and to one
another, i

171, TUE PULLEY OF LEAST RESISTANCE.

Lt is evident, from an inspection of the modulus (squation
173.), that power would be transmitted the more economaically
by a pulley, as its radius a was greater, did not its weight
W increase with its radius. If the thickness of the pulley
be supposed to remain the same, and its other dimensions to
retain the same proportions, whilst it thus increases, its weigl.lt
W will vary as the square of its radius ‘@, and there Wlu
evidently be a certain vatue of a, for which the value of U, in
equation (178.), corresponding to a given value of Uy, will bs ..
a minimum ; that is, there will be certain dimensions of the

' o4 :




P 200 THE PULLEY.

pulley under which it may be used with the greatest econotty
of power, To determine these, let W be tep'fc%ﬂ\“‘«d by o, i
and this value being substituted for W in eguation (1‘3)
let that cquation be divided by S, and differentiated ywice n
respect to @. Then for the value of a, which COITBSP"“ds

; to the minimum of U, we shall have (obscrving that U=
\ luj o PQbi—-' PQS}‘),

e 1dU,_ cplcos.t3+-cOS- 1 1 )51 -9 g
S da = {E+ pCO8.tsin, ¢§Pe -a2+ T Scomt

2 2D
e 'E’:—{E"l-.vp cos, ¢ gln, qu} P+ & >0.
Both these conditions are satisfied by the value

o= p o Dl

ce (oS, iyg+cosiag) simg T T

172. If both the strings be inclined at cqual angles to the
vertical, on opposite sides of it or if sz=ig=1, 50 that

€08, 13+ 08, 193 =2 cos. 4, then equations (172.) and (173.) be-
come

E ¢
P= {1+-d-+fcos. :sin.¢}PQ+%+-‘%ﬁ S P ane (175.)

E 2
U= {I tot -aﬁcas. +5in, zp}U%«}- {%—{-%sin.cp} Syees (176)

The radius of the palley of least resistamce, or of the
greatest economy of power, is in this case by equation {174

Y Gy = 1 D
_ =N o{ G 2ot - AT

psin. g

173, Tf both parts of the cord passing over a pulley be i*

the same horizontal straight line, so that the
pulley sustains no pressure resulting from
the fension upon the cord, but only bears its

weight, then 42%, and the term involving
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eos.) in each of the above equations vanishes, It is, how-
ever, to be observed, that the weight bearing upon the axis
of the pulley is in this case the weight of the pulley in-
creased by the weight of cord which it is made to support.
So that if the length of cord supported by the pulley be
represented by s, and the weight of each foot of cord by p,
then is the weight sustained by the axis of the pulley repre-
sented by W+ ps. Substituting this value for W in equation
(176.), and assuming cos. i==0, we have

E 1
Ux=(l+E)Ug+a{D+(W+p.s)psin.@}31 .oee (178)

The pulley of least resistance is in this case determined, as in

Art. 170., by assuming W =ca?, and differentiating in respect
dU.

toa. The value of ¢ which satisfies the conditions —333 =

a2, .
and e >0, is thus found to be

a= E E.P+D

c W’FPS)’.‘.I'.D(ITQ.)

174. Let us now suppose that
there are # equal pulleys sustaining
each the same length s of cord,
and let U, represent the work
yielded by the rope (through the
space S5)) after it has passed over
— the n™, or last pulley of the system,
U being that done upon it before it passes over the first pulley;
then by Art, 163., equations 152. 154. and 178., neglecting

terms involving powers of ?, g, %sin. ¢ above the first, and
OPSEerng that )= a, = &e. =1 +—§J—, oy =ag=&c.=7,b) =by=

1 .
&c':-'E { D + (W + ps)psin. 45} , we have

E . .
U1=(1+na—)U,+:—:{D+(W+P-S)pmn.¢}SI. o
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Representing the wholc weight of the cord sustained by the
puileys by 1w, and observing that wny =w, we have

nEN_ . ] . .
Ul:(‘ + (.f)b?'*'a { uD) + (W +w)z sin. ¢} 5, ... (180

In the above equations it has been supposed, that although
the direction of the rope on either side of each pulley is 80
nearly horizontal that cos.s may be considered =0, yet that
it does so far bend itself over each pulley as to cause the
surface of the rope to adapt itself to the circumference of
the pulley, and thereby to produce the whole of that redst
ance which is due to the rigidity of the cord.  1f the tension
were so great as to causc the cord to rest upon the puiley
only as a rigid rod or bar would, then must we assume E=0
and D=0 in the preceding equations. The radius of the

pulley of least resistance {equation 179.) would in this cas¢
beeome

a= 2. . (18L.)

[4

175. If one past of the cord passing over a pulley have ?
horizontal, and the other a vertical, direction, as, for instanc¢
when it passes into the shalt of a mine over the sheaf of

s> wheel which overhangs its mouth; then one of the

. x
angles 53 or iy (equation 173.) becomes 4, and the

other ) or =, according as the tension on the vter tical
cord is dowpwards or upwards, so that cos. it
€os. 3=+ 1, the sign + being taken according &
the tension upon the vertical cord is downwards

upwards, Moreover, in this case {art, 169.) 1—_:3. and cos: !

1
:-_:/ 3 therefore (equation 173.)

_ E pv2 1 Wp .
Pl-—{l-}--&-ﬁ?“a- sm.cp}PQ—{-a{Di'Jg Sln-¢}"(182')'
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E ,J3 . i Wy
Ulz{I+E+P—a—sm.¢}Ug+a{Di;/g.sm.@}SI..(IS&)

The radius of the puiley of least resistance is in this case
(equation 174.) determined by the equation

a:'\/ _(i) {%%;;3 \/9+2Pg} ..... (184)

176. The modulus of a system of any number of pulleys, over
one of which the rope passes vertically, and over the rest
horizontally.

Let U, repre-
sent the work
done upon the
rope through
the space 8, be-
fore it passesho-
. rizontally over

' e BRI the first pulley
of the system, and let it pass horizontally over » such pulleys;
and then, after having passed over another pulley of different = -
dimensions, let it take a vertical direction, descending, for in-
stance, into a shaft. Let U; be the work yielded by it
through the space S, immediately that it has assumed this
vertical direction : also let u, represent the work done wpon
it in the horizontal direction immediately before it passed
over this last pulley of the system. Then by equation (183)

E £] W,
ulz{]+E+‘i‘./_zsgn_¢}U,+-}{D+:/—,§Psin.g}S,.

a

Also, by equation (180.), representing the radius of each of
the pulleys which carry the rope horizontally by 4, the radius
of Its axis by p), and its weight by ‘W, and observing that
U, is here the power and u, the work, we bave

E 1 .
U= (1 +E&T)“’+a—l {nD+(ﬂW;+w)p‘ sm.qb} Sy
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Eliminating the value of #; between thesc equations, and

. . I
neglecting powers above the first in —, &c., we have

U= {1+E(‘2+£)+F\:§siu.¢ }UQJr {D(-:t—t-;%)%-

@y a2 a,

177. If the strings be parallel, and their
common inelination to the vertical be repre-
sented by s, so that s;3=igs=—1; then, since
in this case L:Qa, we have (equat:ion 172.)
neglecting terms of more than one dimen-

. E
sion in ~_ and E,
@ a

E 2 D 2 :
Pl:(l“"z +‘EPS“‘- ‘P}PeJr—d{l + (‘a-%-w]c;—s-j)psin.(p} . ,(183-)

E 2 . b 1
U;:{l +E+£ sin, <P}U9+a {1+(3+W*;;£ p sin. ?’} - - (18]

> 3 . . T
m which equation s is to be taken greater or less than g and

therefore the sign of cos. s is to be taken {as before eXplaiﬂed)

: positively or negatively, according as the tensions on the cords
B » act downwards or upwards. If the tensions are vertical, =0
or 7, according as they act upwards or downwards, so that cos:!
==%1l.  The above equations agree in this case, as they
ought, with equations (131,) and (132.). If the parallel ten-

. . L
3t = i i
ons are horizonial, then =5, and the terms involving €08«

1 the above equations vanish.
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178. THE FRICTION OF A PIVOT.

When an axis rests upon its bearings, nat
by its convex circumference, but by its
extremity, as shown in the accompanying
figure, it is called a pivot. Let W repre-
sent the pressure borne by such a pivot sup-
posed to act in a direction perpendicular to
its surface, and to press equally upan every part of it; also
let g) represent the radius of the pivot; then will xp® repre-

sent the area of the pivot, and \:r the pressure sustained by

each unit of that area. And if f represent the co-efficient of

friction (Art. 133, Y =3 - f will represent the force which mus¢

be applied parallel to the surface of the pivot to
overcome the friction of each such unit. Now
let the dotted lines in the accompanying figure represent
an exceedingly narrow ring of the area of the pivot, and
let p and p+Ap represent “the extreme radii of this ring;
then will its area be represented by =(p+ Ap)P=np?, or by

7{2p(8p) 4 (Ap)3}, or, since Ap is exceedingly small as com-
compared with p, by 2rpAp. Now the friction upon ench

unit of this area is represented by E:*f : therefore the whole

friction upon the ring is represented by - —“‘f ?.rpAp, or by
"')Wf
p2 PO, and the moment of that friction about the cenue of
2
the pivot by "}V ‘f *Ap, and the sums of the moments of
1

the frictions of all such rings composing the whole area of the
Pivot by

fip Ap, or by 2 p’dh ar by

W
E—;‘fo’ EAP »
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[2]

2W
--—Pl—g'fépﬁ, or by $Wfey . . . .. . - (188);

whence it appears that the friction of the pivot produces the
same effect to oppose the revolution of the mass whick resis
upon if, as though the whole pressure which it sustains were
collected over a point distant by two-thirds of its radius fron
its centre.

If 4 represent the angle through which the pivot is made
to revolve, then £p,0 will represent the space described by
the point last spoken of ; so that the work expended upon the
resistance W acting there, would be represented by §Wpfh
which thercfore represents the work expended upon the
friction of the pivot, whilst it revolves through the angle b
so that the work expended on each complete revolution of
the pivot is represented by

%’ﬂplfw et a e e ([89).

179. If the pivot be hollow, or its surface be an aunulsr
instead of & continuous circular area, ther
representing its internal radius by fe and
observing that its arca is represented by
#(p)"—pq’), and therefore the pressure Upod

. W .
each unit of it by — -, and the frie-
v (g1 — po?) &
oy 'Q-f—'.f , we obtain, as before
.. w(py —pg’) .
for the {riction of each elementary annulus the expression
2w

Pl —pa " ¢Ap, and for the sum of the moments of the frictions

tion of each such wunit by

f1
of all the elements of the pivot ——-—§Wf2 ﬁgdf’, or
P — »
3 1"—Fq P2
: )
eyl "pe
swp (1),

Let r represent the mean radius of the pivot, i e let
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r=3{p1 +ps); and let ] represent one half the breadth of the
ring, i.e. let I=}(p;~po); therefore py==r+17and pp=r—1
These values of p, and p, being substituted in the above for-
mula, it becomeg

s [+ DP—(r=1 s f 670428
3Wf{(m}’ Ofswf{*“z?z“’

or Wfr{l-i—%(é)a} Ceee e (190

whence it follows that the friction of an annular pivot pro-
duces the same effect as though the whole pressure were col-

A% .
lected over a point in it distant by r {l + 31‘(; ) } Jrom its

centre, where r represents its mean radius and I one half its
breadth. From this it may be shown, as before, that the whole
work expended upon each complete revolution of the annular
Pivot is represented by the formula,

2Wfr{1+§(f:)2}w. e (1910

180. To DETERMINE THE MODULUS OF A SYSTEM OF TWO
FRESSURES APPLIED TO A BODY MOVEABLE ABOUT A FIXED
AXIS, WHEN THE POINT OF APPLICATION OF ONE OF THESE
PRESSURES IS MADE TO REVOLVE WITH THE BODY, THE
PERPENDICULAR DISTANCE OF ITS DIRECTION FROM THE
CENTRE REMAINING CONSTANTLY THE SAME.

Let the pressures P, and P,, instead of retaining con-
stantly (as we have hitherto supposed them to do) the
same relative positions, be now conceived con-
tinually to alter their relative positions by
_ the Tevolution of the point of application of
P, with the body, that pressure nl?yérthelesa
retaining constantly the same perpendicular
distance @ from the centre of the axis, whilst

. the direction of Py andf its amount r'famain
(:Onstantly the same. - ¥ :
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It is evident that as the point A, thus continually alters its
position, the distance A jA; or L will continually change, »
that the value of P’ (equation 158.) will continually change.
Now the work done under this variable pressure during one
revolution of P, is represented (Art. 51.) by the formula

IQK
U"—",/ PLaydd, if § represent the angle A,CA described at
(]

any time about C, by the perpendicular CyA,, and therefore
a\8, the space S described in the same time by the point of
application A, of P, (sec Art. 62.).

Substituting, therefore, for P, its value from equation
(158.), we have

Ul—_"{i;: { (ZT) + (2—%) sin. @ } adi =

b2 . Vi
/i’gagdﬂ + £ *fp,. Lat;
w o 5 .,O

Let now P be assumed a constant quantity ;
‘l Lo Qw
= 1
v 7 [P Lt =P r-«/Ldﬂ.
cn,_o/ 2 afly X may
Now L=A A, ={a2 +2a,05c08. 6 + a2 } |

klr_ G B 1 B2

o =~ flap+2 Ml =
X dh CLIGQ,{(HI + 2a,a4 cos. § + ag?)idl

P4

(a!‘] + G'QQ)&/‘ Qa]ﬂg 3

“*"—al%—“: 1+ @+ ag cos. 6} dd =
1]

D
i 1 3¢ a - 1
ZQ+£§){{1+2(bi+%) cos.ﬁ}dﬂ:

2o
a.lT'-‘+ alT_,&)Z {1 + (gi-i— Z*T)—lcos.e } df nearly,
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a -1 ..
neglecting powers of ( E‘-+g£) above the first, since in all
2 4

cases its value is less than unity. Integrating this quantity
between the limits ¢ and 2« the second term disappears, 8o

that
a,agﬁdﬁ-—( a2t ) 2x nearly;

" Py — /I‘;dG_Pg{Qwag)( - ) =U,(2 1a+1)*;

since 2ra, is the space through which the point of appli-
cation of the constant pressure P, is made to move in each

revolution, Therefore by equation (192), in the case in which
P, is constant,

1 18t
U.:-_—Ug{l-}- (ET**'EE) ps1n.¢}. ... .(193).

181, If the pressure P, be supplied by the tension of a
rope winding upon a drum whose radius is a; (as in the cap-
stan), then is the effect of the rigidity of the rope (Art. 142.)
the same as though P, were increased by it so as to become

E
P9+D+EPQ, or (1 +62)Pe+a~g.

g

Now, assuming P, to he constant, and observing that
Vs=2rPya,, we have, by equation (192),

U= Peag{25r+ P 81"2 de&}

Substituting in this equation the above value for Py,

U;:ag{(l-f.:g;)l)ﬁ-%} {2, Sln./w}

Performing the actual multiplication of these factors, ob-
serving that;? is exceedingly small, and omitting the term
. \

P
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n. ¢
involving the product of this quantity and =% e have

E psin. p 2" } 25D,
Lop! :Pgﬂ:i(l + ;2) { Qm + ——ala;/LdG +
0
‘Whence performing the integration as before, we obtain

UI:UQ(l E) {1+(;] +,L)’P Gin. ¢} +22D.

If this equation be multiplicd by =, and if instead of U, and

U, representing the work done during one complete revolu-
tion, they be taken to re

present the work done throughs
such revolutions, then

U,:Ug(l +]§) {l-f ( it ) g sin. 4;} +2nxD, ... (19

which is the MODULUS,

182, If the quantity (C'I’l

of the binomia] ex
tity above the firg

-1
@) be not so small that terms

pansion involving powers of that qua}lln
t may be neglected, the value of the

definjte integral ﬁ;dB may be determined as follows : —

1]

*ﬁal_ ‘i‘leagcos_ g + a‘; dd _ﬂ/{(;l + %) —Qalag(] — COS.ﬁ)]gda

S
. 4 4a,09_ :
:(arf-ﬁg)/ { I — @ ilf;sz 5 sin, o} df., Let kg—‘(;;]_'ag)
o
Lr 2. >
; T 71 : o . T AN .20
._.b/Ldﬂ._(al-Fag.)O/ (l — k2 sin. T.&) dﬂ:-:(a,+ag(){(‘l o A2 sin 2

=2(a) + a5) / (1 <72 sin, Wdp* = 9(q, 4 a)Fy(k), where Er(f)
2

* See Encye, Met, art, Der, Inm, theorem 2,
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represents the complete elliptic function of the second order,
whose modulus is %.* The value of this function is given
for ail values of % in a table which will be found at the end
of this work.

Substituting in equation (192),

. psin, ¢ 1/ 1y .
U=1,+ v e+ o) B ()T . Pe=Uo+ (2:mEP2); (&T]-E;)p 1 - H

, ir1 1 .
v Ul:UQ{]‘J’;(&;‘!"“{Q)PSID-p} PN (195).

Tue CAPSTAN.

183, The capstan, as used on shipboard, is represented in
the accompanying figure. It
consists of a solid timber CC,
pierced through the greater part
of its length by an aperture AD,
which receives the upper por-
tion of a solid shaft ADB of great
strength, whose lower extremity
is prolonged, and strongly fixed
. into the timber framing of the
ship. The piece CC, into the upper portion of which are
{7% fitted the moveable arms of the capatan,
_ T 1 i
. —%ﬂ J?F: turns upon the shaft AB, resting its
e

weig ht upon the crown of the shaft, coil-
ing the cable round ity central portion CC,
and sustaining the tension of the cable by
the lateral resistance of the shaft. Thus
the capstan combines the resistances of
) the pivot and the axis, so that the whole
Tesistance to its motion is equal to the sum of the registances

* See Eucye. Met, art. Der. Int. theorem 2 :
T Au approximate value of Eu(k) is given when & is small by:the

formula B, (+) =%(1+K"“, where .K=%¥% (Bee Encye. Met. art. Drr..
INT. equation (W9, 14,) | o
p 2
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due separately to the axis and the pivot, and the whole work
expended in turning it equal to the whole work which would

: be expended in turning it upon its pivot were there no ten-
sion of the cable upon it, added to the whole work necessary
to turn it upon its axis under the tension of the cable wes
there no friction of the pivot, Now, if U, represent the work
to be done upon the cable in # complete revolutions, the work
which must be done upon the capstan to yield this work upos
the cable is represented (cquation 194) by

(1+i) {1+(£5+&1Q)* o sin. q:}Ug-{—erD,

where a; represents the length of the arm, and a, the raa.iius
of that portion of the capstan on which the cable is winding.
Moreover (Art. 177.), the work due to the friction of the

. 4
Pivot n n complete revolutions is yepresented by gmrplf w.

On the whole, therefore, it appears that the work U, ex-

pended upon n complete revolutions of the capstan 1s rcpres
. . sented by the formula

: E L I ) 2 1
b U= (1 +;;') {1 + ((L_l‘:'** e psin.f,pj Ua++ 2ux {D+gp,ij Lo (19
which is the MopuLUs of the capstan,

A single pressure P, applied to a single arm has been SuP°
posed to give motion to the capstan ; in reality, a ““m.he,r
of such pressures are applied to its different arms when 1%
used to raise the anchor of a ship. These pressures, hows
ever, have in all cases, — except in one particular case about
to be deseribed, —a single resultant. It is that single
resultant which is to be considered as represented by By
and the distance of its point of application from the axis by
@, when more than oune Pressure is applied to move the
o capstan,

The particular case spoken of above, in which the pre%”
sures applied to move the capstan have no resultant, or %
not be replaced by any single Pressure, is that in which they
may be divided into two sets of pressure, each set havieg
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resultant, and in which these two resultants are equal, act
in opposite directions, on opposite sides of the centre, per-
pendicular to the same straight line passing through the
centre, and at equal distances from it.*®

Suppose that they may thus be compounded into the equal
pressures Ry and Rg, and let them be replaced by these.
The capstan will then be acted upon by four pressures, —
the tension P, of the cable, the resistance R of the shaft or
axis, and the pressures R, and Ry, Now these pressures are
in equilibrium.  If moved, therefore, parallel to their present
dircctions, so as to be applied to a single point, they would
be in equilibrium about that point (Art. 8.). But when so
removed, Ry and Ry will act in the same straight line and in
opposite directions. Moreover, they are equal to one an-
other; R, and Ry will therefore separately be in equilibrium
with one another when applied to that point; and therefore
Prand R will separately be in equilibrium ; whence it fol-
lows, that R is equal to Py or the whole pressure upon the
axis, equal in this case to the whole tensioy Py upon the
cable. So that the friction of the axis is represented in every
position of the capstan by P, tan. ¢ (tan. ¢ being equal to the
co-ctlicient of friction (Art. 138.)), and the work expended on
the frietion of the axis, whilst the capstan revolves through

the angle 4 by Pypf tan. ¢, or by Pgaﬁ(a%) tan. ¢, or by

U‘Z(g ) tan, ¢ ; so that, on the whole, introducing the cor-
s

rection for vigidity and for the friction of the pivot, the mo-
dulus {equation 196) becomes in this case

. E 2
:L'z(l + a—_g) { 1+ (ﬁ;)tan. ¢ } +2m{D+39JW} oo (197),
This is manifestly the least possible value of the modutus,

* Two equal pressures thus placed covstitute & STATICAL COUPLE.
The properties of such couples have been fully discussed by M. Poinsot,
and by Mr. Pritchard in his Treatise.on Statical Couples; some ‘eccomnt,
of them will be found in the Appendix to this work.

2
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being very nearly that given (equation 196) by the value m-
finity of a,.*

T?ms, then, it appears generally from equation {199), ﬂ_lat
the Joss by friction is less as 4, is greater, or as P, s apphﬁdl
at a greater distance from the axis; but that it is least of all
when the pressures are so distributed round the capstan 28
to be reducible to a coupLE, that case corresponding to the
value infinity of @, This case, in which the moving pres-
sures upon the capstan are reducible to a couple, manifestly
occurs when they are arranged round it in any pumber of
pairs, the two pressures of each pair being equal to one an-
other, acting on opposite sides of the centre, and perpendicu-
lar to the sume line passing through it. This symmem'cc'zﬁ
distribution of the pressures about the axis of the capstan 18
therefore the most favourable to the working of it, as well as

to the stability of the shaft which sustains the pressure upon
it.

184. THE MODULUS OF A $YSTEM OF THREE PRESSURES

APPLIED TO A BODY MOVEABLE ABOUT A CYLINDRICAL AXIS
TWO OF THESE PRESSURES BEING GIVEN IN DIRECTION
AND PARALLEL TO ONE ANOTHER, AND THE DIRECTION OF
THE THIRD CONTINUALLY REVOLVING ABOUT THE AXIS AT
THE SAMFE. PERPENDICULAR DISTANCE FROM IT.

Let Py and P, represent the purallel pressures of the sys-
AN tem, and P, the revolving pressure.
7 Y? From the centre of the axis C, let fall
“ the perpendiculars CA |, CA,, CAg upon
the direetions of the pressures, and let
¢ represent the inclination of CA, to
CA; at any period of the revolution of

Py. Let P be the preponderating pres-
sure, and let Py aet to turn the system in the same direction

* 4 being exceedingly swall, tan, # 15 very nearly equal to sin. .
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as P}, and P, in the opposite direction ; also let R represent
the resultant of P, and Py, and » the perpendicular distance
CAof its direction from C. Suppose the pressures Py 'a.nd
Py to be replaced by R; the conditions of the equilibrium
of P, throughout its revolution, and therefore the work of
P, will remain unaltered by this change, and the system
will now be a system of fwo pressures P, and R instead of
three ; of which pressures R is given in direction. The mo-

dutus of this system is thercfore represented (equation 192)
by the formula

U=U,+ P R oLa L (198);

where U, represents the work of R, and L represents the dis-
tance AA, between the feet of the perpendiculars 7 and a,, so
that 12 =42 — 2g,r cos. § 4 r= (@)= cos. §)* 472 sin 85

. R =(Ra, — Rr cos. §)? + R* sin2 0.
Now, R =P; 4 Py, Rer=Psay— Psag;
s R = (P Py — Py —Pya;) cos. 01+ (Pata—Pyy) sinl0.
Now, if @, be ag, then ay(Ps+ Pq) > (Pata—~Pets),
o+ @(Pyt Pg) > (Pags— Patg) (sind + cos. §);

for sin ¢ 4 ¢og. 8 is never greater than unity. Whence it
foHows, that

0Py + Py)— (Pgag— Paay) cos. 8 > (Pgtts— Pats) sin. 0.

1he value of R2L? is therefore represented by the sum Qf
™e squares of two quantities, of which the first is in all cases

steater than the second, Therefore, extracting the square
90t by Poneelet’s theorem,

AL 961(2, 4 g, — (Paas— Pyas) cos. §} + HPaag= Peae)sin. 6
. very Nearly s or, ‘
PSR 4 Dy (g Pyae)(96 cos. 0~ sin. ) . . ... (189)..

r 4
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4 [ o 4
- /-‘RLde'S)Gm {% Ji’,aadg«f- :;_ /‘p‘ﬁzﬂfﬂ} fﬁpaﬂa—Pﬂs‘)('gﬁ cos. .- kin £}
[ td £ ]
[ Q [V} 1]

g [
ﬁlLdﬂ:'Qﬁa, {%4— If”} — f{Pa—P.a,)-96 cos. 0 —"4 sin. 0)d0 ., (200)-
s .
Y] L]

ds

o If P, and P; be constant, the integral in the second member

Do of this equation becomes (Paag— Pyas) (196 sin. § + 4 cos. é) ;
3 ‘_! ‘ P~ Paasb UB"" 2,
whenee observing that Pyag—Poay= Jai—e-’gi—':‘”“é"" !

also, that U, =4Rr=0Dya,—bPsz,=U,—1],, and substitn-
ting in equation (198}, we have
) Tg— i
Ui=Us—U,4p sinp {‘96 %]-i-%}) — (I%;}’Ij) (36 5in, 84 *% cos. 9} . (20)
3 b 1

for a complete revolution making § =2, we have

U, =Uy= U, +p5in. o { gﬁ(gﬁ +9§> _.4(":17‘??) } ;

w7 B

B reducjng,
12{ psin. g (48 L)} ; {_Pfi"_:.f?' 48 _‘)} T .. (202
U= 1455 (a,"a.w U =20 (T ) Ve - G

which is the modulus of the system.

185. Ifthe pressure P, be supplied by the tension of a cord
which winds upon a cylinder or drum at the point Ag then
allowance must be made for the rigidity of the cord, and
correction introduced into the preceding equation for that
purpose. To make this correction let it be ohserved
(Art. 142)) that the effect of the rigidity of the cord at As
is the same as though it increased the tension there from

Psto P3(l +]§D +2;

. or (multiplying both sides of this inequality by as, and in-
. tegrating in respect to 6,) as though it increased

I kd AT
N g ) O/ Paaydd to (1 +§i) / Pua.dd + j ]Ejdo;
._ 3 /

H
<
i
i)

ih“‘ s 1
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E
or, U; to (1 + a—.s) Us+2xD.

Thus the effect of the rigidity of the rope to which Pj is ap-
plied upon the work U, of that force is to increase it to

E
(1 + 53) U;+2xD, Substituting this value for Us in equa-
tien (202), and neglecting terms which involve products of

the cxceedingly small quantities %‘, pen. @ s EE2? and D,
3

a3 @
we have
U={) E psin.g 8 1 psin. ¢ f48 1 }
{ = (?,-Z;)}U"{I"T”('a‘,'*'&:;) U,+2xD.. . (203),

.TO determine the modulus for # revelutions we must sub-
stitute in this cxpression nx for =.

Tur Crinese CapsTax,

186. This capstan is represented in the accompanying figare
under an exceedingly
portable and convenient
ap, form.* The axle or
drum of the capstan is
composed of two parts
of different diameters.
. One extremity of the
eord s coiled upon one of these, and the other, in an oppo-
:Re direction, upon the other; so that when the axle is
trned, and the cord is wound upon one of these two parts
:{:l_le dmm;_it is, at the same time, wound off the other, and
luti:“ewemng cord is shortened or lengthened, at each'f-evo-
o B by as much as the circumference of the one cylinder

ceeds that of the other. In thus passing from one part

*

oty :mﬁgure of the capstan with a double axle was seen by Dr. O, Gre. :

to hay one Some Chinese drawings more than » century old. It appears

by M ebeen invented under the particular- form shown in the above figure:

R O Eckharde and by Mr, M-Leaa of Philadelpbia. (See Professor
Bon's Mock, Phi. vol. ii, p. 255.) 3 R
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of the drum to the other, the cord is made to pass round
moveable pulley which sustains the pressure to be overcome.

To determine the modulus of this machine, let uy and ¥
represent the work done upon the two parts of the cord
respectively, whilst the work U, is done at the moving point
of the machine, and U, yielded at its working point,

'Then, since in this case we have a body moveable about 8
cylindrical axis, and acted upon by three pressures, twod of
which are parallel and constant, viz. the tensions of the
two parts of the cord; and the point of application of the
third is made to revolve about the axis, remaining always
at the same perpendicular distance from it; it follows (by
equation 203}, that, for » revolutions of the axis,

Uj=Aw—Bug + 202D . . . . . (204);
where

E psngs4.8 )3} 1

it s Ul ) |

az and @, representing the radii of the two parts of the drum,
@, the constant distance at which the power is applicd, and ¢
the radius of the axis,

Also, since the two parts of the cord pass over a pulleys
and the pulley is made
to revolve under the ten:
stons of the two parts of
the cord, u, being the
work of that tenmsion
which preponderates, w¢
. have (by equation 186),
if S represents the length of cord which passes over the
pulley,

ta=Ayte+ By;

where

I ¥ 2 1 I 1
=14 P G el 3 2 Weos. o
=1 atg s g&j,andBl__ail-{»(&.;_ 5 ')Pls]“'ﬂ

o r.epresenting the radius of the pulley, gt the radius of its
axis, W its weight, and : the inclination of the direction of

{ in.p/4.8
3 and B:{ I~P—§1Yl_¢(__+ —al-
L 2 dn

]
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the tensions of the two parts of the cord to the vertical, the
axis of the pulley being supposed horizontal, and the two
u;
2nxag’ tg"_ﬁmmg' Sub-
stituting these values, and multiplying by 2nxas, we have
gt
o F=Aug+ 2nwaBy . . . - . (205).
3
Since the tensions 7, and £, of the two parts of the cord,
and the pressure P, overcome by the machine, are pressures
applied to the pulley and in equilibrium, and that the points
ofapplication of ¢, and Py are made to move in directions op-
posite to those in which those pressures act, whilst the point
of application of t; is made to move in the same direction;
therefore (Art. 59.)

U2+'M2=TJ3, . ngua-’”e-

Eliminating uy and ug between this equation and equation
(205), we have

parts of the cord parallel. Now 3=

a
u _AUs—2nxa,B, " EU,—ﬂm'agB,
= e T T de D L B
Al—gg ’ .Al—'g?
ag ag
SUbStltuting these values in equation (204), and reducing,
a
AA~—B )
U=~ 8 Yy, (é:E%E?'zmme.
A] -—?3 Al - ;{ I
_ ag 3 .
Suhsmuti“g their values for A, Ay, B, By, neglecting

sin.¢ B
= , &c. and
a; &

®educing, we obtain for the MopULUS of the machine

E psin g (96 a) 1 }
jesneree (sl

U={d14% 9 — 4 ( “')"“"'

ay

termg i . . .
s Involving more than one dimension of

U

20 .
1— .{.?-f‘u—';'l an. ¢

B2 g3 412 k 6)
-.{{___“s__ ( +a.)psm. ¢} {D+Wp W’"lm' ,_}_--D 2nx . .. (R08),
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it ; dii a;
From which expression it is apparent that when the r'ztEL : D}
and a, of the double axle are nearly equal, agreat sacn e
power is made, in the use of this machine, by reasen ©
rigidity of the cord.

Al
Tue Hors: CAPSTAN, OR THE WHIM Gy,

187. The whim is a form of the capstan, used in tht;ffé
operations of mining, for ralsing materials {from ic shamamd
levels by the power of horses, before the q:uanhty e‘xcver '
is so great as to require the application of st.eafm powe! ;e N
before the valuable produce of the mine is sufficient 10 & o
return upon the expenditure of capital necessa'l‘y t.o hine
erection of o steam cngine. The construetion of t1u§ mac ‘
will be sufficiently understood from the accompanylug e 11
Tt will be observed that there are two ropcs wound upD‘c
the dvum in opposite directions, and which traverse the spac

between the capstal

and the mouth of the

shaft. One of thc.se

carries at its extremity
_ the descending (empt)’)
" bucket, and is €O
tinually in the act of winding off the drum of the capstan » 1;
revolyes; whilst the other, from whose extremity is suspende
the ascending (loaded) bucket, continually winds o the drum.
The pressure exerted by the horses is that nccessary 10 ovet
come the friction of the different bearings, and the other
prejudicial reststances, aud to balance the dilference hetweel
the weight of the ascending load, bucket, and rope, and ﬂ,mt
of the descending bucket and rope. The rope, in passing
from the capstan to the shaft, traverses (sometimes for 2 con-
siderable distance) a series of sheaves or pulleys, such as those
shown in the accompanying figure.

Let now g, represent the radius of the drum on which t_he
rope is made to wind, and n the number of revolutions which
it must make to wind up the whole cord ; alsv let u repfﬁ'scm
the weight of each foot of cord, and § the angle which the
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capstan has described between the time when the ascend-
ing bucket has attained any given position in the shaft and
that when it left the bottom; then does a.f represent the
length of the ascending rope wound on the drum, and there-
fore of the descending rope wound off it. Also, let W repre-
sent the whole weight of the rope ; then does W— pagh repre-
sent the weight of the ascending rope, and pagd that of the
descending rope, both of which hang suspended in the shaft.
Let P, represent the load raised at each lift in the bucket,
and & the weight of the bucket; then is the tension upon
the ascending rope at the mouth of the shaft represented
by W—pa+ Py 4w, and that upon the descending Tope by
it + e,

Let, moreover, ps and p, represent the tensions upon these
topes after they have passed from the mouth of the shaft,
over the intervening pulleys, to the circumference of the cap-
stan,
~ Now, since the tension upon the ascending rope, which
W —pay+ P, + w at the mouth of the shaft, is increased to
Psat the capstan, and that the tension upon the descending
rope, which is Pq at the capstan, 1s increased to pagl 4w at the
outh of the shaft, if we represent by (1+ ) and § the con~
stants which enter into equation 185 (Art, 175.), we have,
by that equation (observing that U, =P;S, and Ug =P3Sp 50
that §, disappears from both sides of it), '

Ps=(l +a)(W + Pot e peagh) + 85 + « + - (B0T)
pad +ew=(l+a)pe+8 - . - - (208).

Mulﬁplying the former of the above equations by 1‘*_“"
alding them, transposing, dividing by (1 +a), and neglecting
terms of more than one dimension in « and B,

Ps=pe=(1 +a)}(W+Ty) + Law + 2B = Lpaich.

Now U} in equation (198) represents the work of the re-

* sultant of P3 and p, during » revolutions of the capstan, it
therefore equals the difference between the work of pg and

that opr (See P- 216-). .

and
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2nx I Sgar

. soU= ﬁ)m-—zdﬁ 'Tj potadi = aof (s~ pajodds

: ‘a B

!l T

| li .. Ur:(’!“?/{(l +a}(W -+ Py} + Law +2ﬁ~‘9#€1251d9 =

N K
" {(1+ ) (W + Py o+ Zarw + 28} (2nmay) — w(2nmaz)'s
. U,.::(l +ayUy+ {(1 +a)W + Zaw +25—P’SQ}SQ . (QOQ};

f
4 observing that 2ura,=8,, and that PyS, =U,.
: Now, let it be observed that the pressures applied to the
capstan arc three in number; two of them, p; and po, being
parallel and acting at equal distances @, from its axis; and
the third, Py, being made to revolve at the constant distance
@ from the axis (P, representing the pressuse of the horses,
or the resultant of the pressures of the horses, if there be
more than one, and 4, the distance at which it is applied); 5
that equation 198 (Art. 184.) obtains in respect to the
pressures Py, gy, pg; ay being assumed equal to a.
Substituting , and ps for Py and Py in equation (199)¢

RL="96ay(py + py)— ag{p3—pq) (*9G cos. 8§ — 4 sin. 8} ;

2y Snx 2nm
, . -ﬁLdﬁ:QG{;/(pa + po)db— a‘g/(};g—-pg) (96 cos. 6 — 4 sin, §)d-
o o

NO}.’J, the terms of equation (185}, represented in the above
equations by « and B, are all of on
mgly small quantities D, E, sin.

of py and py given by these

e dimension in the exceed-
¢. If, therefore, the values
equations be substituted in

. 2y
s1n. '
the value of E“a—:?-/ RLd4 (equation 198), then all the terms
i)

of that expression which involve the quantities « and 8 will
be at least of ¢wo dimensions .0, E, sin. ¢, and may be ne-
glecte'd. Neglecting, thercfore, the value; of « and § in
equations (207, 208), we obtain

. Pt pe=W 4 P, 4 2up, and ps—pa =W 4 Py—2uaeb 5
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o f (p+p MO=a,{ W+ Pyt 20) Znw== (‘h) {(2nwa, )Pyt (2rwas) (W4-200)}
1]

= () (8Pt 8 (W2} = 2 )’U=+S¢(W+2w)}.

representing by S, the
space described by the
load, and by U, the use-
ful work done upon it
_ during n revolutions of
the capstan.

Similarly,

o
hr
S

i f (Pe—p.) (96 cos, §—"4 sin. 0)49——«,/'{W + Py—22,8(°96 cos, 64 sin, G)dﬂ
[

nx
=a{W+P,) (96 cos, 8—"4 sin, 9)d0—2pay’ ﬁ-gﬁ cos. 6—4sin. )040.
"o
Pty

P
Nowﬁ'%ws. B4 sin, B)dl="4, a.nd.ﬁ'% cos.9—45in, 5)8dé="Bax*;
o

R QLJ 35— 12)(*96 cos. §—4 sin. §)df =4ax(W + Po)— 'Spag(a?ma,j
o
U, U,
= 41&9 + 4-ag(W QFSE)' observing that Pé:.‘-'s'-;,

K —_ a Ug . — R
-(.f RLd) =96 ( a—;) {Us+So(W + 20)} —darg, —40(W ~2153);

PSm ¢ Iny

“y RLdp="2% ‘*PS‘“ ng {( P, )U,+2{1 2(W+2w}( )+M}S —Wa,}.

g » 7
* For f6 cos. 8460 sin, 6— uin.edso;in.s—mag'aluoﬁsin.m

! ]

=—0cog. 9-}:/:308 8d9== —0 cos, 0 sin, O. Now, substitating fux for 8, :

th
e ’“teg“ﬂs become respectively 0 and —~2ax.
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Substituting this value, and also that of U, (equation 209)

in equation (198), and assuming

Co=(1 +2)W + 2w+ 28 and Co=1-2(W + _’u)(;]:) + s

we have

U, =(} +0)U, 4+ C, 8, 8,5+ —52‘;“4""- {(2-4‘2_ gz) U+ 20,8,~ W az} ;

2 4- A
o iy 8, i i
which is the MopuLus of the machine, all the various eles

ments, whence a sacrifice of power may arise in the working
of it, being taken into account.

Tre Friction or Corbs.

188. Let the polygonal line ABC, .. YZ, of an infinite
number of sides, be taken to repfes?“t
=N R the curved portion of a cord embracng

‘ .‘ any arc of a cylindrical surface (whe-
- ther circular or not), in a plane per
3 i pendicular to the axis of the cylinders
,,' also let Aa, Bb, Ce, &e. be normals o

N perpendiculars to the curve, inclined
t0 onc another at equal angles, each represented by Al.
Tmagine the surface of the cylinder to be removed betweel
each two of the points A, B, &c. in succession, so that the
cord may be supported by a small portion only of the surface
remau?ing at each of those poiuts, whilst in the intermediate
Space Xt assumes the direction of a straight line joining them
and does not touch the surface of the cylinder. et P,
represent the tension upon the cord before it has passed oveT
the Poiflt A ', the tension upon it after it has passed over
that poiut, or before it passes over the point B ; T, the tension
upon it after it has passed over the point B, or before it
passes over C; T\ that after it has passed gver ,c . and let Py
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represent the tension upon the cord after it has passed over
the nth or last point Z.

Now, any point B of the cord is held at rest by the ten-
sions T, and T upon it at that point, in the directions BC
and BA, and by the resistance R of the surface of the cylin-
der there ; and, if we conccive the cord to be there in the
state bordering upon motion, then (Art. 138.) the direction
of this resistance R is inclined to the perpendicular 4B to
the surfice of the cylinder at an angle RBb equal to the
limiting angle of resistance ¢.

Now, T, Ty, and R are pressures in equilibrium; there-
fore (Art, 14.)

T; sin. ToBR *
T, sin. T\ BR’ '
-3

Al
but T,BR=ABb~RBb=}(r— AaB)—RBb=5— 5 ~4,

x

. Al
TyBR =CBb+ RBb=3(r—B6C)+ RBb=5— 5 +

o 5= (=0)} o (g-9)

eSS ST t= ;
Iy sin-{%— (%-}-:p } cos.(g—&-}-@)
o () () s

T. =T"ab I
‘ cos. (%9+¢) cos. 5 cos. g—sin. g 3. ¢

ot dividing numerator and denominator of the fraction in the

tecond member by cos. %; . €08, Py

Ad
2tan.-2—tana@ -

T!_TQ__
- Ad -
T 1~ tan. 7 tan.p
SuPPOSG now the angles Ae¢B, Bbcr_ s;c.each of wlueh
®quals A9, to be exceedingly small, aund therefore the pomts
A, B, C, &, to be exceedingly near to one ancther, and
Q - :

£
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exceedingly numerous. DBy this supposition we shall man
festly approach exceedingly near to the actual case of an zﬂf
JSinite mumber of such points and a continuous surface; :-md' !
we suppose A infinitely small, our supposition will coincide
with that case. Now, on the supposition that AY is exceed-

4 "
ingly small, tan.f—l2 .tan. ¢ is exccedingly small, and m3j

be neglected as compared with unity ; it may therefore be ne-
glected in the denominator of the above fraction. Moreovel

Af A4

2=

Afbeing exceedingly small, tan.

E‘T:-E:m.@ A8 - T ="Ty(1 + tan, ¢ A
2

Now the number of the points A, B, C, &c. being repre-
sented by 5, and the whole angle AdZ between the extreme H";‘.
mals at A and Z by 6, it follows (Euclid, i. 82.) that §=n. A%

therefore Aﬁ:g :
n

. ¢
s =T (1 +,, tan. 9).
Similarly, P=T,(1 +% tan. ¢),

g
sz ITa (1 +;L tan. (P),
&e, :&C.:&C.
g
Tm=P; (1 + . tan. ¢

* If we consider the tension T o8 a function of 8, of which any con
secutive velues ate represepted by T, and Ty, and their difference of the

. —aT (L
increment of T by AT, then T==tan. ¢. AQ; therefore A4 AgT

— tan, ¢ ; therefore, passing to the fmiz IT%%‘= ~ tan. ¢, and integrating
between the Bimits 0 and 8, obzerving that at the latter limit T=Pu

and that at the former it equals P,, we have log. (%’)5 @ ton. ¢
1 1
therefore PP, f0-¢
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Multipiying these equations together, and striking out
factors common to both sides of their product, we have

¢
P,=P,(1 + -tan. o7 ;

D n—102 a—1n—2 6 ;
or P1=P.2]’ 1+:r11,—z tan.q.-{-u-r-é—;;: tan. %+nTw3-—;tan.3¢+&c.},

(D6

GTP'=Pﬂ{l+9tan. ¢+-—Q£99tan.ﬂ¢+ 5 3 mmn.’¢+...}’

Now this relation of P; and P, obtains however small Af
be taken, or however great n be taken, Let n be taken infi-
nitely grcat, so that the points A, B, C, &c. may be infinitely
numerous and infinitely near to each other. The supposed
case thus passes into the actual case of a continuous surface,

.1 )
the fractions 7 i, 3: &¢. vanish, and the above equation be-

Comes

’ . 99’ .ﬂ ﬂ’tan.a
P1:P9{1+etaln ¢+ ;a?2¢+ﬁ.g+-...}.

But the quantity within the brackets is the well known‘ex-

pansion (by the exponential theorem) of the function Phia’

oo P=Petee L L. (210)

. Since the length of cord S,, which passes over the point A,
s the same with that S which passes over the point Z, it
follows that the modudus (Art, 152.) of such a cylindrical sur-
face considered as a machine, and supposetl to beﬁxed and
® have a rope pulled and made to skip over it, s

Up=Up™*. ... @)

It is remarkable that these expresaimi‘“-e wholly. inde-
Petdent of the form and dimensions of the surface sustaining
the tension of the rope, and that they depend exclqmve!;
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upon the inclination 4 or AdZ of the normals to the points
A and Z, where the cord leaves the surfacc, and upon
the co-efficient of fiction (tan. ¢), of the material of which
the rope is composed and the material of which the surface
is composed, It matters not, for instance, so far as the frice
tion of the rope or band is concerned, whether it passes ovet
a large pulley or drum, or a small one, provided the angle
subtended by the are which it embraces is the same, and the
materials of the pulley and rope the same.

In the case in which a cord is made to pass m times round
such a surface, § —=2mn ;

.. Pl :1)252 T tan\q;_

And this is true whatever be the form of the surface, s0 that
the pressure neeessary to cause a cord to slip when wound
completely round such a eylindrical surface a given number of
times is the same (and is always represented by this quantit}'};
whatever may be the form or dimension of the surface, pro-
vided that its material be the same. It matters not whethe
it be squave, or cireular, or elliptical.

189. If P/, Py, P\, &e. vepresent the pressurcs which must
be applied to ane extremity of a rope to cause it to slip whet
wound once, twice, three times, &c. round any such surface:

the same tension P, being in cach case supposed to be appli ed
to the other extremity of it, we have

r—p Frtang ’ 1 4mtan, 6 tan. o —
Py =Pee s Pyr=P¢ P =Py , &c. =&

So that the pressures Py, P, Py”, &, are in a geome-

trical progression, whose common ratio is &7 ™, which ratio
1s always greater than unity. Thus jt appears by the expt-
nirtents of M. Morin (p. 153.), that the co-eflicient of friction
between hempen rope and oak free from unguent is "33, when
the rope is wetted. In this case tan, #=+33 and 2= tan-?
=2x 814159 x 33 =207345. The common ratic of the
Progression is therefore in this cage 20 oy it is the number
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whose hyperbolic logarithm is 207345, This number is
7:95; so that each additional coil increases the friction nearly
cight times. Had the rope been dry, this proportion would
have been much greater. If an additional Aalf coil had been
supposed continually to be put upon the rope instead of a
whole eoil, the friction would have been found in the same
wa;,' to increase in geometrical progression, hut the common
ratio would in this case have been &*'*"# instead of ¢*'**®,
In the above example the value of this ratio would for each
half coil have been 2-82.

The enormous increase of friction which results from
each additional turn of the cord upon a capstan or drum,
may from these results be understood.

{90- We may, from what has been stated above, readily ex-
plain the reason why a kuot connecting the two extremities of
2 cord effectually resists the action of any force tending
to separate them, If a wetted cord be wound round a
cylinder of oak as in

Fig. 1. a P
n N Fy. 2. Sfig. L., and its extremi-
+ ties be acted upon by
two forces P and R, it
has been shown that P
Px 4 will notovercome R, un-

" less it be equal to dome

‘{'{htjl‘c about eight times that force. Now if the string to which
* s attuched be brought underneath the other string so
5 to be pressed by it against the surface of the cylinder,
s atm, fig, 2. then, provided the friction produced by this
Pressure be not less than one eighth of P, the string will not
Move even although the force R cease to act. Axzd if both
exltremities of the string be thus made to pass hetween the
coil anc.l the cylinder, as in fig. 3., 8 still less pressure upon
:ﬁch w%ll be requisite.  Now by diminishing the radius of
S.e Cyhndel', this pressure ean he increased to any extent,
nce, by a known property of funicular curves, it varies in-
' ed
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versely as the radius.* We may, therefore, so far diminish
! the vadius of a cylinder, as that no force, however great, shall
. be able to pull away a rope coiled upon it, as represented it
R fig. 3., cven although one extremity were loose, and acted
upon by no force.

Let us suppose the rope 1o
be doubled as in fig. 4o a“fi
coited as before. Then 3t 1s
apparent, from what has been
said, that the cylinder may be
made so small, that no forceslP
and P’ applicd to the extremitics
of cither of the double cords will be sufficient to pull them
from it, in whatever directions these are applied. '

Now let the eylinder be removed. The cord then be”?g
drawn tight, instead of being eoiled round the eylinder. wil
g he colled round portions of itself, at the points m an(?l n; and
] instead of being pressed at those points upon the cylinder by
a force acting ou one portion of its eircumference, it will be
pressed by a greater force acting all round its eircumference:
All that has been proved before, with vegard to the Impossl
bility of pulling either of the cords away from the coil when
the eylinder is inserted, will therefore now abtain ina greater
degree; whence it follows that no forces P and P’ acting ¥

pull the extremities of the cords asunder, may be suflicient t0
scparate the knot.

v T AR ARSI LA

Tue Friction Briak.

1911. There are certain machines whose motion fends, at
certain stages, to a destructive acceleration ; as, for instance, @
crane, which, having raised a heavy weight in one position of its
beam, allows it to descend by the action of gravity in another;

Or a railway train, which, on a certain portion of its line of
b

transit, descends a gradient, having an inclination greater

* This property will be : . C
. proved in that portion hich treats
'E}:k . of the TH EORY OF C:ONST“UCT!B‘H, po Of the Wﬂrk v
kg?t,%sﬁh
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than the limiting angle of resistance. In each of these cases,
the work done by gravity on the descending weight exceeds
fii'e .Work expended on the ordinary resistance due to the
friction of the machine ; and if some other resistance were
not, under these circumstances, opposed to its motion, this
excess (of the work done by gravity upon it over that ex-
pended upon the friction of its rubbing surfaces) would be
accumulated in it (Art. 180.) under the form of vis viva, and
be accompanied by a rapid acceleration and a destructive
"6306_1ty of its moving parts. The extraordinary resistance
required to take up this excess of work, and to prevent this
accumulation, is sometimes supplied in the crane by the work
of the labourer, who, to let the weight down gradually, exerts
upon the revolving crank a pressure in a direction opposite to
th‘at \.Vhich he used in raising it. It is more commounly sup-
plied in the crane, and always in the railway train, without any
fli‘:‘tfﬁoilt z;ll of the laboure‘r, l.)y a simple pressure of his hand or
o rlf }e 1eve.r of the friction br-ea.k, which useful instrument
Whicfljl ;tb_t‘llted in the accompanying figure under the form‘in
e ,h coxt:lmonly applied tlo the crane,—a form of it which

ay serve to illustrate the principle of its application under
every other. BC represents a
, wheel fixed commonly upon
% that axis of the machine to
! which the crank is attached,
and which axis is carried rovnd
by it with greater velocity than
wheel, which i > al.ayoth.er. The periphery of this
band 1\}38;3 1s usually czf east iron, 18 embraf:ed by a st';rong
t the £ of wrought iron, fixed ﬁrr{lly by its ?xtrelmty A
chort arxfndtze]gOf the machine, and by its extremity E to the
axis or f,] of a bent lever PAE, which turns upon & fixed
e, 'u clrum at A:, and v.vhose arm PA, bemg.prolonged,
weight (?f Ltt})lunterpmse D just suffﬁclent to ‘oyerbalance the
sion, and | earm AP, and to relieve thfa point E of all ten-
when ng foosen the strap from the periphery of the wheel,
ot orce P is applied to the extremity of the arm AP,

¢n the break is out of action. '
Q4
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It is evident that a pressure P applied to the extremity of
the lever will produce a pressure upon the point E, and a ten-
sion upon the band in the divection ABCE, and that being
fixed at its extremity A, the band will thus be tightened upon
the wheel, producing by its friction a certain resistanee upon
the circumferenee of the wheel.

Moreover, it s cvident that this resistance of friction upall
the circumference of the wheel is precisely equal to the ten-
sion upon the extremity A of the band, being, indeed, wholly
borne by that tension ; and that it is the same whether the
wheel move, as in this case it does, under the band at rest,
or whether the band move (under the same tensions upon its
extremities, but in the opposite direction) over the wheel at
rest. Let R and @ represent the tensions upon the ex-
tremities A and E of the band; then if we suppose the
wheel to be at test, and the band to be drawn over it in the
direction ECB by the tension R, and ¢ to zepresent the aﬂgle
subtended at the centre of the wheel by that part of its &l
cumference which the band embraces, we have {equation 210)

R — QEH tan ¢

Let @, vepresent the length of the arm AP, and a the
length of the perpendicular let fall from A upon the direction
of a tangent to that point in the circumference of the whee!
where the end EC of the band leaves it,

Then, neglecting the friction of the axis A, we hate
{Art. 5.) .
P. a, = . ay;
. R___qu“eﬂmw

o Cea L (2R,

1f P, represent any pressure applied to the circumference of
the break wheel, and P, a pressure applied to the working
poing of the machine, whatever it may be, to which the break
is applied, and if P, =aP,+b (Art, 152.)represent the relation
between Py and P, in the inferior state bordering upon mo-
tion by the preponderance of Py; then, when P, is takenin
this expression to represent the pressure W, whose action
upeon the working point of the machine the break is intended
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to control, P, will represent that value R of the friction upon
the break which must be produced by the intervention of the
lever to control the action of the pressure W upon the ma-
chine ; so that taking R to represent the same quantity as in
equation {212), we have

R=aW+5.

Eliminating R between this equation and equation (212), and
solving in respect to P,

P_—_:—j(aww);"““-". e (213)

Tne Baxp.

192. When the circular motion of any shaft in a machine,
and the pressure which accompanies that motion, constituting
together with it the work of the shaft, are to be communi-
tated to any other distant shaft, this communication is usually
{ established by means of a band of leather, which
passes round drums fixed upon the two shafts,
and has its extremities drawn together with a
certain pressure and united, so as to produce a
tension, which should be just that necessary to
prevent the band from slipping upon the drums,
subject to the pressure under which the work is
transferred. The facility with which this com-
munication of rotatory motion may be esta-
v it blished or broken at any distance and under al-
the b < most.every variety of circums'tance, has §‘1'0ught
N ant.i so extensively into use in machinery, ﬂ.mt it may

© Considered s a principal channel through which work is
Made to flow in its distribution to the suctessive stages of

Cve . R .
Iy Drocess of mechanism, carried on in-the same workshop
or mauufactory,

1 ‘ . , -
9?, The sum of the tensions upon the two parts of a band is
"¢ 3ame, whatever be the pressure under which the band is
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driven, or the resistance overcome, the tension of the driving
part of the band being always increased by just so much as
that of the driven part &s diminished,

This principle was first given by M. Poncelet ; it has since
been amply confirmed by the experiments of M. Morin®* It
may be praved as follows +: —In the very commencenient of .thc
motion of that drum to which the driving pressure is applied,
no motion is communicated by it to the other drum. Before
any such motion can be communicated to the latter, a difference
must be produced beiween the tensions of the two parts of the
band sufficient to overcome the resistance, whatever it may be,
which is opposed to the revolution of the dricen drum. Now,
an increase of the tension on the driving side of the band
must be followed by an elongation of that side of the band
(since the band is elastic), and by the revolution of the cireum-
ference of the driving drum through a space precisely cquad.W
this elongation.  Supposing, then, the other, or driven sid
of the band, to remain extended, as before, in a straight line
between its two points of contact with the drums, this portion
of the band must evidently have contracted by precisely the
length through which the cireumference of the driving dram has
revolved, or the driving side of the band elongated. Thus, the
elongation of the driving side of the band is precisely eque!
to the contraction of the driven side, Now, the band being
supposed perfectly elastic, the inerease or diminution of its
tension is exactly proportional to the increase or diminution
of its Jength. The increase of tension on the one side, PTo-
duced by a given elongation, is therefore precisely equal t°
the diminution of tension produced by a contraction equal £
that elongation on the other side, Thus, if 1' represent the
tension upon each side of the band before the driving pres”
sure, whatever it may be, was applied, and if T, and T, 1
present the tensions upon the driving and the driven sides of
the band after that pressure is applied ; then, since T, —T re-

, .
* Nouvelles Expériences sur le Frottement, &c, Metz.
t No demanstration appears (o have been given of it by M. Poncelet:
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presents the increase of tension on the one side, and T T,
the diminution of tension on the other, Tj—~T=T~T;;

oo T+ Te=2T . ... (214).

It is a great principle of the economy of power in the use of
the band to adjust this initial tension T, so that it may just
be sufficient to prevent the band from slipping upon the
drum under any pressure which it is required to transmit,

Tfhe means of making this adjustment will be explained here-
alter,

Tae MopurLvs oF THE Banp.

194? For simplifying the consideration of this important ele-
""ent in machinery, we shall first consider a particular case
”‘f its application. Let the two drums, whose axes are C; and
C?’ be supposed equal to one another, so that the two parts
o tf,l_e baud which pass round them may be parallel.  Let,

gal Fig.2. moreover, the centres of the two
drunts be in the same vertical
straight line, so that the two parts
of the band may be vertical.

Let P, and P, be pressures ap-
plied, in vertical directious, to turn
the drums, and at perpendicular
distances from their centres, repre-
sented by C,P, and C;P;; of which
pon o 2is the working or driven pressure, or that which is

¢ point of yielding by the preponderance of the other
ofl;;hindﬁg + 1. Py is seen applied on the same side of the centre
T rums as P, and in fig. 2. on the opposite side. Let
1and T; represent the tensions upon the two paris of the

) .
s T being that on the driving, and Ty that on the driven

Pressures P

o =C\Py, a,=C,P,,

r=radius of cach drum, -

W =weight of each drum,
p==radius of axis of cach drum,
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R, and R,=—resistances of axes of drums,
¢ =limiting angle of resistance.

Now, the parallel pressures P, W, T, T, R, applied i
the lower drum, are in equilibrium ; therefore (Art. 16.),

Ri= £ (T + Te= P — W)
or substituting for T, + T, its value 2T {equation 214),
Ri=+RT~P,~W) .., ... (2L5).

The sign + being taken according as 27T is greater or less
than P, +W,, or according as the axis of the lower dru.m
presses upon the upper surface of its bearings, as shown 0
Jig. 1., or upon the lower surface, as shown in fig. 2. In
like manner, the pressures Py, W, T,, Ty R applied to
the upper drum, being in equilibrium,
R22T1 +Tg¢ PQ-I— VV,

or (equation 214) R,=2TE D, + W .. . . (216),
where the sign % is to be taken according as Py is aP‘P“Q‘{
on the same side of the axis as P, or on the oppesite side-

Since, moreover, R, and R, act, in the state borderisg
upon motion, at perpendicular distances from the centre of
the axis, which are each represented by p sin. ¢ (Art. 133.),
we have, by the prineiple of the equality of moments,

Piay+Tor=Tw + Ry sin. 2 (217),
Poay+ Tar 4 Ryp sin. @:T]r} TtV

observing that the resultant of all the pregsures applied ¥
each drum (excepting ouly the resistance of its axis) must be
such as would alone communicate motion to it in the dircetion
10 which it actually moves, and thercfore that the resistanc?
of the axis, which is opposite to this resultant, must tend t0
communicate motion to the drum in a direction opposite 10
that in which it actually moves,

Subtracting the above equations, and transposing,
Pia, =Py =(R; + Ry) p sin. ¢.
Substituting the values of R, and R, from equations (215) and
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(216), we obtain, in the case in which the negative sign of R
s to be taken, or in which 2T is less than P, + W, the axis
€ resting upon the lower surface of its collar as shown in
Jig, 2.

Py —Poao=(P, F Py +2W)e sin. ¢ ;
and in the case in which the positive sign of R, is to be

taken, 2T being greater than P, + W, and the axis C, pressing
against the upper surface of its collar, as shown in fig. 1.,

Pia;~ Pya; =(4T—P, TPy sin. ¢.

Transposing and reducing, we obtain for the relation

between the driving and driven pressures in these two cases
fespectively,

p,=p,(%tesin gy  2Wp sin. ¢
=Py (a;—p sin. cp) g —psing "7 (218),
P,=P (“i?fﬁ@ﬁ) ATpsin. ¢ (219)

\a+psin.g) T gy +psinag " T ’

and therefore (by equation 121), for the moduli in the two
Cuses,

—(PY .
U=U I.+(a'g) @] 28, Wpsin.p (220)
1=U,1- L . et 4}
(PN . a;—p SN, $
1 (Gl) sin, ¢‘

3 -
15(&) s .
U,=y ::_(EJ sy @ +E1_,,'§&?.‘9-3€ . ... (220)
: 1+(ﬁ) . a,+p sin. ¢ -
L o) S <p‘ .
In all which equations the sign F is to be taken according

i .Pﬂ Is applied on the same side of the line C;Cqp joining"the
*Is a3 Py, or on the opposite side.

199’. Lo determine the initial tension T upon the band,‘a? that
" may not slip upan the surface of the drum when subjected
to the given vesistance opposed to its motion by the work. .

Suppose the meximum resistance which may, during the
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- action of the machine, be opposed to the me-
( t@\v tion of the drum to be represented by a pres
'} sure P applied at a given distance a from its

! centre Cp.  Suppose, moreover, that the band
- has received such an initial tension T as shall
b ! /7t just cause it to be on the point of slipping when
' J the motion of the drum is subjected to this
maximum resistance; and let £, and £, be the
tensions upon the two parts of the band when it is thus just
in the act of slipping and of overcoming the resistance P
Now, the two parts of the band being parallel, it embraces on¢
half of the circumference of each drum ; the relation between
£y and ¢ Is therefore expressed (equation 210) by the equation

—_
TN
r®

x tan. ¢
x ta] . p— —
ty=ige” %, whenee we obtain Fif_?}zﬁ - —1 But {4+ 4=
LR I’l f2 s lan. ¢

2T (equation 214),

x tah. ¢

o b—ty=2T(F — Y.

olan, ¢
£ +
Ailso, the relation between the resistance P, opposed to the
motion of the upper drum, and the tensions #, and # upo!
the two parts of the band, when this resistance is on the

the point of being overcome, is expressed (equation 217) by
the equation

Pa+ty+ Rep sin. g =t,7;

or substituting the valye of R, (equation 216), and transpos
ing,

Pa+@TF P+ Wp sin. o= (,—ts)rs

whence, subﬁtituting the value of #,—{,, determined abo¥®
- : and transposing, we have

atan. g
P(aFp sin, )+ Wpsin, @:2'1‘{(!;.:;:@1\ e p SIN. CP}i
¥/
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S . i PlaFp sin. ¢)+ Wpsin. ¢

7 iRiL 9

e — 1 .
an. ¢ )r— sin. ¢ I
e 4+ 1 N

196, The modulus of the band under its most general form.

The accompanying figure represents an elastic band passing
round drums of unequal radii, the line
joining whose centres C, and C, is in-
clined at any angle to the vertical, and
which are acted upon by any given
pressures Py and Py, P, being sup-
posed to be upon the point of giving
motion to the system.
. Let T, and T, represent the ten-
Sohs upon the two parts of the band, T} being that on the
driving side,
“1 % perpendiculars upon the directions of P, and P, re-
Spectively,
fu% the inclinations of the directions of P, and P to the
h[]e CICQ-
"1 72 the radii of the drums.
W1 W, the weights of the drums.
' the inclination of the line C,C, to the vertical, and « the
cination of the two parts of the band to one another.
1 72 the radii of the axes of the drums.
¢ the limiting angle of resistance between the axis of the
fum ang its collap, '
thii R, the TeSi_Stances of the collars in which t{:e axes of
" ]“11115 turn in the state bordering upon motion, oF the
Sutants of the pressures upon these axes. The perpen-
c;‘il&r distances at which these resistances act ﬁom the
N 1es of the axes are (Art. 153.) a sin. § lnd f2 8. ¢.
"¢ the pressures acting upon the lower drum are Ty, T,
; Viand Ry, and that these pressures are in equilibrium,

2t *cting through the centre of the axis, and T, and R,
Cling to

in

turn the drum in one direction about the axis, snd =




K

Re= {(T.+T,) €05 4D, cog, 6,— W
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P, and T, to turn it in the opposite direction; we have, by
the principle of the equality of moments (Art. 153.),

P+ T =Tr + Rp, sin. ¢.

And since Ty, Ty, Py, Wy, R, are similarly in equilibrivm
on the upper drum, W, acting through the centre, 2nd P
Ry Ty acting to turn it in one direction, whilst Ty acts 10
turn it in the opposite direction,

e I)Qﬂ,g + TQTQ + RQFQ s11l. ¢ :'rlrﬁ H

" Py —(T,—Tyr,=Rypy sin. ¢ '
PQ&Q—' (Tl — TQ}TE = - B.QPQ Si'ﬂ. ¢

Let T,—Te=2¢, and T,+ T, =27,

. Plal—f;)l?'l:RlP; S1TL & (023),
Pgﬂg-— Qti'g: '-"Rgpg sin. ¢

To determine the values of Ry and R let the .31‘885?[85
applied to each drum be resolved {Art. 11.) in directio®
parallel and perpendicular to the line C,Cy; those ﬂpPth N

the lower dram which, being thus resolved, arc pczraliﬁl fo
C.Cy, ate

+ T cos, &, + Ty o8 @, — P, cos, b, — W, COSh

those pressures being taken positively which tend to mmle
the axis of the drum from C, towards C,, and those negattéel

whose tendency is in the opposite direction.

1. - {0
In like manner the pressures resolved p61‘[3'311‘11‘3111"1I
C\C, are

— T, sin, a, + Tysin, u, + P, sin. 6, — W, s &

those pressures being taken negatively whose tendency
thus resolved perpendicular to C.C, is to bring that I
Dearer to a vertical direetion, and those positively whose ten-
denty isin the opposite direction.

Observing that R, is the, resultant of all these pressi™™
we have (Art, 11.)

when
me

-0
M | 8
veosjad-{ P sin, 9]___('111_.']['2) sin. ¢
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Proceeding similarly in respect to the pressures applied to
the upper drum, we shall obtain

Ra={(T,+1;) cos. a—P, cos. 8,4+ W, cos. ]2+ { P, sin. 8,4 (T, —Ty) sin, a— W, sin.}2;
or substituting 2T for Ty + 7T, and 2¢ for T,—Ts,

Ri={2T cos. a—P, cos. 6:—W, cos. 1}2+{P; gin. 6,2t sin. a— W, sin. c}'}' . (224).
Ri={2T cos. a—P, cos. 6,4+ W, cos, ¢}2 4 { Py sin, 03422 sin., a— Wy sin, «}?

By eliminating R, R, and ¢ between the four equations (223)
and {224), a relation is determined between the three quan-
tities Py, Py, T, To simplify this elimination let us suppose
that the preceding hypothesis in respect to the directions in
which the pressures are to be taken positively and negatively
18 50 made, that the expressions enclosed within the brackets
o the above equations (224) and squared may, each of them,
Tepresent a posilive quantity, ILet us, moreover, suppose
the first of the two quantities squared in each equation to be
tonsiderably greater than the second, or the pressure upon
the axis of each drum in the direction of the line C; Cq j?m-
ing their centres, greatly to exceed the pressure upon it in a
direction perpendicular to that line; an hypothesis \:v]‘nch
¥ill in every practical case be realised. These suppositions
being made, we obtain, with a sufficient degree of approxi-
lation, by Poncelet’s Theorem®, ' :

R.='96{2T cos.a—P, cos. ,—W, cos,} 4 4{P, sin. 8, —2fsin. dv-—wj..‘l}ﬂo t
R2='95{2T cos. a—P; cos. €4+ W, cos. 1} +4{ Py sin. 64+ 24 sin, a—W, sin. i},

Substituting these values of R, and Re in equation (283),
and reducing, we have ' |

I};:’;;—Zttir.--"im sin. a sin, ¢)=p,{1-92T cos. a—PyG— Wiy} s g } .. (295),
T Y S

—4pg sin, a sin. ¢)= -—p,{ 1:92T cos. a—Pﬁw+W173} ’m¢

where 8, =("96 cos. § —4 smﬂl),
By =(-96 cos. §-4sin. b)
71=(96 eos. 1 A simi) T - .
Yg:('gﬁ cos. ‘__:.4,-i'n..‘}',:' : .- CoEE

x>

"S“Appendii- . : i z .
R . _ :
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Eliminating ¢ between these equations, and neglecting
terms above the first dimension in p, sin. ¢ and pa sit. ¢,

+P.a,(r,—4pe st a sin. ¢) - 3(‘ + prs{ 10927 cos. a—P 3 — W) }S;m‘ 5. (8)
~ Py (11 —4p, sit. & sin. ) +piri(1°92T eos, a—Pyda+ Ways)

a being for the most part exceedingly gmall, the terms
“dp, sin. asin. @ and *4pysin. asin. ¢ may be neglected; W
shall then obtain by transposition and reduction

+Prairg(1 -{-Plfl sin.z;.)‘I 4+ 92T (pire ) oS a
5_ = sineg . . . (227)

—Paagrl(lu—%j sin, ¢} (W opryre— Wapysr) j

If this equation be compared with equation (219), it will
be found to agree with it, mutatis mutandis, except that the
coefficient 192 is in that equation 2. This difference mani-
festly results from the approximaie character of the theorem
of Pancelet.,

Substituting the latter co-efficient for the former, multiply-
ing both sides of the eguation by (] -—E"(E,l sl £y neglecting

terms of more than two dimensions in "5, 72, and sin. ¢, and

i
ﬂl’ 4B
reducing,

={% ph Py +2T 08, . 998},
R AL C RIS bt Fomat get) EESE

which is the relation between the moving and working pres-
sures in the state bordering npon motion. From this rela-
tion we obtain for the MmopuLus of the band (equation 121)

3, pd
U= — o, | fade . ) +2T(PJ.?'2+P2"1) cos. a } . . 294)
{ ( d; + P ) sin, ¢} U+8, -(Wip}Tlrg—‘WgFg}fzrx) S ¢ - { .

If the angle 6, be conceived to increase unmtil it exceed

ﬂ- -
Os Pg will pass to the opposite side of C,(,, and B will be-

come negative ; whence it is apparent, that equation (@29}
agrees with equation (219) in other respects, and in the
condition of the ambiguous sign. 1t iz moreover apparent:
from the form assumed by the modulus in this case and in that
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of that of the preceding article, that the greatest economy of
power is obtained by applying the moving and the working
Pressures on the same side of the line C\Cy joining the axes
of the drums. ‘This is in fact but a particular case of the
general principle established in Art. 168,

197. The initial tension T of the band may be deter-
mitied precisely as in the former case {equation 222). Re-
presenting by § the angle subtended
by the circumference which the band
embraces on the second or driven
drum, by P the maximum resistance
opposed to its motion at the distance
a, by ¢ the limiting angle of resist-
ance between the band and the sur-
tensic face of the drum, and by- ¢, and -tg the
et 1S pon the two parts of the band, when its maximum

sistance being opposed, it is upon the point of slipping;

obsery: . . 3
serving, moreover, that in this case 2(#;—#e) or 24 1s repre-
ftan. ¥

*ented (Art.195.) by 2'1‘2,;-“—. ;; then substituting in the
e+ 1 :

::;)nd of equations (225) this value for 2¢, and P and a for Py
ol % and neglecting the exceedingly small term which in-
ves the product sin, « sin, ¢, we have ’

ftan. $

E~ 1 .
Pa—or ( ‘ﬁ,;,-)rg: —pal2T cos.a—PBg + Wyel sin. ¢.
g+ 1

‘?ﬁ:OLSmce « represents the inclination of the two parts of
Surfacand to one another; since, moreover, thase fouc_h the
the r.e;--a fthe drums, and that § represents the indlination of
touc:h;a N dl‘.aWn from the centre of the lesser drum- to the
0 innipmm”’ therefore §—x—«. Substituting this value
e above equation, and solving it in zespect to T, we

R 2
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[ - : " s}
T:;} P(?’—jzﬁ?:lnn ?)'*"ngg')fg s § 1 e (230)_
4 1

e T3— Pg CO8. & 511, ¢

e 4+ 1

198. The modulus of the band, when the two parts of i, which
intervene betweén the drums, are made to eross one another

If the directions of the two parts of the band be made
to cross, as shown in the accompanying
figure, the moving pressure Iy upon the
second drum is applied to it on the side
opposite to that on which it is applied
when the bands do not cross; so thatin
this case, in order that the greatest eco-
nomy of power may be attained (Art.
168.), the working pressure or resistance
Py should be applied to it on the side opposite to that in
which it was applicd in the other case, and therefore on the
side of the line C,Cy, opposite to that on which the moving
pressure P upon the first drum is applied. This disposition
of the moving and working pressures being supposed, and
this case being investigated by the same steps as the pre-
ceding, we shall arrive at precisely the same expressiond
(equations 228 and 229) for the relation of the moving and
the working pressures, and for the modulus.

In estimating the value of the initial tension T {equation
230) it will, however, be found, that the angle §, subtended at
the centre Cy of the second drum Ly the arc KML, which
is embraced by the band, is no longer in this case Tepre
sented by m—a but by #+a, This will be evident if we
consider that the four angles of the quadrilateral figure
C¢KIL being equal to four right angles, and its angles at K
and L being right angles, the remaining angles KIL and
KCL are equal to two right angles, so that KCoLi=7—%3
but the angle subtended by KML equals 25— KCLis it
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equals therefore w +«. If this value be substituted for § in
equation (230) it becomes

1! Pla—poflgsin. ¢)+ Wopgsin. g 1
T:Q(f ('M;"':l L oo .. (231
E

l i ;u)ﬁt;a.n.|p> Tg—pg COS. & sin. @
e 4+ 1

Now the fraction in the denominator of this expression being
essentially greater in value than that in the denominator of
the preceding {equation 230), it follows that the initial ten-
sion T, which must be given to the band in order that it may
transmit the work from the one drum to the other undera
given resistance P, is less when the two parts of the band
eross than when they do not, and, therefore, that the modu-
lus {equation 229) is less; so that the band is worked with
the greatest econaomy of power (other things being the same)
when the two parts of it which infervene between the drums
are made to eross ome another. Indeed it is evident, that
fInce m this case the arc embraced by the band on each
drum subtends a greater angle than in the other case, a lesa
tension of the band in this case than in the other is required
(Art. 187.) to prevent it from slipping under a given resisi-
diee, 20 that the frietion upon the axis of the drums which
Tesults from the tension of the band is less in this case than
the other, and therefore the work expended on that friction
less m the same proportion. R

Tue Texru or WHEELS

199, Tet A, B represent two circles in contaet
moveable about fixed centres at C; dnd € . It is
evident, that if by reason of thefr
two circles upon one another at-T¥
rotation given to A be communic ne
angles PC,D and QC;D described 111 tb'e same
time by these two circles will be such as will ms

the ayeg PD and QD which they gubumd at the em:llmfﬂ'

r 3
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ences of the circles equal to one another. Let the angle
PC,D* be represented by 4, and the angle QCql) by by
also let the radii C,D and C,D of the circles be represented
by ry and 7. Now, arc PD=r,, arc QD =rp5,; and since
PD=QD, therefore r8, =z rob;;

91 'y
P 9 Tade)
O

The angles described, in any the same time, by two circles
which revolve in contact are therefore inversely pmportionﬂl
to the radii of the eircles, so that their angular velocities
(Art. 74.) bear a constant propertion to one another; and
if one revolves uniformly, then the other revolves uniformly ;
if the angular revolution of the one varies in any proportiols
then that of the other varies in like proportion.

When the resistance opposed to the rotation of the driwer
circle or wheel B is considerable, it is no longer possible &
give motion to that eircle by the friction on its circumference
of the driving circle. It becomes therefore necessary in the
great wajority of cases to cause the rotation of the driven
wheel by some other means than the friction of the ciccurt
ference of the driving wheel,

One expedient is the band already described, by mean® of
which the wheels may be made to drive one another at any
distances of theiy centres, and under a far greater resistance
than they conld by their mutual contact. When, boweven
Fhe pressure is considerable, and the wheels may be broughts
mto actual contact, the eommon and the more certain method
is to transfer the motion from On®
to the other by means of projection®
on the one wheel called TEETH
which engage in similar projectio®
on the other,

In the construction of these We.th
the problem to be solved is, 10 8%
such shapes to their surfaces ©

*
Or rather the are which this angle subtends to radius unity:
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mutual contact, as that the wheels shall be made to turn by
the intervention of their teeth precisely as they would by the
friction of their circumferences.

200. That it is possible to construct teeth which shall

answer this condition may thus be shown.

5 Let mr and m's’ be two curves, the one

| described on the plane of the circle A, and

_ the other on the plane of the circle Bj;

.. and let them be such that as the circle A

/ revolves, carrying round with it the circle

e B, by their mutual contact at D, these

to curves mn and m'n’ may continually touch one another,

ulte‘ring of course, as they will do continually, their relative
pusitions and their point of contact T.

It is evident that the two circles would be made to revolve
by the contact of teeth whose edges were of the forms of these
o curves mn and m'n’ precisely as they would by their
friction upon the circumferences of one another at the point
Dj; for in the former case a certain series of points of con-
tet of the circles (infinitely near to one another) at I, brings
2bout another given series of points of contact (infinitely near
o one another) of the curves mn and m'n’ at T; and in the
latter case the same series of points in the curves mn andm'n’
brought into contact necessarily produces the contact of the

“ime series of points in the two circumferences of the two
citcles at ),

To construct teeth whose surfaces of contact shall possess
the properties here assigned to the curves mn and m's’ is
the problem to be solved. Of the solution of this problem
the following is the fundamental principle ; —

L. In order thap two circles A gnd B may be made o revolos.
by the contact of the surfaces mn and m' of their teslh
» .4. o . oo
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precisely as they would by the friction of their eircumfer

. ences, it is necessary, and if is sufficient, that
a line drawn from the point of contact T of
the teeth to the point of contact ) of the
circumferences should, in every position of
the point T, be perpendicular tothe surfaces
in contact there, 1. e, @ normal to both U
curves mn and m'n'.

To prove this principle, we must first establish the following

LEMMA : — If two circles M and N be made to revolve about
e the fixed centres E and F by their mutual
SN ) contact at I, and if the planes of these

{ l‘e/tﬁ | circles be conceived to be carried round with
‘ w ! them in this revolution, and a point P on the
\\\L/’/ plane of M to trace out a curve TQ on thf
plane of N whilst thus revolving, then ¥
this curved line PQ precisely the same as would have been
described on the plane of N by the same point P, if the
latter plane, instead of revolving, had remained at rest allld
the centre E of the circle M having been released from 1ts
axus, that cirele had been made to roll (carrying jts plane
with it) on the circnmference of N. For conceive O t0 1
present a third plane on which the centres of E and ¥ at
fixed, Tt is evident that if, whilst the circles M and N are
rev?lving by their mutual contact, the plane O, to which
th.e1r centres are both fixed, be in any way moved, DO chang®
“"%1 thereby be produced in form of the curve PQ, which the
pownt P in the plane of M is describing upon the plane of N
such a motion being common to both the planes M and N.#
Now let the direction in which the circle N is revolving be
that shown by the arrow, and its angular velocity uniform;

and conceive the plane O to be made to revolve about F with

% . . :
Thus, for Instance, If the circles M and N continue to revolve, 'vii’

:;y_ evidently place the whole wachine in a ship under sail, in a move

ringe . .

of the c' or up? a revolving wheel, without in the least altering the;:m;;
urve, - . . ale M,

made to » Which the point P, revolving with the plane of the circle

cated i

ini-
trace on the plane of N, because the motion we have ¢©
§ Common to both these circles,
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an angular velocity (Art. 74.) which is equal to that of N, but

7% inan opposite direction, communicating this
/ ’k/\b?\ angular velocity to M and N, these revolving
[ \; meantime in respect to one anotber, and by
: 4 Y. their mutual contact, precisely as they .did

PN S before.*

It is clear that the circle N being carried
round by its own proper motion in one direction, and by the
motion common to it and the plane O with the same angular
velocity in the opposite direction, will, in reality, rest in space;
‘_whi]st the centre E of the circle M, having no motion proper to
tself, will revolve with the angular velocity of the plane O, and
the various other points in that circle with angular velocities,
compounded of their proper velocities, and those which they
Tecelve in common with the plane O, these velocities neutral-
1ing one another at the point L of the circle, by which point
115 in contact with the eircle N.  So that whilst M revolves
found N, the point I, by which the former circle at any
t‘_me touches the other, is at rest; this quiescent point of the
¢leele M nevertheless continually varying its position on the
¢ircumferences of hoth circles, and the cirele M being in fact
made to roll on the eircle N at rest. '

Thus then it appears, that by communicating a -certain
ommon angular velocity to both the circles M and N about
the centre F, the former circle is made to rol upon the other
@ rest; and moreover, that this common angular velocity does
"ot alter the form of the curve PQ, which a point P in the
Plane of the one circle is made to trace upon the plane of the
O.the" s or, in other words, that the curve traced under. these
“Itmstances is the same, whether the circles revolve round
ﬁ?ed Centres by their mutual contact, or whether the centre
Zirone circle be released, and it be made to roll upor the

“Umference of the other at rest. = :
ot ’f}“s lemma being established, the truth of the PmpﬂéﬁOﬂ

#ted at the head of this article becomes evident; for if M

" Mand N may be imagine nced ‘ n'nhoﬁ@ﬂwhﬁ"m :
i?tlvat rest, and ﬂ{en mad:g:.) fe\::iv‘: bgllmhrdulpgn respect o the motise
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roll on the circumference of N, it is evident that P will at
any instant, be describing a circle about their point of con-
tact L.*
Since then P is describing, at every iustant, a circle abowt
L when M rolls upon N, N being fixed, and since the corse
described by P upon this suppesition is precisely the same
as would have been traced by it if the centres of both cireles
had been fixed, and they had turned by their mutual contact
it follows that in this last case (when the circles revolve about
fixed ceutres by their mutual contact) the point P is at any
nstant of the revolution describing, during that instant, 3
exceedingly small circular arc about the point L; whenee it
follows that PL is always a perpendicular to the curve rQ
at the point P, or a normal to it.
Now let p be a point exceedingly ncar to T in the curve
e m'n!, which curve is fixed upon the plase of
L 3\ the circle A. Tt is evident that, as the powt
A P passes through its contact with the curve
:\ mn at T (see Art. 200.), it will be made to
+} describe, on the plane of the circle By 20
./ exceedingly small portion of that eurve mt
But the curve which it is (under these @&
cumstances) at any instant describing upon the plane of B
has been shown to be always perpendicular to the line DT;
t.he curve wa is therefore at the point’l’ perpendicular to the
Line I.)T‘, whence it follows that the curve w'a’ s also P&
pendicular to that line, and that DT is a normal to botk
Ziiieesfgzei s(fl T-’ ’T his is the characterist?c property (il:::
of a continual ::) nt’ " t'h e they may Satle_Y_ e Imncircles
revolve hy the cn at:\t with oue m}other, whilst ¢ leD an
therefure cmwersl)r]ltac.t of their circumferences Btb ,theil‘
mutual contact ely, so that. these curves may, y they
would receive f:-fl T the circles t}.le same motion £
m the contact of their circumferences.

* For i irde :
either circle may be imagined to be a polygon of

number of & |
k. of stde?, o one of the angles of which tne rolling circle il
¥ 1nstant, be in the act of turning

an inﬁ"i“’
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R02. To describe, by means of circular arcs, the form of a
tonth on one wheel which shall work truly with a tooth of
ary giren form on enother wheel.

Let the wheels be required to revolve by the action of their
J— teeth, as they would by the contact

| ™~ of the circles ABE and ADF, called
their primitive or pitch circles. Let

p AB represent an arc of the pitch
circle ABE, included between any

LI

7

.,

\:.'.:‘:__“:;- two similar points A and B of con-
"”;/ﬁzrd\ secutive teeth, and let AD represent
"::»._‘;',',,,, g ) an arc of the pitch circle ADF equal
N / to the arc AB, so that the pointa D
~—% and B may come simultaneously to
A, when the circles are made to revolve by their mutual con-
tact.  AB and AD are called the pitches of the teeth of the
o wheels.  Divide each of these pitches into the same
n“f“b”r of cqual parts in the points a, b, &c¢., &, ¥, &e.; the
Points @ and @, & and ¥, &c. will then be brought sémul-
{aneously to the point A. Let mn represent the form of the
fice of a tooth on the whee), whose centre is C,, with which
tooth a corresponding tooth on the other wheel is to work
trily s that is to say, the tooth on the other wheel, whose
centre is Cy, is to be cut, so that, driving the surfice mr, or
being driven by it, the wheels shall revolve precisely as they
would by the contact of their pitch circles ABE and ADF
“ A, From A measure the least distance Aa to the curve
™4 and with radius Aa and centre A describe a circular
¢ aff on the Plane of the circle whose centre is Cy. From a
- Measure, in like manner, the least distance ae’ to the curve mn,
ad with this distance ge’ and the centre o’ describe a circular
“I¢ By, intersecting the arc of in . From the point &
;"eas“re similarly the shortest distance d«” to mu, and with
in:g:enu:e ¥ and this distance ba” describe a cu*cularmﬁ.
Secting By in 4, and so with the other points of divisiosi.

k3

b
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A curve touching these circular arcs o8, By, y3, &e. will give
the true surface or boundary of the tooth.*

In order to prove this let it be observed, that the shortest
distance a«’ from a given point z to a given curve mn is#
normal to the curve at the point ' in which it meets it; and
therefore, that if a circle be struck from this point @ with this
least distance as a radius, then this circle must touch the
curve in the point &/, and the curve and circle have a commot
normal in that peint,

Now the poiuts @ and & will be brought by the revolution
of the pitch eircles simultanecusly to the point of contact A
and the least distance of the curve mn from the point A wil
then be aa’, so that the arc By will then be an arc STI‘UC‘k
from the centre A, with this last distance for its radius. This
circular are By will therefore fouch the curve man in the poilit
@ and the line @a’, which will then be a line drawn {r(.;m
the point of contact A of the two pitch circles to the pornt
of contact @ of the two curves ma and m'a’, will also be 3
norwal to both curves a¢ that point. The cireles will there-
fore at that instant drive one another {(Art, 201.) by the cot
tact of the swrfaces mn and m'n’, precisely as they would by
the contact of their circumferences. - And as gvery civeular
arc of the curve m'» similar to By becomes in its turn
the acting surface of the 1ooth, it will, in ke manner, at 01
point work truly with » corresponding point of mn, 50 that
the circles will thus drive oue anether truly at as many
points of the surfaces of their teeth, as there have been taken
points of division a, b, &c. and ares B, By, &e.t

* This method of describing, geometrically, the forms of teeth Is gives:

Without demonstration, by M. Poucelet in bis 2 beanique Tndustrielle, 3
partie, Art. 60,

t The greater the number of these points of division, the mote gecurate

the form of the tooth, It appears, however, to be sufficient, in most
; sasgs,t? take three points of division, or even two, where no great accnra;}’
fOI;'eqt_med. M. Pf)ncelct (Méc, Dndust. 3: partie, Art. 60.) has given the
app(::ﬂ']g, Y;t asier, method by which the true form of tooth nﬂmyt
imated to with sufficie . e the
; nt accurac . ses.  Suppe
gtten tooth N 'y In most cases P

upou the one whee! to be placed in the position in whic
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InvorLuTe TEeETH.

203, The teeth of two wheels will work truly together if they
be bounded by curves of the form traced out by the extre-
mity of a flexible line, unwinding from the circumference of
a circle, and called the involute of a circle, provided that
the circles of which these are the involutes be concentric with
the pitch circles of the wheels, and have their radii in the
same proportion with the radii of the pitch circles.

Let OF and OF represent the piteh circles of two wheels,
AG and BH two circles concentric. with
them and having their radii C,A and C,B
in the same proportion with the radii C,0
and Co0 of the pitch circles, Also let. mn
and m'n’ represent the edges of teeth on the
two wheels struck by the extremities of flex-
ible lines unwinding from the circumferences
of the circles AG and BH respectively. Let
these teeth be in contact, in any position
of the wheels, in the point T, and from
the point T draw TA and TB tangents to the generating
drcles GA and BH in the points A and B. Then does AT
,evlde“ﬂ)' represent the position of the flexible line when
s extremity was in the act of generating the point:-T. in
the eurve mn ; whenee it follows, that AT is a normal to the -
curve mu at the peint T*; and in like mapner that BT is

15 first to cngage or disengage from the reguired tooth on the other
£ wheel, and let Aa and Ab be equal arcs .of the
N pitch circles of the two wheels whose point of eon-
) tact is A, Draw Ac the shortest distance between

A and the face of the tooth N ; join as ; bisect that
line in m, and draw mn perpendicular to aa inter.
secting the circumference Ad 'in n. If from the
centre = a circular arc be deseribed paising throagh

“Z the points « end a, it wii give the reqired form of
the tooth nearly, B R

# For if the cirele bie-coneeived & polygm_'::d"ig

when in the act of unwinding from 'it- it‘"*,i g

infinite number of sides, it is evident that' ths lse ~ .
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a normal to the curve m'»’ at the same point T. Now the
two curves have a common tangent at 13
therefore their normals TA and TD at thai
point are in the same straight line, being
both perpendicular to their tangent there
Since then ATB is a straight line, and that
the vertical angles at the point o where
AB and C,C, intersect are equal, as also
the right angles at A and B, it foll‘ow‘s
that the triangles AoC, and Bo(; are sim-
lar, and that Cio: Cen:: C;A @ CoB. But
A GB GO C05..Co: o G0 1 CHO; therefore
the points O and ¢ coincide, and the straight line AB, whic-h
passes through the point of contact T of the two teeth, and 13
perpendicular to the surfaces of both at that point, passes
also through the point of contact O of the pitch circles of
the wheels. Now this is trne, whatever be the positions of
the wheels, and whatever, therefore, be the puints of conta'ct
of the tceth. Thus then the condition established it
Art, 201, as that necessary and sufficient to the true action
of the teeth of wheels, viz,  that a line drawn from the
point of contact of the pitch circles to the point of contact
of the teeth should be g normal to their surfaces at tl‘“"t
boint, in all the different positions of the teeth,” obtas
In regard to involute teeth, *

————— J—

turning upon one of the angles of that polygon, and therefore that its

extremity i, through an infinitely small anale, describing a circuiar 3
abouat that puint, =

* The author

ion of
invol Proposes the following illustration of the aetiot °

ute teeth, which he believes to be new, Conceive AB to represe!
a ba"‘.i Passing round the circles A and BH the wheels would evidenty
bf’ dmv‘en by this band precisely as they wc;uld by the contact of o
P;-l*‘-h cll'c‘les, Siﬂce the radii of AG and BH are to one another as the e
:mtl;er ;1;1':31 c:ir:]:lles. Conc_eive, moreover, that the circles BH mdcer is
P With them their planes ag they revolve, and thaf a tra .
e uponybp;:nt T of the band, tracing, at the same time, lines m:}]ese
. o oth plancs, as they revolve beneath it. It is evident that d
» 18 traced by the same point, must be in contect in all p?smon

of the circles when driven by the band, and therefore wien driven b
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The point of contact T of the tceth mover along the
straight line AB, which is drawn touching the generating
circles BH and AG of the involutes; this line is what is
called the locus of the different points of contact. Moreover,
this property obtains, whatever may be the number of teeth
in contact at once, so that all the points of contact of the
teeth, if there be more than one tooth in contact at onee, lie
always in this line; which is a characteristic, and a most

Mmportant property of teeth of the involute form. Thus
n the above figure, which represents part of iwe wheels
with involute teeth, it will be seen that the points r ¢ of
contact of the teeth are in the same straight line tonching
the base * of one of the involutes, and passing throngh: the
POILt of contact A of the pitch circles, a8 also the points

and b in thag touching the base of the other. : :

Ericycuomar, anp HyPOCYCLOIDAL TEETK';'_'_'

0%, 1f one circle be made to roll externally on the cir-

—_—_—

their mutya) contact. The wheels would therefore bﬂﬁﬁm‘ by the

:l?ntact of teeth of the forms mn and m’n’ thus traced hyﬂw pemnt IT' l'of..

\;E bfmfl Precisely as they would by the contact of their Pm A

“OWit s easily scon, that the curves ma and m'w/; thus described by the

p“;“‘ T of the band, are invofutes of the circles AQ and BH.

edf”,’ - This cut and thet at page 257. are copisd from Hrﬂl#ﬁnlr
ltloﬂOfC&mus on the Teeth of Wheels. S S L

he circles from which the involutes are desceilied sre called their .
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cumference of another, and if, whilst this motion is taking
place, a point in the circumference of the rolling circle be

¥ made to trace out a curve upon the plane of
the fixed circle, the curve so generated is
called an EricycLoip, the rolling cirele being
called the generating circle of the EPiC_}"
cloid, and the cirele upon which it rolls, 18
base.

If the generating circle, instead of rolling
on the outside or convex eircumference of
its base, roll on its inside or coneave circum
ference, the curve generated is called the nypocyCLOID.

Let PQ and PR be respectively an epicycloid and a hype-
eycloid, having the same generating circle APH, and having
for their bases the pitch circles AF and A, of two wheels. I
teeth be cut upon these wheels, whose edges coincide with
the curves PQ angd PR, they will work truly with one
another ; for let them be in contact at I , and -let their com-
mon geperating cirele APH be placed so as to touch the
pchh circles of both wheels at A, then will jts circumference
evidently pass through the point of contact P of the teeth
for if it be made to rol through an exceedingly small angle
upon the poing A, rolling there upon the circumference ¢
both circles, its generating point will traverse exceedingly
sz'nall portions of hoth curves ; since then a given point i the
circumference of the circle APH is thus shown to be at o8
and the same time jn the perimeters of both the curves PQ aud
PR, that point must of necessity be the point of contact P
the curves; since, moreover, when the circle APH rolls up%®
the point A; its generating point fraverses a small portios @
the perimeter of each of the curves PQ and PR at P ¥
fOI.IOWS that the Yine AP is 5 normal to both curves at that
Point; for whilst the circle APH is rolling through an exceed-
0gly small angle upon A, the point P in it, is descriti®
& circle about that point whose radius is AP.* Teeth,
Qf:i:’l]:;? :::d: APH may be considered & polygon of an infinite numbet

ne of th h . instast
be conceived to e tum?n*;‘gles of Wlnc‘h polygon it may at any
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therefore, whose edges are of the forms PQ and PR satisfy
the condition that the line AP drawn from the point of
contact of the pitch cireles to any point of contact of the
teeth is a normal to the surfaces of both at that point, which
condition has been shown (Art.201.)to be that necessary
and sufficient to the correct working of the teeth.*

Thus then it appears, that if an epicyeloid be deseribed on
the plane of one of the wheels with any generating circle,
and with the pitch circle of that wheel for its base; and if
a hypoeycloid be described on the plane of the other wheel
with the pitch circle of that wheel for its base ; and if the

faces or acting surfaces of the teeth on the two wheels be
“ut s as to coincide with this epicycloid and this hypocycloid

* The entire demonstration by which it has been here shown that the
‘urves generated by a point in the circumference of a given genemtmgclrclc
APH rolling upon the convex circumference of one of the pitch circles,
#d upon the concave circumference of the other are proper to form the
<dges of contact of the teeth, is evidently applicable if any other genernting
furve be substituted for APH. It may be shown precisely in the same
manner, that the curves P(Q and PR generated by the rolling of suy such
CUITE {not heing a circle) upon the pitch circles, possess this property, that
the line PA drawn from any point of their contact to the point of contact
of their pitch circles is a normal to both, which propesty:is necessary sud
sufficient to their correct action as teeth. Thid was first- demonstrated
ai % general principie of the construction of the téeth-of wheels by
oAy, in the Cambridge Phil. Trans, vol.il. : He hay farther shown,
r,;d;i # tooth of any form whatever being cut apes ¥ wheel, it is pﬂﬂaﬂﬂ
: nd 8 curyg which, rolling upon the -pitch circle -of that v_rhgg}, shuﬂ

Y % certain genersting point traverse the edge of the given: Gt
s
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. - the
respectively, then will the wheels be driven correctiy' by :
o epie
intervention of these teeth. Parts of two Wt'leds‘havmﬂ ¥
cycloidal tecth are represented in the preceding figure.

R05, LEMMA, — If the diameter of lhe generating circle a{'OiZ
hypocycloid equal the radius of its base, the hypozgc y
becomes a straight line having the direction of @ redis
its base.

T such
Let D and d represent twa positions of the centre c;f .
A a generating eivele, and suppose the g

S, . ; in the
e nfi\"' nerating point to have been st A ‘1111 e
{Q‘g--?izd-l' first position, and join AC; thenW

v
Vi

generating point be at P in the sc:confl po-
sition, 4. . at the point where CA m‘te’r-
sects the cirele in its second position; for.]1011(‘1
Ca and Pd, then £ Pda =, PCd+ £CP!
=2ACa.  Also Rda=CA; .-, 2da x Pda=2CAX ACa;
.'.&a x Eﬂ;: EA X Afa 3 .o.are Aa=—are Pea. SiIICC‘ th;?ﬂ
the arc o P equals the arc gA, the point P is that which m_t ]P:
first position coincided with A, i. e. P is the generating P‘ml;t"
and this is true for all positions of the generating CWCe:
the generating point is thepefore always in the straight h%_le
AC. The edge, therefore, of a hypocycloidal tooth, ?he dtm';
meter of whose generating circle equals half the amm_e e__
of the pitch circle of ity wheol, is a straight line whose diret
ton is towards the centre of the wheel. ¥

————— R ———————————

T_he curve thus found
piteh circle of 5 secon
tooth which will work
volves the theoretical
by the Zeometrical
©UTVe be u logariphmi

% The following v
Perty of the hypocy

being made to roll on the circumfercnce afotfh:
d whecl, wiil therefore trace out the form o
truly with the first, This beautiful prop eﬁg!]ve '
solution of the problem which Poncelet has sn&ﬁ“g
construction given in Article 202. 1If the TN )
¢ spiral, the involute form of tooth will be Sellﬂ.: pre-
ety ingenious application has been made of “'lineaf
cloid to convert a circular into an slternate recé



TO SET OUT THE TEETH OF WHEELS. 259

To ser outr THE TEETH oF WHEELS.

206, All the tecth of the same wheel are constructed of
the same form and of equal dimensions: it would, indeed, evi-
dently be impossible to construct two wheels with different
ilmmbers of teeth, which should work truly with one another,
ifall the teeth on each wheel were not thus alike.

motion.  AB represents a ring of metal, fixed in position, and having tecth
cut upon its concave circumference. € is

the centre of s wheel, having teeth cut in its
circumference to work with those upon the
circumference of the ring, and having the
™9 diameter of its pitch cirele equal to half that
of the pitch circle of the teeth of the ring.
This being the case, it is evident, that if the
pitch circle of the wheet C were made to
roll upon that of the ring, any point in its
circamference would deseribe a straight line
bt the of . passing through the centre D 13(' the ring. H
oot e cirele C would rolt upon the ring by the mutual action q[‘ their
thon b“.S it would by the contact of their pitch circles; if the circle C
botl, L “"a‘]e_to !:Oll upon the ring by the intervention of teeth cut upon
])awi,n:n}h ‘POmt in the circumference of C will describe a straight line
tine b through . Now, conceive C to be thus made to roll round the
of :; 'h}i EEH]?S of a dm}ble or forked link CD, between lh_e two branches
by e CL ] the wheel is r:.acewcd, being perforated at thtfir cxtremities
Wheel M z" apertures, which serve as bearings to the solid axis of the
with o t 1ts other extremity D, this forked link is ngmdly‘conne.cte.d
commy [xis passing through the centre of the ring, to which exis is
it 'mm-cftEd tl_m clrcu-lzfr motion to he converted by thf:- instroment
be m; ded ternating rectilinear motion, This circular motion will thas
the smne i(’ carry ﬂle.centre C of the wheel round the point ‘D, apd.l at
coneady }llme, cause it to roll upon the circumference of the ring. .N'ow,
t be ':'; e axis C of the wheel, which forms part of the wheel itself,
fixed f )U onged beyor!d the collar in which it turps, and to haye flgldiy
har wh[ Ot 1ts extremity a bar CP. It is evident that & poll!t_‘]? in tlflﬂ
Ditc,h cir?:e lhs'tance from the axis C of the wheel equalslhe radius of i3
o cle, will move precisely as & point in the pitch .elrcle of tl:-le whfaei
— and therefore that it will describé continuilly a straight line
n¢ through the centrs 1 of the ting. ‘This point P receives, there-

org, 3 e N = .
mun’ic:l}:e alternating rectilinear motion which it -was required to com=
2, ‘ '

s 2 EE
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All the teeth of a wheel are therefore set out by the work-
man from the same pattern or model, and it is in determining
the form and dimensions of this single pattern or model of
one or more tecth in reference to the mechanical effects which
the wheel is to produce, when all its tecth are cut out upon
it and it receives its proper place in the mechanical com-
bination of which it is to form a part, that consists the ari of
the description of the tecth of wheels.

The mechanical function usually assigned to toothed wheels
is the transmission of work under an inereased or diminished
velocity., If CD, DE, &c. represent ares of the pitch cirele

of a whee) intercepted between similar points of consecus
tive teeth (the chords of which ares arc called the pitehes
O.f the teeth), it is evident that all these arcs must be egaal
since the teeth ure all equal and similarly placed; 0 that
ea-ch tooth of either wheel, as it passes through its contact
with & corresponding tooth of the other, carries its piteh line
tl}rough the same space CD, over the point of contact C of the
pitch ].i nes.  Since, thercfore, the pitch line of the one wheel
18 carried over a space equal to CD, and that of the ot,hf.if
over a space equal to ed by the contact of any two of thelt

:::eeth, and since the wheels revolve by the contact of thelr
_EEth as they would by the contact of their pitch circles at G
1t follows ¢

hat the ares CD and ed are equal. Now les 1
7o Tepresent the radii of the piteh cireles of the two wheelss
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then will 2z, and @wr, represent the circumferences of their
pitch circles; and if n, and m, represent the numbers of

teeth cut on them respectively, then CD=""" and cdzg—zi.

Ly
2xr, 2wy,
therefore — :_J;
n Ng
™™
co= 0L L. (282);
Ta 70

Therefore the radii of the pitch circles of the two wheels
must be to one another as the numbers of teeth to be cut
upon them respectively.

Again, let m, represent the number of revolutions made
by the first wheel, whilst mg revolutions are made by the
second; then will 2rrym, represent the space described by
the circumference of the pitch circle of the first wheel while
ti.lese revolutions are made, and 2argme that described by the
trcumference of the pitch circle of the second ; but the
wheels revolve as though their pitch circles were in contact,
therefore the circumferences of these circles revolve throug
equal spaces, therefore 2wrim, =2aramy; '

. _Me
S T (233).
.The radii of the pitch circles of the wheels are therefore
'versely as the numbers of revolutions made in the same
tme by them, .
L‘anting the second members of equations (232) and (233), -
My n
S S S 284'-
o (234)
The numbeys of revolutions made by the wheels in the same

ti .
tém; are therefore to one another inversely as the numbers of
e, - : . .
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20%. In a train of wheels, to defermine how many revolutions
the last wheel makes whilst the first is making any grees
number of revelutions,

When o wheel, driven by another, carrics its axis round

g% , . . with it, on which z.niis ffvﬂ“"’j
(: F’f? A, \ \'w:llfael is ﬁ;fed, engaging Wltl.l _a“h
3 {f*“g\; 5_5 . g;, , ; , giving motion to_a Sfourth, Wh]c_t’
. tﬁg{w .ﬁ E in .hl;c- manncr, is fixed U.P0“_1'5

: 5 axig, and carries round with 1t @

W gl wheel fixed upon the sume

axis, which fifth wheel engages with asixth upon another aX_iS,
and so on as shown in the above figure, the combination
forms a train of wheels, Let ny, ng, nae .. ny represcent the
numbers of teeth in the successive wheels forming SUCh_a
train of p pairs of wheels; and whilst the first wheel 3
making m revolutions, let the second and third (which revolve
together, being fixed on the sae axis) make m revolutionsi
the fourth and fifth {which, in like manner, revolve tUgEther)
™y Tevolutions, the sixth and seventh my, and so on; and let
the last or 2p% wheel thus be made to revolve my times whilst
the first revolves m times, Then, since the first wheel which
has 7, tecth gives motion to the second which has 7z teeth

and that whilst the former makes m vevolutions the latter
m T,

. ) M
makes m, revolutions, therefore (equation 234) 5, Ta,)

and since, while the third wheel (which revolves with the
second) makes m, revolutions, the fourth makes meg revolutions:

e b7
th T P . . 1
erefore — Similarly, since while the fifth whecl

which has #, teeth, m

. . +}, the
. akes m, revolutions (revolving with th
ourth), the sixth,

. colu-
which has ng teeth, makes wy I¢V0

tions ; th My Mg My M7 &e
i therefore - 7220 14 1 1_ T §eo O
=-. In lik ner —- = '

g e man iy g

My Mgy

—1 L : d
Mpey ™ Mg, M“‘“Pb’mg these equations together; &

st e 3=
striking out factors common to the pumerator and deno™
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° . .
nator of the first member of the equation which results from
their multiplication, we obtain

M Mg fg.Ng ... Ty

The factors in the mumerator of this fraction represent the
numbers of teeth in all the driving wheels of this train,
and those in the denominator the numbers of teeth in the
driven wheels, or followers as they are more commonly
called, .

If the numbers of teeth in the former be all equal and
tepresented by =), and the numbers of teeth in the latter
also equal and represented by ng, then '

mp__"l o« T3 . Mg . .--’ngp._g.... (235)‘

fﬁ’:(?&)p. v oo (236).
L Ta

Having determined what should be the number of teeth
in each of the wheels which enter into any mechanical
combination, with a reference to that particular modification
of the velocity of the revolving parts of the machine w'hich
Is to he produced by that wheel %, it remains next to consider,
what must be the dimensions of each tooth of the wheel, so
that it may be of sufficient strength to transmit the work
which is destined to pass through it, under that velocity, or
t bear the pressure which accompanies the transmission of -
that work at that particular velocity; and it remains further
' determine, what must be the dimensions of the wheel
JtS-Blf consequent upon these dimensions of each tooth, and
this given number of its teeth.

0. o dotermine the pitch of the tseth of & wheely knowing
the work to be transmitied by the wheel,

‘Let U represent the number of units of work to be tr:.ms-
Witted by the wheel per minute, m the number of revolutions

*-The reader ig referred for a more complm d)mlcm of this subjact

“T;'Il.d,’ belongs more particularly to descriptive mechanics) to P"°f‘§’§;

Wi Trinciples of Mechanism, chap. vil., of to Camus on the Testh,
‘ecls, by Hawkin, p- 90. A >

s 4
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to be made by it per minute,  the number of the teeth to
be cut in it, T the pitch of each tooth in feet, P the pressure
upon cach tooth in pounds, ' .
Therefore 1’ represents the circumference of th? p}tﬂ};
circle of the wheel, and mn'T tepresents the space In eek
described by it per minute, Now U represents the wor

-

transmitted by it through this space per minute, therefore

. - Ll I
represents the mean pressure under which this work is tran
mitted (Art, 50.,);

e P= Ul s,
ma'll

The piteh T of the teeth would evidently cqual twice the
breadth of each tooth, if the spaces between the teeth Vﬁezef
equal in width to the teeth, In order that the teet nd
wheels which act together may engage with one another 8
extricate themselves, with facility, it is however necﬁsﬁ"i
that the pitch should exceed twice the breadth of the i‘ozitle
by a quantity which varies according to the accuracy odth .
coustruction of the wheel from 15th to {<th of the brea "ts

Since the pitch T of the tooth is dependant upoﬂL
breadth, and that the breadth of the tooth is dependant, v
the theory of the strength of materials, upon the presf;“rehe
which it sustains, it is evident that the quantity Pint

. . : be
above equation is g function of T. This functiont may
assumned of the foym

T=ceyp,, . .. .. (238);

. . the
where ¢ is a constant dependant for its amount uport

. . med-
nature of the material out of which the tooth is for

L yin
Eliminating P between this equation and the last, and sol¥i'8
i respect to T,

T— .3 ?,ﬁg_
H‘\/mn'

. o incipled
ussion of this subject see Professor Willis's Princ¥
s, 107—112,

t See Appendix, on the dimensions of wheels,

* For a full dise
of Mechanism, Art
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The number of units of work transmitted by any machine
per minute is usually represented in khorses power, one horse’s
power being estimated at 33,000 units, so that the number
of horses’ power transmitted by the machine means the nurn-
ber of times 33,000 units of work are transmitted by it every
mingte, or the number of times 83,000 must be taken to
eq'ual the number of units of work transmitted by it every
minute, If therefore H represent the number of horses’
power transmitted by the wheel, then U =83,000H. Substi-
tuting this value in the preceding equation, and representing
the constant 33,000¢2 by C?, we have

T:CV f?n ...... (239).

Th_e values of the constant C for teeth of different materials
are given in the Appendix.

R00. 1o determine the radius of the pitch circle of @ wheel
which shall contain n teeth of a given pitchs

: Let AB represent the pitch T of a tooth,
S and let it be supposed to coincide with its
=/ chord AMB. Let R represent the radius AC
1 of the pitch circle, and n the number of teeth
t//  tobe cut upon the wheel. :

i Now there are as many pitches in”the cir-
i cumference as teeth, therefore the sngle ABC

2
Subtended by each pitch is represented by f-
Alg T—9AM —2 AC a _ "E..
o T=2AM =2AC sin.4ACB=2Rsin. -;

e R:%T COSGC.Z s a vt 0(240)'
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210. To make the pattern of an epicycloidal tooth.

Having detcrmined as above, the pitch of the teeth, and
the radius of the pitch circle,
strike an ave of the piteh cirdle
on a thin piece of oak board
or metal plate, and, with a fine
saw, cut the board throug.h
along the circumference of this
circle, so as to divide it into
two parts, one having a conter
and the other a correspondirg
concave circular edge. Lot EF
represent one of these portions
of the board, and GH another.

Describe an are of the piteh circle upon second board
or plate from which the pattern is to be cut. Let MN re-
present this are.  Tix the piece GI{ upon this board, so that
its circular edge may accurately coincide with the cireumm-
ference of the arc MN, Take, then, a circular plate D of
w_ood or metal, of the dimensions which it is proposed 1
give to the generating circle of the epicyeloids and let 3
smalu point of steel P he fixed in it, so that this point may
project slightly from its inferior surface, and acourately
colncic‘le with its circumference. aving set off the width
J’:B of the tooth, so that twice this width increased by fro®
Tnth to Tl'gth of that width (accOrding ta the accuracy of
v&forkmanship to be attained) may equal the pitch, cause the
cxrcle. D to rolt upon the convex edge GK of the board G
pressing it, at the same time, slightly upon the surface ©
the board on which the arc MN is described, and {rom whlf'h
tl}e pattern is to he cut, having caused the steel point in 18
clr::umference first of all to coincide with the point Ay an
epicycloidal are AP will thus be described by the point
upon the surface MN, Describe, similarly, an epicyc_]oidﬂ
aTCLBE through the point B, and lot them meet in B
a lfetdthedhoard GH now be removed, and Jet EF I;e

P an ﬁxed, so that its concave edge may accumtc)’
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coincide with the circular are MN, With the same ecircular
plate 1) pressed upon the concave edge of EF, and made to

rol! npon it, cause the point in its circumference to describe
in like mauner, upon the sarface of the board from which

the pattern is to be cut, a hypocycloidal  arc BH passing
through the point B, and another Al passing through the
point A, HEI will then represent the form of a tooth, which
will work correetly (Art. 204.) with the teeth similorly cul
upon any other wheel; provided that the pitch of the teeth
$ cut upon the other wheel be equal to the pitch of the
teeth upon this, and provided that the same generaling circle
D be used to strike the curves upon the two wheels.

1. To determine the proper lengths of epicycloidal teeth.

The general forms of the teeth of wheels being determined
by the method explained in the preceding article, it remains
to cut them off of such lengths as may cause them suc-
'Eessi\'eiy to take up the work from one another, and transmit
1-t under the circumstances most favourable to the economy of
Its transmission, and to the durability of the teeth.

‘ 'In respect to the economy of the power inits transmission,
Itis customary, for reasons to be assigned hereafter, to provide
that no tooth of the one wheel should come into action with'a
tooth of the other until both are in the act of passing through
the line of centres. This condition may be satisfied in all
tases where the numbers of teeth on neither of the wheels is
execedingly small, by properly adjusting the lengths of the
tecth. Let two of the teeth of the wheels be in contact at
the point A in the line CD, joining the centres of the two
wheels; and let the wheel whose centre is C be the driving
wheel,  Let AH be a portion of the circumférence of the
Echerating circle of the teeth, then will the points A 5“‘1_13!
Where this circle jntersects the edges of the teeth O and K
of‘ the driving wheel, be points of contact with the edges
°f the teeth M and L of the driven wheel (Axt.204c).
Now, since each tooth js to come into action-only whenit -
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it i oth L
comes into the line of centres, it is clefur that thehtti:; n
must have been driven by K from the time when the

tact was in the line of centres, until they have com; :;:10
the position shown in the fizure, when the pmnl: (zk il
tact of the anterior face of the next tooth O of the drive;
wheel with the flank * of the next tooth M of (tlhc e
wheel has just passed into the line of cojntres;. an 1sll e
tooth O is now to take up the task of impelling the s
wheel, and the tooth K to yield it, all that Por'tmnB oy
last-mentioned tooth which lies beyond the poglttheﬂ "
evidently be removed; and if it be thu.fslremove ,h e
tooth X, passing out of contact, will manifestly, at t ihp(), "
of the motion, yield all the driving strain to the tooth e
it s required to do. In order to cut the pattern t?tion oo
proper length, so as to satisfy the proposed colli IAG,(SGB
Lave only then to take wl
the accompanying ﬁg‘ure)hetfi "
to the piich of the toot ’um-
to bring the convex o o
ference of the generating erir:
so as to touch the conVBXN o
camference of the arc }{‘{'ntef'
that point a ; the point O'tglh o
section e of this eircle W1 1 bo
Sy face AE of the toqﬁl W; e
A the last acting pomnt ¢

* That portion of the o
eircle is called jts Jace,

. jtch
dge of the tooth which is without the P
that within it its flank.
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tooth ; and if a circle be struck from the centre of the pitch
gircle passing through that point, all that portion of the
tooth which lies beyond this circle may be cut off.*

The length of the tooth on the wheel intended to act with
this, may be determined in like manner.

2[2. In the preceding article we have supposed the same
generating cirele to be used in striking, the entire surfaces of
the teeth on both wheels. It is not however necessary to
the correct working of the teeth, that the same circle should
thus be used in striking the entire surfaces of two testh
which act together, but only that the generating circle of
every two portions of the two teeth which come into actual
contact should be the same, Thus the flark of the driving
teoth and the face of the driven tooth being in contact at

Pin the accompanying figure+, this face of the ome tooth
“d flank of the other must be respectively an epicyeloid
ad & hypoeycloid struck with the same gemerating circle.
Agin, the face of a driving tooth and the flank of & driven
tooth being in contact at Q, these, too, must be‘ struck by the

¥ The point ¢ thus determined will, in some cases; fll beyond the

ExXtremit

the 1o ty E of the tooth, In such cases it is therafore jmpossible to cut
4]

) " of such u'length as to satisfy the ired_copditions, viz. that
1;rshull drive only after i% has passed thye line of emtrea.Afull diacuasiqn :
5 e?;;?[m"ihle cases will be found in Professor Willi's work (Asta.

1 The upper wheel is here supposed to drive the Jower. .
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same generating circle. But it is evidently unnecessary that
the generating circle used in the second case should be the
same as that used in the first. Any generating cirele will
satisfy the conditions in either case (Art. 204.), provided it be
the same for the epicycloid as for the hypouycloid which Is to
act with it.

According to a general (almost a universal) custom among
mechanics, two different generating circles are thus used for
striking the teeth on two wheels which are to act togethen
the diwmeter of the generating circle for striking the feces of
the teeth on the one wheel being cqual to the radius of the
pitch eircle of the other wheel. Thus if we call the wheels
A and B, then the epicycloidal faces of the tecth on A, and
the corresponding hypoeycloidal flanks on B, ate gencrate&
by aeircle whose diameter is equal to the radius of the piteh
circle of B. The hypocycloidal flanks of the teeth on B
thus become straight lines (Art, 205.), whose divections
those of radii of that wheel.  In like manner the eiﬁcydoida]
faces of the teeth on B, and the corresponding }lypocyclciﬁiﬁ
flanks of the tecth on A, are struck by a circle wiost
diameter is equal to the Tadius of the piteh circle of A3 %
that the hypoeycloidal flanks of the teeth of A become it like
manner straight lincs, whose directions are those of radil of
the wheel A. By this expedient of using two different
generating circles, the flanks of the teeth on both wheels
become straight lines, and the faces only arc curved: The
teeth shown in the above figure are of this form. I“hc
motive for giving this particular value to the generatl’s
circle appears to be no other than that saving of trouble
which is offered by the substitution of a straight for a cur?
ﬂank of the tooth, A more careful consideration of the sub-
Ject, however, shows that, there is no real cconomy of labou?
m this; In the first place, it renders necessary the use 0
two different generating eircles or templets for striking the
teeth of any given whee] op pinion, the curved Portions o
ﬂ.le teeth of the wheel being struck with a circle whos®
diameter equals half the diameter of the pinion, and the
eurved portions of the teeth of the pinion with a circle whos®
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diameter equals half that of the wheel. Now, one generating
circle would have done for both, had the workman been con-
tented to make the flanks of his teeth of the hypocycloidal
forms corresponding to it. But there is a yet greater prac-
tical inconvenience in this method. A wheel and pinion
thus constructed will only work with ome another; neither
will work truly any third wheel or pinion of a different
number of teeth, although it have the same piteh. Thus
the wheels A and B having each 2 given number of teeth,
and being made to work with one another, will neither
of them work truly with C of a different number of teeth of
the same pitch. For that A may work truly with C, the
face of its teeth must be struck with a generating circle,
Wwhose diameter is half that of C: but they are struck with
H_ircle wlhose diameter is half that of B; the condition of
umform action is not therefore satisfied, Now let us sup-
bose that the epicycloidal faces, and the hypocycloidal flanks
of ull the teeth A, B, and C had been struck with the same
gtnerating ‘circle, and that all three had been of the same
bitch, it is clear that any one of them would then have
Worked truly with any other, and that this would have been
¢qually true of any number of teeth of the same pitch. Thus,
ﬂ_‘en, the mechanist may, by the use of the same generating
eircle, for afl his pattern wheels of the same pitch, so con-
et them, as that any one wheel of that pitch shall work
“th any other. This offers, under many circumstances,
flreut advantages, especially in the very great reduction of
T‘; tumber of patterns which he will be requu'eti to keep.
¢T¢ are, moreover, many cases in which some arrangement
“milar to this is indispensable to the true working of the
Wheels, as when one wheel is required (which is ‘often the
%5¢) o work with two or three others, of different numbers
of tecth, A for instance to turn B and C; by the ordinary
:ilceatl}:;d of construction this combination wouidbe Imprac-
rating o, 2t the wheels should work truly. Any gene-
fyinrrgt;lm]e common to a whole set of thaaume pitch, ﬂlﬂ* :
S e dbone condian e ey o ke wbathr i
J other consideration determining - the beat dimensions-of -
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this circle. There is such a consideration arising outof a
limitation of the dimensions of the generating cirele of the
hypocyeloidal portion of the tooth to a diameter not grealer
than half that of its base. As long as it remains within these
limits, the hypocycloid generated by it is of that concave
form by which the flank of the tooth is made to spread
itself, and the base of the tooth to widen; when it ex-
ceeds these limits, the flank of the tooth takes the convex
form, the base of the tooth is thus contracted, and its
strength diminished.,  Since, then, the generating circle
should not have a diameter greater than half that of any of
the wheels of the set for which it is used, it will manifestly
be the greatest which will satisfy this condition when 1ts
diameter is equal to hall that of the least wheel of the st
Now no pinion should have less than twelve or fourteen
teeth. Half the diameter of a wheel of the proposed piteh,
which has twelve or fourteen teeth, is then the true diameter
for the generating circle of the set. The above suggestions
are due to Professor Willis.*

213, To DESCRIBE TNVOLUTE TEETL.

Let AD and AG represent the pitch circles
of two wheels intended to work together. Dra¥
a straight line FE through the point of contact
A of the pitch circles and inclined to the line of
centres CAB of these wheels at a certain angle
FAC, the jufluence of the dimensions of which
on the action of the teeth will hereafter be &
Plained, but which appears usually to be taken not less than
80°%%  Describe two circles e EX and FFL from the centres B

* .Professar Willis has suggested a new snd very ingenious method-oi
strikiog the teeth of wheels by means of eircular arcs, A detailed desci”
tion of this method has been given by him in the Transactions of the
stitution of Civil Engineers, vol, il, accompanicd by tables, &t Wi
render its practical application exceedingly simple and easy.

T See Camus on the Teeth of Whecls, by Hawking, p. 168
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and C, each touching the straight line EF. These circles are to
be taken as the dases from which the involute faces of the teeth
are to be struck. It is evident (by the similar triangles ACF
and AEB) that their radii CF and BE will be to one another
a the radii CA and BA of the pitch circles, so that the con-
dition necessary (Art.203.) to the correct action of the teeth of
the wheels will be satisfied, provided their faces be involutes to

these two circles. Let AG and AH in the above figure
Tepresent arcs of the pitch circles of the wheels on an en-
larged scale, and eE, fL, corresponding portions of the circles
¢EX and fFL of the preceding figure. Also let Aa repre-
%ent the pitch of one of the teeth of either wheel. - Through
the points A and @ describe involutes ¢f and mn*, Letd

8t ’_’k.Mr.. Hawkins recommends the following as a convenient method of
fiking involute teeth in his edition of * Camus on the Teeth of Wheeld,”
P 186. Take g thin board, or & plate of metal, and reduce it edge MN
80 88 accurately to concide .
~  with the circular arc ¢B,
and let & pieca of thin
tWo Drgtenr: watch-apring'OR, im:ing
e lpro'wm“g ‘I’Oiﬂts upon it as shown at P, and which u;of_: width
33,: to the thickness of the plate, be fixed upon its edge by_;n'lel.nl of s
are :EO Let the edge of the plate be then made gp'comdde u_uth t!’fe
it o+ n such a position, that when the springis stretched, the poiot Pin
M4y coincide with the point from which the tooth is to be struck; and

the sy . . . . ’
g :ZE’:’{‘Q being kept continually stretched, and wound of unwound from
¢,

the face of

the board from which the pattern is to be cut.
T .

¢, the involute arc is thus to be described by the point P upes - -
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be the point where the line EF intersects the involute ma;
then if the teeth on the two wheels are to be nearly of the
same thickness at their bases, biscct the line Abine¢; orif
they are to be of different thieknesses, divide the line Abine
in the same proportion*, and strike through the point ¢an
involute curve kg, similar to ¢f, but inclined in the opposite
direction.  If the extremity fg of the tooth be then cut off
so that it may just clear the circamference of the cirele fLy
the true form of the pattern involute tooth will be obtained.
There are two remarkable properties of involute teeth, by
the combination of which they are distinguished from teeth
of all other forms, and cateris paribus rendered greatly pre-
ferable to all others. The first of these is, that any tWo
wheels having teeth of the involnte form, and of the same
pitch+, will work correctly together, since the forms of
the teeth on any one such wheel are entirely independent of
those on the wheel which is destined to work with it (At
203.).  Any two wheels with involute teeth so made 0 work
together will revolve precisely as they would by the act'u-?l1
contact of two circles, whose radii may be found by dividing
the line Joiniug their centres in the proportion of the radil of
the generating circles of the inyolutes, This property involule
tecth possess, however, in common with the epicycloidal teeth
of different wheels, all of which are struck with the s3™
generating circle (Art.212.), The second no less impm:tant
property of involute teeth-—a property which distinguishes
them from teeth of all other forms—is this, that they 0™
equally well, however fur the centres of the wheels are remov?
asunder from one anather ; so that the action of the teeth of
two wheels is not impaired when their axes ate displaced by

* .This. rule is given by Mr, Hawkins (p. 170.); it can only bF an #p-
prommatlm:l, but may he sufficiently near to the truth for practlﬂfll pur
l;;!}:es. .Itlls to be observed that the teeth may have their bases 10 inri

er . :
aimckflrc e than those, fL and <E, from which the fnvolutes
T The teeth being also of equal thicknesses at their bases, the method

of ensuring which condition hes been explained above.
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that wearing of their brasses or collars, which
soon results from a continued and a consider-
able strain. The existence of this property
will readily be admitted, if we conceive AG
and BH to represent the generating circles
or bases of the teeth, and these to be placed
with their centres C, and C; any distance
asunder, a band AB (p. 254., note) passing
round both, and a point T in this band gene-
rating a curve mn, w'w’ on the plane of each
of the circles as they are made to revolve under it. It has been
shown that these curves mn and m'n’ will represent the faces
of two tecth which will work truly with one another ; more-
over, that these curves are respectively involutes of the two
circles AGy and BH, and are therefore wholly independent in
Tespect to their forms of the distances of the centres of the
tircles from one another, depending ouly on the dimensions
Of the circles. Since then the circles would drive at any
distance correctly by means of the band ; since, moreover, at
every such distance they would be driven by the curves mn
ad m'n’ precisely as by the band; and since these curves
would ip every such position be the same curves, viz, in-
volutes of the two eircles, it follows that the same involute
curves mn and m'n’ would drive the circles correctly at what-
ever distances their centres were placed; and, therefore, that
nvolute teeth would drive these wheels correctly at what-
e¥er distances the axes of those wheels were placed.

Tue Terra or o Rack axp PiNiox.

4. T determing the pitch circle of the pinion.  Let H
"Present the distance through which the rack is to be moved
by each tooth of the pinion, and let these teeth be N in
Yumber; then will the rack be moved through the space
;h;H during one complete revolution of the W?leel' Now
¢ Tack angd pinion are to be driven.by: the sction of theix
*eth, as they would by the contact of the circumference of

T 2
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the pitch ecircle of the pinion with the
plane face of the rack, so that the space
moved through by the rack during one
complecte revolution of the pinion must
precisely equal the circumference of the
pitch circle of the pinion, If, therefore,
we call R the radius of the pitch circle
of the pinion, then

1
2R=N.H; .~ R=pN.H.

215, To describe the teeth of the
pinion, those of the rack being straights
The properties which have been shown
to belong to involute teeth (Art. 203.)
manifestly obtain, however great may be the dimensions of
the pitch cirele of their wheels, or whatever
disproportion may exist between them.
two wheels OF and OE with involute tet'?th
which work together, let then the radius
of the pitch circle of one OF become
infinite, its circumference will then become
a straight line represented by the face c.)f a
rack. Whilst the radius C,0 of the piteh
cirele OF thus becomes infinite. that CsB of
the circle from which its involute teeth are
struck (bearing a constant ratio to the first) will also become
mfinite, so that the invelyte m'n’ will become a straight line*
perpendicular to the line AB given in position. The involute
teeth on the wheel OF will thus become straight teeth (see
Jig L), having their faces perpendicular to the line AB de-

Y PR . .
. d‘For-lt 18 evident that the extremity of a line of infinite Jength un
nding itself from the circumference of g circle of infinite diametet ¥

g:sc;ihf:, through a finite space, g straight line perpendicnlar to the c:]:
Wierence of the circle, The idea of giving an ohlique position £ !
raight faces of the teet

to
Professor Willia, h of a rack appears first to have occurred
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termined by drawing through the point O a tangent to the
circle AC, from which the involute teeth of the pinion are
struck. If the circle AC from which the involute teeth of
the pinion are struck coincide with its pifch circle, the line
AB becomes parallel to the face of the rack, and the edges
of the teeth of the rack perpendicular to its face (fig. 2.).
Now, the involute teeth of the one wheel bave remained
unaltered, and the truth of their action with teeth of the
other wheel has not been influenced by that change in the
dimensions of the pitch circle of the last, which has converted
it into a rack, and its curved into straight teeth. Thus,
then, it follows, that straight teeth upon a rack, work truly
with involute teeth upon a pinion. Indeed it is evident,

that if from the point of contact P (fig. 2.) of such an in-
¥olute tooth of the pinion with the straight tooth of a rack
We draw g straight line PQ parallel to the face ab of the
rack, thyt straight line will be perpendicular to the surfaces
of both the teeth at their point of contact P, and that being
Perpendicular to the face of the involute tooth, it will also
fouch the eircle of which this tooth is the involute in the
POINt A, at which the face ab of the rack would touch that
“rele if they revolved by mutval contact, Thus, then, the

T3 '
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condjtion shown in Art. 201. to be necessary and sufficient
to the correct action of the teeth, namely, that a line drawn
from their point of contact, at any time, to the point of
contact of their pitch circles, is satisfied in respect to these
teeth. Divide, then, the circumference of the pitch eirele,
determined as above (Axt. 214.), into N equal parts, and
describe (Art. 213.) a pattern involute tooth from the circur-
ference of the pitch circle, limiting the length of the face of
the tooth to a little more than the length BP of the involute
curve generated by unwinding a length AP of the flexible
line equal to the distance H through which the rack is to
be moved by each tooth of the pinion. The straight teeth
of the rack are to be cut of the same length, and the circunt
ference of the pitch circle and the face ab of the rack placed
apart from one another by a little more than this length.

It is an objection to this last application of the involute
form of tooth for a pinion working with a rack, that the
point P of the straight tooth of the rack upon which it acts
is always the same, being detcymined by its intersection
with a line AP touching the pitch circle, and parallel to the
face of the rack. The objection does not apply to the P
ceding, the case (fig. 1.) in which the straight faces of each
t?ﬂth of the rack are inclined to one another, By the toh
tinual action upon a single point of the tooth of the rack,
1 1s liable to an excessive wearing away of its surface.

R16. To describe the teeth of the pinion, the tecth of the
rack being curved.
This may be done by giving to the face of the tooth of
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the rack a cycloidal form, and making the face of the tooth
of the pinion an epicycloid, aswill be apparent if we conceive
% the diameter of the circle whose centre is
, 1+ C (see fig. p.256.) to become infinite,
M| the other two circles remaining unaltered.
L~" 1 Any finite portion of the circumference of
XY | this énfinite circle will then become a
~ straight line. Let AE in the accom-
panying figure represent such a portion, and let PQ and
PR represent, as before, curves generated by a ‘point
P in the circle whose centre is D, when all three circles
revolve by their mutual contact at A. Then are PR and
ITQ the true forms of the teeth which would drive the
crcles as they are driven by their mutual contact at A
(Art. 204,), Moreover, the curve PQ is the same {Art. 201.)
@ would be generated by the point P in the circumference
of APH; if that circle rolled upon the circumference
AQE, it is therefore an epicycloid; and the curve PR is
tl.le same as would be generated by the point P, if the
tircle APIT rolled upon the circumference or straight line
AL, it is therefore a cycloid. Thus then it appears,.
that after the teeth have passed the line of centres, when
the face of the tooth of the pinion is driving the flank
of the taoth of the rack, the former must have an epicycloidal,
and. the latter & cycloidal form. In like manner, by trans-
ferring the cirelo APH to the opposite side of AE, it may be
shown, that before the teeth have passed the line of centres
When the flank of the tooth of the pinion is driving the face
of the tooth of the wheel, the former must have a hypo-.
£y cloidal, and the latter a cycloidal form, the cycloid having
s curvature in opposite directions on the flank and the
facc of the tooth, The generating circle will be of the most
‘onvenient dimensions for the description of the teeth when
% diameter equals the radius of the pitch eirele bfthe.pinion.
The hypocycloidal flank of the tooth of 'thBIPi“io.l_‘ will then
Pass into a straight flank. The radius of the pitch circle of
the pinion i5 determined as in Art. 214., and the method of
describing its teeth is explained in Art. 210,
' T 4 :
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R17. THE TEETH OF A WHEEL WORKING WITH A LANTEEN
OR TRUNDLE.

In some descriptions of mill work the ordinary form of the
toothed wheel is replaced by a contrivance called a lantern ot

trundle, formed by two circular dises, which are connected
with one another by cylindrical columns called staves, eni
gaging, like the teeth of » pinion, with the teeth of a "?heg
which the lantern is intended to drive. This combination 8
shown in the above figure. i
It is evident that the tecth on the wheel which works “iltl;
the lantem have their shape determined by the cy lindrie
shape of the staves, Their forms may readily be found b
the method explained in Art. 202, i
Having determined upon the dimensions of the staves Il
reference to the strain they are to be subjected to, &
upon the diameters of the pitch circles of the lantern &%
wheel, and also upon the pitch of the teeth; strike &
p AB and AC of these circles, and set;
» Upon them the pitches Ag and Ad from U7
4./ Point of contact A of the pitch cireles (
the teeth are first to come into contact ¥
~.c the line of centres, if not, set them off from
the points behind the line of centres Wher’
the toeth are first to come into cantaeth
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Describe a circle ae, having its centre in AB, passing
through a, and having its diameter equal to that of the
stave, and divide each of the pitches Aa and Ab into the .
same number of equal parts (say three). From the points of
division A, , 8 in the pitch Aa, measure the shortest dis~
tances to the circle ae, and with these shortest distances,
respectively, deseribe from the points of division 7,8 of the
pitch Ab, circular ares intersecting one another; a curve ab
touching all these circular ares will give the true face of the
tooth (Art. 202.). The opposite face of the tooth must be
struck from similar centres, and the base of the tooth must
be cut so far within the pitch circle as to admit one half of
the stave ae when that stave passes the line of centres,

218. THE RELATION BETWEEN Two PREsSUREs P, AnND Py
APPLIED TO TWO TOOTHED WHEELS IN THE STATE BORDER-
ING UPON MOTION BY THE PREPONDERANCE OF P

Let the influence of the weights of the wheels be in the
first place neglected. Let B and C represent the centres °.€
the pitch circles of the wheels, A their point of contact, P
the point of contact of the driving and driven teeth at any
petiod of the motion, RP the direction of the whole resultant
Pressure upon the teeth at their point of- contact, which
resultant pressure is equal and opposite to the resistance R of
the follower to the driver, BM and CN perpendiculams from.
the centres of the axes of the wheels upon RP; and BD an
CE upon the directions of P, and Py S

BD=q,, CE=a,, BM=m, CN=ms

BA=r, CA =,

P1> pe=radii of axes of wheels. .

#1, ¢2=limiting angles of resistance between the axes of the
Wheels and thejr bearings.

Then, since P, and R applied to the whes! whose centre s

are in the state bordering upon motion by the prepandsl-s : -
Sce of Py, and since o and m, sre the perpendiculars:of. .
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the directions of these

pressures respectively, we have (equd
tion 158)

Bi= { ile+ (&;;_2})5“1"?! } R:El{ml + (E;ﬁlfl)sm. 1 } R...-f

where L, represents the length of the line DM joining the
feet of the perpendiculars BM and BD,
Again, since R and P, applied to the wheel whose centré

is C are in the state burdering upon motion by the yg'glds'ng
of Py (Art, 163.),

- P I gpelay | 1 Lo\ . (242
o Be= { a;‘(‘z;i)sm-%} R:;ﬂ{mg—- (PZ—;)SIH-QQ}R doonl

where L, represents the distance NE between the feet of the

Perpe?dicma“ CE and CN. Eliminating R between these
equations, we haye
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Piz(‘f’ m1+(%:)sin.¢l
% ﬂlq—(PLa;)Siﬂ.ﬂ

Now let it be observed, that the line AP drawn from the
point of contact A. of the pitch circles to the point of contact P
of the tecth is perpendicular to their surfaces st that point P,
whatever may be the forms of the teeth, provided that they
act truly with one another (Art. 201.) ; moreover, that when
the point of contact P has passed the line of centres, as
shown in the figure, that point is in the act of moving on the
driven surface Pp from the centre C, or from P towards p,
$0 that tle friction of that surface is exerted in the opposite
direction, or from p towards P; whence it follows that the
Tesultant of this friction, and the perpendicular resistance a¥P
of the driven tooth upon the driver, has its direction rP
within the angle aPp and that it is inclined (Art. 141.) to the
Perpendicular oP at an angle aPr equal to the limiting angle.of
fesistance. Now this resistance is evidently equal and opposite
0 the resultant pressure upon the surfaces of the teeth in the
state bordering upon motion; whence it follows that the
“ngle RPA is equal to the limiting angle of resistance be-
tween the surfaces of contact of the teeth. Let this a.ngleobe
Tpresented by @, and let AP=A. Also let the inclination
PAC of AP'to the line of centrea BC be represented by 4.

h.rough A draw An perpendicular to RP, and sA# parallel
Wit. Then,

Py.... (3.

™=BM=Bt+ (M =Bt + An=BA sin. BAz+ AP sin, APR.
Alo BAt=BOR=PAC+ APR=0+¢;
CSomz=rsing i+ ) FAsinP o0 s . (344) ; _
"=CN=Cs—sN=Cs—An=CA sin. CAs—APsin. APR.
But As iy perallel to PR, therefore CAsz==BOR=4+¢;
S Mg Ein i+ @) —Asina g o o o0 (B8
Suhstituting these values of m; end my in the P“deg

quation,

)
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. P L] .
rysin,(0 +¢) + Asin. g 4+ ( l&r) sin. ¢,

a

219, In the preceding investigation the poin.t of conta(;t i
of the teeth of the driving and driven wheels is supf.)ﬂs": e
have passed the line of centres, or to be bele'ind that hne; o
us 10w suppose it not to have passed the line of centres,
to be before that line, .

It isfevident that in this case the point of cont:-mt P ;Solti
the act of moving upon the surface pPy of the driven

-

A

- her

towards the centre C, or from P towards ¢, as in the. Otase

- + !

case 1t 1s from the centre, or from P towards p. In thlsfl in
therefore, the friction of the driven surface is exerte
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the direction gP ; whence it follows, that in this state border-
ing upon motion the direction of the resistance R of the
driven upon the driving tooth must lie on the other side
of the normal APQ, being inclined to it at an angle APN
equal to the limiting angle of resistance. Thus the inclination
of R to the normal APQ is in both cases the same, but its
position in respect to that line is in the one case the reverse
of its position in the other case.*
The same construction being made as before,

m=BM=Bt+M=B¢ + An=BA .sin.BA¢ + AP.sin.APO.

Also BAt=BOR=BAP—APO=0~—p; t

coomy=r sinf—¢)+ Asin. g,
My =CN=CsursN=Cs~ An=CA .zin.CAs—AP.sin, APO.
But As is parallel to PN,
.. CAs=BOR=BAP—=APO=f—p;
. my==rysin, (§~¢)—Asin. @,
Substituting these values of m, and mg in equation (248),

risin.(§ —4) + Asin. ¢ + %ITQ— san. ¢ P,. (847).
’l
rgsin.(a—@)—xsin.t#—-(%)mﬁ ‘

g
P=(-2

Th‘is expression differs from the preceding (equation 246)
ouly in the substitution of (9 ¢) for (3+¢) in the first terma
of the numerator and denominator.

in;’t:Iel:}ce it follows, that when the point of contact is in the sct of eross-
trog ¢ Of centres, the direction of the resultant pressure R is passing
whenntr}l]e md? to the other of the perpendicalar APQ; and therefore that
i pe © pomnt of contact is i the line of centres, t.]lae resultant pressure
fion ‘;P}l:fldlculnr to that line, and the angle BOR & nght. ﬂd‘{ s condi.
0 nog; ich cammot however be assumed to obtain approsimately in respect
F%tions of any point of contact exceedingly near to the line of centres,
BT The angle o being here taken ss before to represent the inclination
of the ling AP, joining the point of contact of the pitch circles with

* Point of contact of the teeth, to the Lins of centres.
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Dividing numerator and denominator of the fraction n the
second member of that equation by sin. (§ + ¢), and throwing
out the factars r; and ry, we have

i Asin, ¢+ (P_;l:‘f) sill. @y

p= (i) ndnlre
Tl . paligy .

A sin. — s @
- $10 @—}-( a; )am ¢z

. T resin(6+¢)

P..

Now it is evident, that if in this fractional expression i—¢
be substituted for §+¢ the numecrator will be increascd and
the denominator diminished, so that the value of P corre-
sponding to any given value of P, will be increased. Whene®
it follows, that the resistance to the motion of the wheels bY
the friction of the common surfaces of contact of their teeth
and of the bearings of their axes is greater when the contact
of their teeth takes place before than when it takes places
at au equal angular distance, behind the linc of centres—2

principle confirmed by the experience of all practical me*
chanists,

220. To DETERMINE THE RELATION OF THE STATE BORDEE®
ING UPON MOTION BETWEEN THE PRESSURE Py APPLIED
70 THE DRIVING WHEEL AND THE RESISTANCE Py OPFOSEP
TO THE MOTION OF THE DRIVEN WHEEL, THE WEIGHTS OF
THE WHEELS BEING TAKEN INTO THE ACCOUNT.

Now let the influence of the weights W, and W, of t.he
two whecls be taken into the account. The pressures applied
to each wheel being now three in number instead of WO the
relations between P, and R, and P, and R arc determine
by equation (168) instead of equation (158). Substituti’d

! arvxd Wo for P; in the two cases, we obtain, instead ©
equations (241) and (242), the following,
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L]

W
-"/ 2, Y
. N

wi

i

H
[
T

¥

1 L MW, .
Pl:a{?ill+(“‘_;%)8iﬂ.¢‘}R+ L pisin.d

-

:[Jlﬂt'l_g H
AT RR (m) 4

1

sza—a {m y— (l_:f_gi?) sin. %}R—%ﬁsin. $2

I which equations M, and M, represent certain functions

determined (Art. 166.) by the inclinations of the pressures

P, and P, to the vertical. ' i
Eliminating R between the above equations, meglecting

*erms above the first dimension in sin. ¢, sin. ¢; and si. ¢

and multiplying by a,as, )

P,al{mz—%’;in, ¢,} —Pea, {m. “'I'ﬁ._ﬂ . m} _"'M:lz" pe

-Mﬁgfm,p,sin.% ..... (240} . '

Substityg squations (244}
and (245):1‘?1113 the values of m, and mg from eq e
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N . LP .
Plal {?'z s (9+¢)_) sin, ¢_!‘:f: sin. %} —P._,an{rl sin. (04 ¢')+A sin. $+ ‘,;Lls]ﬂ- ?1}

: ={¥f¥] Tufs sin. ¢1+1§%§2ﬂpz Si[l. (,'Jg} sin. (9+¢’) am e (250)'

i Now (Art. 166, %I—l]:ml cos. 113+ @, COS, iy, Where i repre-
sents the inclination W,FP, of P, to the vertical, and iy the
inclination R+F of R to the vertical.¥

Let the inclination W,BD of the perpendicular upon Py to
the vertical be represented by «;, that angle being so measured
that the pressure P, may teud to increase it ; let 2, repl‘es‘ent’
in like manner, the inclination ECG of CE to the vertical;

and let § represent the inclination ABr of the line of centres
to the vertical,

. =W, FP,=W,ED—BDF=u,—p,
iw=RrF=BOR—OBr=6+¢—5;

M
- -aﬁ,"l-‘:ml sin, #; + @, cos. (0 + §—B).

Similarly %?ng cos. P,GH +a, cos. RgWat Now

PGH=ECG + GEC =s, +5 ; and RgWyu= x—RoF, and

RrF was before shown to be equal to (#+¢—F)
B .M,

o, =™ $in. ¢g—ay cos, (8 + ¢—B)-

Substituting the values of m, and mg, from equations (244
and (245),

* See note, p, 190,

T 1t is to be observed that the ditection of the arrow in the figur® ‘f;
presents that of the resigtance opposed by the driven wheel to the mc'm‘ng
of the driving wheel, 5o that the direction of the pressure of the 47
upon the driven whee] 5 opposite 1o that of the arrow.

N,
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M, .
So=nsin. (64¢) sin. e +A sin. g, sin. ¢+ cos, (8+¢—P)
MI,. ... (851
;2'= —rysin, (04+¢)sin. ap+A st ay 8in, ¢ — a, cos, (-+¢-3)

Let it be supposed that the distances DM and EN, repre-
sented by L, and L,, are of finite dimensions, the directions
of neither of the pressures P, and P, approaching to coin-
didence with the direction of R,—a supposition which has
been virtually made in deducing equation (163) from equation
(161}, on the former of which equations, equations (248)
depend. And let it be observed that the terms involving sin. ¢
il} the above expressions (cquations 251) will be of twa
dimensions in @, ¢3, and ¢, when substituted in equation {250),
und may therefore be neglected. Moreover, that in all cases
the direction of RP is so nearly perpendicular to the line
of centres BC, that in those terms of equation {250), which
are multiplied by sin. ¢, and sin. gg, the angle §+¢, or BOR,

may be assumed :% ; any error which that supposition in~

valyes, exceedingly small in itself, being rendered exceed-

ingly less by that multiplication. Equations (@51) will then
eCome : . .

M - ’ . . .
&Tl =751 oy + g, sin. B, Eez — 1y $in. ag—ag 8iB e
g
Subsﬁt“ting these values in the first factor of the second
nember of equation (250), and representing that factor, by,
1Ty we ha,Ve o | “
‘ Wl N » -
hrﬂ'z'-_- Lﬁl rap{ry sin, a-a, sin. 3) sin. * —-‘sz—z’flﬁ(r" gin" a’.’-p‘mn.ﬁ) T R

ang dividing by ryr,

V*-—-‘_Vlm . . " an e RN
7L (w0 a4 sin, ) sin, ¢,—V—L’i’3(sin.u,+;mﬁ)m*- < (358).

* If the direction of P, be that of a tangent at the point of coltact&

heels, 8 case of frequent occurrence, the value, of I “m'hm&

uld eppear to become infinite in this expreasion. The M’ E

wever be removed, if we consider that when & bocomes, as 3% . .
U "
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Substituting Nryry for the fuctor, which it represents i
equation (250), we have

Vi {ro sim. (844)—N sin, ¢-L;3 sin, ¢y} —Poa{r, sin, (84} s ¢+

LIP]
a

sin, ¢} =Nrirosin. (94-9) . . . . . (203).
L

Solving this equation in respect to P,

. LIPI .
Asln. ¢+ a Sl ¢ N7,
I+ -
_GED ] + Jl 81, (gi_t(p) P o a4 .
ey } Lygs . et — . fa -
Asin. ¢+ oy NI g Asim @+ N BlLP;
———— B — =
1 7o sin, (8 + ) 1 rosin. (0 +¢)

Whence, performing actual division by the denominators of
the fractions in the second member of the equation, and
omitting terms of two dimcnsions in sin. #;, sin. ¢, sin. ¢ (ob-

serving that N is already of one dimension in those variablesh
we have

L1y, L Lo N s
{L(rﬁ_rﬁ) sin. c,‘:-l-“;lg} 81l cp\-lr-—(f;t sin, ¢} coser, (8 +?’}} P {

In this expression it is assumed that the contact of the teeth
is behind the line of centres,

—_— I
this case, equal to 7, and the point M is supposed to coineide with Ati
L, becomes a chord of the pitch circle, and is therefore represent®

.

. sin. @+ 8 ‘6_‘

by 2r, sin, iDBA, or 2r, sin. 3(a+B) ;5 so that - 1 'Ef:"r;
N

_lqldlkglj{-_s\llg 2sim, 1oy 3) cos. 3 1
Zrosin. L (o +3)" ‘Eﬁﬁ.ﬁﬁé;ﬂj-ﬂ:n cos. j(en+7)-

I, therefore, diree-

we take the angle qy=—g, 5o as to give to P, the

. . I S
tion of atangent ap A, this expression will assume the wmlu.le,;;l c0s, 0,07y}
s0 that in this case

) W.
N=_"—:dl . """“"*Lz? (sin. ﬂ’z+? sin. 8) sin. ¢z
2
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221. THE MODULUS OF A SYSTEM OF TWO TOOTHED WHEELS,

Let », and ny represent the numbers of teeth in the
driving and driven wheels respectively, and let it be observed
that these numbers are one to another as the radii of the
pitch circles of the wheels; then, multiplying both sides of

“quation (254) by a2, we shall obtain
1

i 1 1 Lp . . '
Pltuyl:Pga4 {l-i—{h(;l-f- ;2) sin, ¢+?ism.¢l+i%' gin, ¢s} cosec.(9+9)} 4Ny

Now let A represent an exceedingly small increment of
the angle §, through which the driven wheel is supposed to
}}a\'e revolved, after the point of contact P has passed the
line of centres; and let it be observed that the first member
. ry Adr Taad,
of the above equation is equal to Pya, ;_f: AV and that Y A
r‘*Pf‘t‘sﬁnts the angle described by the driving wheel (Art. 206),
whilst the driven wheel describes the angle Ad; whence it

follows (Art. 50') that P,q, (?A\IJ) represents the work AU;
1

do’}e by the driving pressure P, whilst this angle AY is ,.‘13"
seribed by the driven wheel, : :
. AU C
* =Py, 1,1y .. Lip: Lops o X + Nry
A A {1+{l(;1+;s) sin. ¢ + a‘.r'sm. tt s sin. g} cosec. (¢ 'Hb)}

Let now Ad be conceived infinitely small, so that the first
ember of the above equation may become the differential
“o-cfficient of Uy, in respect to . Let the equation, then, be
Wiegrated between the limits O and ¥;. Pa, Ly, and Lﬂ: sud
therefore N (equation 252) being conceived :to remain col-

Stant, whilst the angle { is described; we shall the“ obta_in
the equation R X

o4 . . : : L
Ymp, £ { T N
Iefafl 1 L c-m}ﬂ.w C8 ... ()

N:‘u/ {A(n.;.f’) |in.¢+3{£nn_,l+£ﬂ:a‘n‘¢,}m( . | e

ve
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where S is taken to represent the are ryb described by
the pitch cirele of the driven wheel, and thercfore by that of

the driving wheel also, whilst the former revolves through the
angle ¢,

222, THE MODULUS OF A SYSTEM OF TWO TOOTHED WHEELS,
THE NUMBER OF TEETH ON THE DRIVEN WEEEL BEING
CONSIDERABLE, AND 'THE WEIGHTS OF THE WHEELS BEIRG
TAKEN INTO ACCOUNT.

It is evident that the space traversed by the point of can-
tact of two tceth on the face of either of them is, in this case,
small as compared with the radius of its pitch circle, and thet
the direction of the resultant pressure R (see fig- p- QSQ'JI
upon the teeth is very nearly perpendicular to the line of
centres BC, whatever may be the particular forms of the tecth;
provided only that they be of such forms as will cause them
ta act troly with one another. In this case, therefore, the

x
angle BOR represented by 6+ is very ncarly equal Lo o
and cosec, ¢+o)=1.

_ Since, moreover, RP is very ncatly perpendicular o the
line of centres at A, and that the point of contact P of the
tf:eth deviates but little from that line, it is evident that the
line AP represented by a differs but little from an ate of
the pitch circle of the driven wheel, and that it differs the
less as the supposition made at the head of this article MO
nearly obtains. Let us suppose ¥ to represent the angle
subtended by this are at the centre C of the pitch circle of
the driven wheel, then will the are itself be repl‘esenLed b,y
Te\b, and therefore A':_rgub very ncarly. SubStituting thus
value of A in equation (255), observing that cosec. (o + 9=

Ta_Te . .
and that rom (equation 232), and integrating,

- n\ L )
U=l 0(147) s gy Dty brH 2 sin. g} Pragd+ Mot - (256)

e U

B ; - i ©
ut the driven or working pressure P, being SUPPOSed
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remain constant, whilst any two given teeth are in action,
Pyapd represents the work U, yielded by that pressure whilst
those teeth are in contact: also 7o represents the space S,
described by the cireumference of the pitch circle of either
“"hoell whilst this angle is described. Now let ¢ be
conceived to represent the angle subtended by the pitch
of one of the teeth of the driven wheel, these teeth being
supposed to act only dekind the line of centres, then 1{;:%,

"y representing the number of teeth on the driven wheel,

w81 = (1) = (i)
1 1
S = S A Lopy - .
{H— (’;'+,;x) sin, ¢+HT:1 sin, ¢.+ii::-s sin. ¢,}U,+N_ S ... (257),

::'zi‘ggprf]ﬂti'on betv'veen the wor%c done at the. moving an.d

e\'ideu‘t{f YPO;H'CS, whilst any two given teeth are in contact, is

while ajn also the relation between tlze work srmllarl-y done,

fore the I\Z{/ given number of teeth are in contact. It is there-

Mmbacs opuLys of any system _of two toothed wheels, the
of whose tecth are considerable.

993, T IN-
“3. THE MoDULUS oF A sYSTEM OF TWO WHEELS WITH IN-
¥
OLUTE TEETH OF ANY NUMBERS AND DIMENSIGONS.

The Jocus of the points of contact of the teeth has been
T shown (Art. 203.} to be in this case
' " a straight line DE, which passes
through the point of contact A of
the pitch circles, and tomches the
circles (BF and DG) from which the
.y involutes are struck. Let P repre-
I} sent any position of this point of
i { contact, then is AP measured along
g7 the given line DE the distance re- .
resented by A in Art. 218., and the
“gle CAD, which is in tﬁis case conZtant, is that represented
U3
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by 4. Since, morcover, the point of contact of the teeth
moves precisely as a point P upon a flexible cord DE, un-
winding from the cirele EF and winding upon DG, would
(see note, p. 254.), it is evident that the distance AP, being
that which such a point would traverse whilst the pitch
o ; civele AN revolved through a certain angle ¢, measured
A from the line of centres is precisely equal to the length
of string which would wind upon DG whilst this angle is
deseribed by it; or to the arc of that circle which sub-
tends the angle §. 1f, therefore, we represent the angle
ACD by #, so that CD=CA cos. ACD=r,cos.v, then
a=rybcos, . Substituting this value for A in equation (234)
and observing that 9+@:Z;—-‘q+¢:g-—(r“-—¢), and that
Ty W ‘
—-=—, we have
rom

o s N PR Lps . N
P]=;:%{l+{¢(l+h»|) Cos. 5 sm.¢+$i sit, ¢+ (ﬁmu.%} sec. (:;-—q»)}Pg-i- a

from which equation we obtain by the samec steps as it
Art. 221, observing that y is constant,

ar,

1 1 ) Lip . L., . . 500
U,= { H—{-r(;l-é- T;J cos, 5 sit. o4 1B in. q;.-{-}g? st ¢} sec.(n—q))} U+ NS.. {230
2

which is the modulus of a system of two wheels having any
“given numbers of involute teeth.

224. THE INVOLUTE TOOTII OF LEAST RESISTANCE.

It is evident that the value of U, in equation (259), or of
e the work which 1nust be done upon
T the driving wheel to cause a given
B amount U, to be yielded by the
driven wheel is dependent for it8
. amount upon the value of the <o
v efficient of U, in the second member
‘. | of that equation ; and that this co-
‘7 cfficient, again, is dependent for its
value {other things being the same)
upon the value of y representing
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the angle ACD, or its equal the angle DAIT, which the
tangent DI to the circles from which the involutes are
struck makes with a perpendicular Al to the line of centres.
Moreover, that the co-efficient N not involving this factor 4
{equation 252), the variation of the value of Uy, so far as this
angle is concermed, is ' wholly involved in the corresponding
5 variation of the co-efficient of U, and becomes a m_inimum
with it; so that the value of » which gives to the function of
E 1 represented by this co-efficient, its minimum value, is the
value of it which satisfies the condition of the greatest eco-
nomy of power, and determines that inclination DAL of the
tangent DE to the perpendicular to the line of -centres, and
those values, therefore, of the radii CD and BE of the circles
whence the involutes are struck, which correspond to the
leoth of least resistance.
To determine the value of y which corresponds to a mini-
mum value of this co-efficient, let the latter be represented
by u; then, for the required value of »,

du d*u
dn =0, and @ >0

11 L :
Letw(~+;§):A, ~—1'a~lsin.p1+Lm sin. g,=B; -

7y 7 %73
. #w=14(A cos. nsin, ¢ +B) sec. (y—8); -

() o =14 1B see. (n_¢)+Asin.@c05- ) 8&0._(_1)""@”
w‘ du

=B, #) sin. (p—g)— A sin. ¢ sec, *(n—¢) sin. n cos. (7—¢)—cos. g sin. (\—9) } i

i3
1=Bsee., (3—p) tan, (n~—¢)— A sin. ¢{ sin, y sec. (y—)—cos. 5y tan. (n—t) sec. (n—4)};

. du _ .
"y =% (1= ) {B sin. (g —p)— Asinp} . . -« - (260,
In order, therefore, that :—i; may vanish for any value of
}} f

™ 0n¢ of the factors which compose the second member of the -
4bove equation must vanish for that value of #; but this can.
ever be the ease in respect to the first factor, for the least
velue of the square of the secant of an arc is the square of L
v 4
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the radius, If, therefore, the function 1 admit of a minimum
value, the second factor of the above equation vanishes whe'n
it attains that value; and the corresponding value of 7 18
determined by the equation,

e, Bsin (g—¢)—AsinZs=0 ... .. (261}

A . TirA
or by sin (3 —¢) = p sin*g, or by y=¢ - sin. (B' sm.lqa) j
or substituting the values of A and B,
11y,
. _Il (ﬁ-—rﬁ)sm.ﬁqj ’
=@+ sin. L2 S ... (268)
i

1. LaFe s
— — Sl ~=-t 811G
{am Pt gy ¢2

Now the function # admits of a minimum to which th_15
value of y corresponds, provided that when substituted i
d*n . ] . .
dy* this value of » gives to that second differential co-efficient
of % in respect to v a positive value.

Differentiating equation (260), we have

dz
E;%sﬂsec. (1) tan. (7—p} { Bsin.? (g—p) — Asin.*p} 4 Baec. }(y—¢) o5 (et

But the proposed value of 4 {equation 261) has heen shown
to be that which, being substituted in the factor {B sin. (1=
—Asin.? ¢}, will cause it tovanish, and therefore, withit, the

2
whole of the first term of the value Qf%—% . it corresponds,
7

R therefore, to a minimwm, if it gives to the second term
:' B sec.X(n—¢) cos. (3¢} a positive value ; or, since sec. n—¢)
1s essentially positive, and B dues not involve y, if it gives ©0

- -1 /A,
€os. (1~~p) a positive value, or if 1—e< %, orif'sin, (ﬁ sm."qp)

x . S
gy orif giine <1, or if Asin2p< B; orif

e

L1y L .
‘I(nl + E;) Sln¢2¢ < E;lf: sin. Pl + %—;—-—’? Siﬂ. (Pg . 4 a0 (266).
2

' - .k
g}‘
AP,
o,
I
. vk

b,
5
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This condition being satisfied, the value of 1, determined
by equation (262), corresponds to a minimum, and determine
the INVOLUTE TOOTH OF LEAST RESISTANCE.* -t

225, To DETERMINE TN WHAT PROPORTION THE ANGLE OF
CUNTACT OF EACH TOOTH SHOULD RE DIVIDED BY THE
LINE OF CENTRES; OR THROUGH HOW MUCH OF ITS PITCH’
EACH TOOTH SHOULD DRIVE BEFORE AND BEHIND THE
LINE OF CENTRES, THAT THE WORK EXPENDED UPON
FRICTION MAY BE THE LEAST POSSIBLE.

Let the proportion in which the angle of contact of each
tooth is divided by the line of centres be represented by «,
Q -
%0 that &E may represent the angular distance from the line
2
of centres of a line drawn from the centre of the driven
wheel to the point of contact of the teeth when they first

Px
come into action before the line of centres, and (1 -.'r:),;;

the corresponding angular distance behind the line of centres .,
When they pass out of contact ; and let it be observed that,
on this supposition, if U, represent as before the work
Yielded by the driven wheel during the contact of any m
teeth, 2U, will represent the portion of that work done
before, and (1= a)U, that done behind, the line of centres.

ben Proceeding jn respect to equation 258 by the same
Method as was used in deducing from that equation the
'wodulus (Equation 259), but integrating first between the

limits 0 ang & ?_n:, in order to determine the work ; done by
the driving pressure before the point of contact pastes —ﬂl-e
* It ma

(261)

ﬂomy

¥ easily be shown by eliminating 2 between equations (259) and
that the modulus corresponding to this condition of the greatest 6¢o
of power, where involute teeth are used, is represénted by the {m_

Uy {348 sin sy (B—a" sinag) }Ust NS.
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b d
line of centres, and then between the limits 0 and (1 —a) ™

. to determine the work », done after the point of contz?ct hzas
- passed the line of centres observing, moreover, that in ti¢

former case ¢ is to be substituted in sec. (p—¢) for 9
{Art, 219.), we have

1 1 . .L; LI ]‘-_y."g . . } .\' :
uy = {1+{mrr(;l+;l; €08, 3 Slu‘¢+aﬂ{: it ¢, + o sin. ¢a} sce. (4+9) UM

Or assuming

1 1 L:Pl . Loty sith, 25 =h
1 7 . . A - . ¥T—
”(m_"uq)ms‘ 7 sin, ¢=a, and ar sin. $o + tal'y

wy={1 + (ax 4 Blsec.(n + ¢)}xUs + Nsu.

51 Tepresenting the space described by the pitch Ciﬂ'd"_(‘f
either wheel before the line of centres is passed ; similarly

'ag:{l-f- {ﬂ(l—-m)+b}Sec.(r,_.¢)}(1 — &) Us+ No

Adding these equations together, and representing by .Ul t?e
whole work u, + u, done by the driving pressure dur‘mgtlc
contact of the teeth, and by § the whole space described by
the circumference of cither pitch circle, we have o
U1={1+(:M'"+b.r) se, (n+9)+{a( 1=z )4 & 1—a)} sec.(r;—¢)}Uz+Ns L
by which equation is determined the modulus of two w};ee‘li'
driven by involute teeth, when the contact takes place Pﬂrtl;"
before and partly behind the line of centres.
Let the portion of the work U,, which is expended upo"
the friction of the teeth be represented by z.  Then

NS
RTR u= {(ﬂx‘+b,r) sec. (449} 4 {a(L—a ¥ 51— o)} sec. (n“‘?’]} Uit N

T
Now the value of x, which gives to this function its 1;11:;16
mum, and which therefore determines that division © ; o
driving are which corresponds to the greatest econom )]rs
Power, is evidently the value which satisfies the conditiol

du_ o
g0 gz, 0

d-.TQ
- But differentiating and reducing

d’u_

('f"?)} i
d.r"‘{z"‘r{“-’"' (ﬂ+¢)+sec.(n_..g,)} +b{sec, (n-+4)— sec.(n-—cﬁ)} 24 5EC
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o*
—ﬁé:Qa{sec;(ﬂ +¢) +sec.(n— @)U,

Whence jt appears that the second condition is always satis-
fied, and that the first condition is satisfied by that value of
&, which is determined by the equation

uz{ser. (40} + sec. (=g )} +5{ sec. (+¢) ~sec.(1—9) } —2asec. (4—p)= O

Whence we obtain by transposition and reduction

;:é{l—(l-i—z)tan.n ta.n.«p}.

So that the condition of the greatest economy of power is
satisfied in respect to involute teeth, when the teeth first
eoine into contact before the line of centres at a point whose
angular distance from it is less than one half the angle sub-
tended by the piteh by that fractional part of the last-men-

. ) 1 b
toned angle, which is represented by the formula ;2(1 +a)

tan. » tan. ¢, or substituting for » and a their values by the
formula

Ligy . Tigpg .
: +Eﬁ1 SN, ¢ 4+ Py Sin. ¢q

1 1
T(ﬂ*l+n;) oS, % sin. P

That division of the angle of contact of any two testh by
the Yine of centres, which is consistent with the greatest eco-
nemy of power, is always, therefore, an unequal division, the
less portion being that which lies before the line of centres;
ad its fractional defect from one half the angle of contact, as
5o the fractional excess of the greater portion above one half
that augle, is in every case represented by the above formula,
ad is therefore dependent upon the dimensions of the wheels,
the forms and numbers of the teeth, and the circumstances

?ﬁlder which the driving and working pressures are applied to
211, %

DO

tam.p tan, @ . .+ o {(268)°

ec; The division of the arc of contact which cotresponds to the greatest
" "omy of power in epicycloidal teeth, may: be determined by precisely
" seme steps, _
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226. THE MODULUS OF A SYSTEM OF TWOQ WHEELS DRIVEX
BY EFICYCLOIDAL TEETH.

The locus of the point of contact P of any two guch teeth
is evidently the gencrating circle APH o
the epicycloidal face of one of the teeth,
and the hypocycloidal flank of the other
{Art.204.); for it has been shown (At
201.), that if the pitch circles of the whecl
and the generating circle APH of the
tecth be conceived to revolve about fixed
centres B, C, D by their mutual contact
at A, then will a point P in the circum-
ference of the last mentioned circle move at the same hme
upon the surfaces of both the tecth which are in contach
and therefore always coincide with their point of contacly
so that the distance AP of the point of contact P of ?he
teeth from A, which distance is represented in equatiod
(255) by A, is in this case the chord of the arc AP, Wh]f’h
the generating cirele, if it revolved by its contact with
the pitch circles, would have described, whilst each of the
pitch circles revolved through a certain angle measured
from the line of cemtres. Yet the angle which the driven
wheel (whose centre is C) describes between the period
when the point of contact P of the teeth passes the line of
centres, and thay when it reaches the position shown i“_ﬂ‘e
ﬁgure be represented as before by ¥, the arc of {he piteh
circle of that wheel which passes over the point A during t!.w.t
p?tiQd will then be represented by 7o, Now the generatils
circle APH having revolved in contact with this pitch circle,
an equal are of that circle will have passed over the point {&;
whenee it follows that the are AP =rpl; and thatif the radivs
of the generating circle be represented by 7, then the angle

Ty .
ADP subtended by the arc AP is represented by by o

by 29“"! if 28 be f.akell to representth_e ra‘io r—: of the Iﬂ,dlus
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of the pitch circle of the driven wheel to the radius of the gene-
rating circle. Now the chord AP=2AD sin. 3 ADP;

. s . T .
therefore A =2r sin. ed:.:g- sin. ef. Substituting this” value

of A in cquation {255); observing, moreover, that the angle

PAD represented by 8 in that equation is equal to %—%
ADP, or to g—e\b, and that the whole angle ¥ through whicl)l
the driven wheel is made to revolve by the contact of each of

Its tecth is represented by ;} we have

% ‘
- %, 1 ) . .
L,_me 1 {H”;(,__Jrrl) din. ¢ sin. o +%‘f'sin. ¢,+Ij—$m. #o)sec. (¢—¢)}d¢+ns;

oI, assuming I, and T, to remain. constant durmg the cone

tact of any two teeth representing the constant 1 +‘*f—Em 9!
L F L]
Jr — sm ¢ by A, and observing tha.t PP

; o 2

; " " '
U,=Pga, {1} sec. (elp*¢)d¢+1(1+’£) sin. ffsin. e sec. (eap-—;a)dap};l-NS-

Now the general mtegral‘/‘ec (eb— ¢)d¢’; or

) .
fsec (eb—¢) d (ed—4) being represented * by the functmn
i
¢ l0g.. tan, {%+§(e¢-—¢)}, its definite intggrd:between .

o
the limits @ and — has for its expressloﬂs

* Hymer's Integ. Cal. Art, 52,

]og .5
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2r 2z
Also_ face.(eb—g)sin. gy = [oec (b —g)sin.{(edi—g) + ol
o ‘o

= s;c. (eb—g){sin. (ed—g) cos. ¢+ cos. (eb—g¢) sin, pidb

0

2r
:f {cos. ptan. (e~ @) + sin, eydy

i

=l ¢cos, @/r'tan. (edr—og)d (eb—p)+ pd
8 ‘0 n

& sin, ¢,

. Now the general integral / ;:an.(e\b—¢)d(3¢'—cp)}1as for
. s expression — log,, cos, (etb:-qi).* Taking its definite inte-

gral between the limits 0 ang Qir, we have, therefore,
g

o

A € COS. ¢, L)

"1 cos. (2:1.-__?))
[ ) sin gty Y g grog, U ) g

Substituting these expressions in the modulus, repre

. T ¢
senting 4~a by ¢, and observing that if U, represent the
work yielded by the driven wheel during the action of each

2=
toot — =
00 h, then Pgﬂg . g -—-Ug, 50 tha.t PgaE:

2w
l UJ=P'{A log. tan. (%_Ti’) cm.(gf_’ — J . Né.-fw
ew 1 _‘_ﬁﬁ: & “amln.g (]+ ::_‘2;){9“_:;@_]03“ c::_‘p_ _z_:"in_¢ }}Dﬂ’ X

Qem

Derw
~———" =log. { . } €os.
cos, g " =log ELI-Han. ny 0 ¢ g

* Hymer's Integ, Cal. Art, 52,
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[l= ‘{Aloa : _2_(@
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Qer Zex Zexr
=log., cos. ﬁn:+1og. . 1+tan.E tan, ¢} =log., cos.z*i-
2 R
tan, ;ltan.qb—% tan,? gnﬁ . tan.2p+ &c.  Substituting this
2 2

expression in the preceding equation, and neglectiug_ {erms
above the first dimension in tan. ¢ and sin. ¢,

tan. ( +¢’) 1

{Alog‘E tan, 7 —20(I+;’-)an.n.2¢ log.e cos, o }?,+NS .

327, If the radius r of the generating clrcle be equal to

one half the radius r, of the pitch eircle of the driven wheel,
according to the method generally adopted by. mechanics

(Art. 205) then e*—%rg——%&—l

In this case therefore — that is, where the flanks of the

driven  wheel are straight (Axt, 212.) —the modulus be-
tomes

tan, ¢

L 2R A
2%8. Substituting (in equation 267.) for ¢ its value ;=g

tan, (e{-}-.p tan. { -~-*-')} - 1+mﬂ-(“"'§) ;
log., 75-2&—_ og. m: (, Q) -——-108-,1 m(g_g)
. ik ST
log, T~tan, §

1 ¢
+tan, 2

If, therefore, we assume the teet.h in the dnven Whﬁ‘EI to :
© 50 numerous, or ngto be so great a number,’ that the

third Power and . all higher powers of. fan.. (-”*;-'2) may hﬁ E

e

. .. . (367,

2 "o
—~§(1+;f:) sm.2¢log.£cm._ﬁu’£}UstSs . (”8)
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neglected as compared with its first power, and if we neglect

powers of t&n.% above the second,

. , Lem
which expression hecomes s if we suppose the two ars
2
which enter into it to e so small as to equal their re-
spective tangents.

. Qerx Qem 2
Again, log., cos. = —12—(;2 2) very nearly.®
Substituting these values in equation (267), and performiag

actual multiplication by the factor 3;:;, we have

1 1
U= {A+%7r(;a+?;) sia. 2¢}U9+NS5
2

or substituting for A its value; and assuming % sin.26=
Sin, $, since ¢ is exceedingly small,

U= {(l + %I‘TB: sin. g1+ %T sin, %) +W(£1+%‘J sin. ¢} U, NS, . .- {269}

Wh_ich is the modulus of a wheel and pinion having epicy”
cloidal teeth, the number of teeth ng in the driven whee
being considerable (sce equation 257.),

. It is evident that the value of U, in the modulus {equd-
tion 26G6), admits of a minimum in respect to the value of &

* For assume Jog.; cos. « =a b gt aws4-, . . .3 then differentiatings

—tan, =202 4 dau3 4 Gous+ . .. .3

but (Miller,D&f; Cal, p. 83.)-~tan, ﬂ'=—-—z——;x3—-32—;m5—— o equatiné.’,
.
therefore, the co-efficients of these identical serjes, we have
S 1 2
% .. 2’ al?""g“ N o e 0y &e.=&e.;

3.5.6

P lOg.; cﬂs‘x=_§ .__'f;_,_gxi___, ..
v 2 3.4 3.5.6
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there is, therefore, a given relation of the radius of the
generating circle of the driving, to that of the driven wheel, _
which relation being observed in striking the epicycloidal

faces and the hypocycloidal flanks of the teeth of two wheels
destined to work with one another, those wheels will .work
with 2 greater economy of power than they would under any
other epieycloidal forms of their teeth. This value of ¢ may
be determined by assuming the differential co-efficient of the
co-eflicient of U, in equation {266) equal to zero, and solving

the resulting transcendental equation by the method of ap-
proximation.

229. THE MODULUS OF THE RACK AND PINION.

If the radius #, of the pitch circle of the driven wheel be
supposed infinite ( Art, £15.), that wheel becomes a rack, and
the radius 7, of the driving wheel remaining of finite dime'n-
sions, the two constitute a rack and pinion. To determine
the modulus of the rack and pinion in the case of teeth. of
any form, the number upon the pinion being great,. or in
the case of involute teeth and epicycloidal teeth of any
hember apgd dimensions, we have only to giVﬂ to ry an 1n-
fiite value in the moduli already determined in respect
' these several conditions. But it is to be observed.m
fespect to epicycloidal teeth, that me becomes infinite with

»

"s whilst the ratio ;:i:remains finite, and retains its equality
it W
fr" o

' we tepresent the ratio ;} by 2. Making ne and ry infinite
M each of the equations (257), (259), and {266),andsuh-
Stituting :T:“for E;in equation (266); wehﬂe
L. For the modulus of the rack and pillion when the teeth

¢ very small, whatever may be their -forms, pmﬂdedtm
they work tegl - et

t L A —e—"" I&_
© the ratio Y {equation 232), so that ng"*_ﬂaf-“&

X
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IL={1+2%ﬁmm+:ﬁm¢}lb+NS....%mw
1

2, For the modulus of a rack and pinion, with involute
teeth of any dimensions (see fig. 1. p. 277.),

‘ : U= {1+(?: CoS. 7 sin, ¢+EL:I.’ sin. «;,) sec. (n—@)} U,4+N8S .. (271).

3. For the modulus of the rack and pinjon, with cycloidal
and epicycloidal teeth respectively (Art. 216.),

en 2ey®
" 1, tan.(ﬁ”' -f-cp') in, 2¢ 08. (71; U+ N8
Uimg [(14100n. ) nE) sin g L YOS
! Rem I+ & mn. lﬂ‘g- F tan. ?JT# - 77(31 k}g‘i cos.

In each of which cases the value of N is determined by
wmaking 7 infinite in equation (252),

ConicaL or Brvir, WneeLs.

230. These Wheels are used to communicate a motion of

rotation to any given axis from another, inclined to the first
at any angle,

i Let AF be an axis to which a motion of rotation is to be
| 1 communicated from another axis AL
x/ N inclined to the first at any angle EAF,
’\\/ N by means of bevil wheels. _
" Divide the angle EAT by the straight
..z line AD, so that DO and DN, pe
pendiculars from any point D in A
W upon AE and AT respectively, may be
to one another as the numbers of teeth
to place upon the two wheels. T

/” o ’ ..
ys

which it is required

& e m,

= e

. . 1 2, i 1 1 ¢
.*. (equation 267 1(1 J)_“( ey 141 ___)__s,ﬂ Decause
- q )2" +7J| T 2e l+e, Talete /T 2

15 infinite,

. . 1 c-
ite. The friction of the rack upon its guides is not taken nto®
count in the ahove equations.

1 This division of the angle EAT may be made as follows :—Dra¥ S’I;
and UW from any points 8 and U in the straight lines AE and AF#
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Suppose a cone to be generated by the revolution of the
line AD about AE, and another by the revolution of the
line AD about AF. Then if these cones were made to re-
volve én contact about the fixed axes AE, and AF, their
surfaces would ro/ upon one another along their whole line of
contact DA, so that no part of the surface of one would
slide upon that of the other, and thus the whole surface of
the one cone, which passes in a given time over the line of
tontact AD, be equal to the whole surface of the other,
Wl‘\iﬂ}l passes over that line in the same time. For it is
evident that if m, times the circumference of the circle DP
be equal to ng times that of the circle DI and these circles
be conceived to revolve in contact carrying the cones with
them, whilst the cone DAP makes , revolutions, the cone
DAI will make m, revolutions; so that whilst any ather
arcle GH of the one cone makes n, revolutions, the corre-
sponding crcle HK of the other cone will make n, revolu-
Uons; but my times the circumference of the circle GH
' equal to ny times that of the circle HK, for the diameters
of these circles, and therefore their circumferences, are to
eie anather (by similar triangles) in the same proportion as
th.e diameters and the circumferences of the circles DP and DI
'Smcﬁ, then, whilst the cones make , and ny revolutions re-
"pectively, the circles HG- and HK are carried through =

—

right angles to those lines respectively, and
having their lengths in the ratio of the num-
bers of teeth which it i3 required to place
upon the two wheels; and through the ex-
tremities ‘T and W of these lines draw. TD
and WD parallel to AE and AF respectively,
and meeting in D, A straight line drawn from
A through D will then make the required
division of the angle; for if DO snd DN be
drawn perpendicular to AR and: AF, ﬂ"”-f"
therefype will evidently be equal to UW anthT. and
Over © in the required proportion of the numbers of the teet § more»
KNy other two lines deawn perpendicular to AB and AF from any

0: . N -
g D¢ i AD will manifestly be in the same proportion &3 DO .

x 92




308 CONICAL WHEFLS.

and nq revolutions respectively, and that », times the eircutn-
ference of HG is equal to 1, times that of HK, therefore the
circles HG and HK rol/ in contact through the whole of
that space, nowherc sliding upon one another. And the
same is true of any other corresponding circles on the cones
whence it follows that their whole surfaces are made to roll
upon one another by their mutual contact, no two parts being
made to slide upon one another by the rolling of the rest.

The rotation of the one axis might therefore be comm-
nicated to the other by the rolling of two such cones in cot-
tact, the surface of the one cone earrying with it the surface
of the other, along their line of contact AD, by reason of the
mutual friction of their surfaces, supposing that they could be
so pressed upon one another as to produce a friction equal ¥
the pressure under which the motion is communicated, o the
work transferred. In such a case the angular velocities of
the two axes would evidently be to one another (eqU&ti‘m
232) inverscly, as the circumferences of any two coﬂes?om_i'
ing circles DP and DI upon the cones, or inversely as their
radii ND and OD, that is (by construction) inversely as the
numbers and teeth which it is proposed to cut uport the
wheels.

When, however, any considerable pressure accompanies’
the motion to he communicated, the friction of Lwo such
cones becomes insufficient, and it becomes necessary to transf(fr
it by the intervention of bevil teeth, It is the characteristic
property of these teeth that they cause the motion to be
transferred by their successive contact, precisely as it would
by the continued contact of the surfaces of the cones.

231, To describe the teeth of bevil w]},gel&'.*

F.rom D let FDE be drawn at right angles to AD, imef‘
secting the axes AE and AF of the two cones in B and I

* The method here
Mr. Tredgold in his ed
p- 103.

given appears first to have been [mb“'mheds;g’
tion of Buchanan's Essay on Miftwork, |



CONICAL WHEFLS. 309

suppose conieal surfaces to be generated by the revolution
of the Imes DE and DF about AE and AF respectively;

#d let these comical surfaces be truncaied by planes M
md Xy respectively perpendicular to their axes AE and
AF, leaving the distances DL and DY about equal to the
Uepths which it s proposed to assign to the teeth, Let now
the conical surface LDPM be conceived to be developed
"Pon & plane perpendicular to AD, and passing through the
Point D, and let the conical surface XIDY be in like
Wanker developed, and upon the same plane. When thus

,  developed, these conical surfaces will have he-
., come the plane surfaces of two segmental annuli
h’f‘\‘é} MPpm and I1Xzi*, whose centres are in the points
"7 E and F of the axes AE and AF, and which

\., /' touch one another in the point D of the line of
» contact AD of the cones. o '

as:ls'ghj lines MP and pm in the development, coincided upon the cone,
abiove he lines IX and ér, the other letters upon the development in the
same lgg ure represent points which are identical with thoee shown by the-
showp ;mm in the preceding figure, JIn that figure d!e.eon@lilurfaces are
which eve]-o ped, not in & plane perpendicular to AD, but in .the' plane
dicu[mcontams that line and the lines AE and AF, and which ia perpen-
Constry, to the last-mentioned plane, It is evidently unnecesaary, i the
e ction of the pattern teeth, actually to develop the com?al exe
length 3 of the wheels as above described ; we have only to determine the L

8% of the radii DE and DF by construction, and with them to describe- . . . . ..,

x 3
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Let now plane or spur teeth be struck upon the circles
Pp and Ti, such as would cause them to drive one another as
they would be driven by their mutual contact; that is, let
these cireles Pp and Té be taken as the pitch circles of such
tecth, and let the teeth be described, by any of the methods
before explained, so that they may drive one another cor-
rectly. Let, moreover, their pitches be such, that there may
be placed as many such teeth on the circumference Pp 2t
there are to be teeth upon the bevil wheel HP, and as many
on i as upon the wheel HL

Having struck upon a flexible surface as many of the first
tecth as are necessary to constitute a pattern, apply 3t to the
conical surface DLMP, and trace off the teeth from it upon
that surface, and proceed in the same manner with the st
face DIXY.

Take DH equal to the proposed lengths of the teeth, draw
¢f through H perpendieular to AD, and terminate the wheels
at their lesser extremities by concave surfaces HGmé and
HKuwy described in the same way as the convex surfac:fes
which form their greater extremities. Proceed, moreover; 12
the construction of pattern teeth precisely in the same %2y
in respect to those surfaces as the others; and trace out the
teeth from these patterns on the lesser extremities as on the
greater, taking care that any two similar points in the teeth
traced upon the greater and lesser extremities shall lie in the
same straight line passing through A, The pattern tecth
thus traced upon the two extremities of the wheels are the
extreme boundaries or edges of the teeth to be placed upot

them, and are a sufficient guide to the workman in cuttilg
them.

_—— . _ e

two arcs, Pp, Ii, for the pitch circles of the teeth, and to set off the
pitches upon them of the same lengths as the pitches upon the eircles

and D1, which last are determined by the numbers of teeth required £ be
cut upon the wheelg respectively,
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%32, To prove that teeth thus constructed will work truly
with one another.

It is evident that if two exceedingly thin wheels had
becn taken in a plane perpendicular to AD (fig- p.309.)
bassing through the point D), and having their centres
in E and F; and if teeth had been cut upon these wheels
according to the pattern above described, then would these
wheels have worked truly with one another, and the ratio of
their angular velocities have been inversely that of ED to
ID, or (by similar triangles) inversely that of ND to OD;
ﬂihich 1s the ratio required to be given to the angular velo-
cities of the bevil wheels.

Now it is evident that that portion of each of the conical
Surfaces DPML and DIXY which is at any instant passing
through the line I.Y is at that instant revolving in the plane
Perpendicular to AD which passes through the point D, the
One surface revolving in that plane about the centre E and
the other about the centre F; those portions of the teeth of
the bevil wheels which lie in these two conical surfaces will
therefore drive one another truly, at the instant when they are
Passing through the line 1Y, if they be cut of the forms
W%lich they must have had to drive one another truly (and
With the required ratio of their angular velocities) had they
acted entively in the above-mentioned plane perpendicular
% AD and round the centres E and F. Now this is precisely
the form in which they have been cut. Those portions of
the bevil teeth which lie in the conical surfaces DPML
=d DIXY will therefore drive one another truly at the
istant when they pass through the line LY; and therefore
they will drive ome another truly through an exceedingly
*mall distance on either side of that live. Now _it’ is only
through an exceedingly small distance on either side of that
line that any two given teeth remain in- contact with one
another, Thus then it follows, that those. portions of the
eth which lia in the conical surfaces DM and DX work:
tru]y with one another. : ] AR

x4
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Now conceive the faces of the tecth to be intersected by an
infinity of conical surfaces parallel and similar to DM and DX;
precisely in the same way it may be shown that those por-
tions of the teeth which lie in each of this infinite number
of conical surfaces work truly with one another; whence it
follows that the whole surfaces of the tceth, constructed as
above, work truly tegether,

233. Tur MODULUS OF A SYSTEM OF TWo CONICAL O
BEVIL WHEELS,

Let the pressures P, and P, be applied to the canica:l
wheels represented in the accompanying figure at perpendi-
eular distances @, and @y from their axes CB and CG; let
the length AF of their tecth be represcnted by b5 let the
distance of any point in this line from F be represented
by x, and conceive it to be divided into an cxceedingly great
number of equal parts, each represented by Ax. Through
each of these points of division imagine planes to be drawn

perpendicular to the axes CB and CG of the wheels, dividing
th_e whole of each wheel into elements or laminz of equal
thickness; and let the pressures P and P, be conceived to be
equally distributed to these laminz. The pressurc thus dis-
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r
tributed to each will then be represented by —bJAm on the

P
one wheel, and *f Ax on the other. Let p, and pq represent

the two pressures thus applied to the extreme lamine A
and AK of the wheels, and let them be in equilibrium when
thus applied to those sections separately and independently
of the rest ; then if R represent the pressure sustained along
that narrow portion of the surface of contact of the teeth of
the wheels which is included within these lamine, and if R,
and R, represent the resolved parts of the pressure R in the
directions of the planes AY and AK of these laminz, the
pressures py and R, applied to the circle AH arc pressures
in equilibrium, as also the pressures p, and Ry applied to
the circle AK. If, therefore, we represent as before (Art.218.)
by m; and my, the perpendiculars from B and G upon the
directions of R, and R,, and by L, and L, the distances be«
tween the feet of the perpendiculars ai, m, and ag, My We

have (equation 241, 242.), neglecting the weights of the
wheels,

; H_l play

P‘*al{ml’*‘(?{”) 3““*"}R1 ... (@72)
1 .

Pa:&;{mgm (P_Zl;'i) sm.‘pE}Rg

P and p, representing the radii of the axes of the two
Wh?‘ﬂs, and ¢, and ¢, the corresponding limiting angles of
fesistance.  Let ¢, and v, represent the inclinations of the
direction of R to the planes of AHand AK respectively ; then

R,=Rcos.y;, Ry=R cos.ye-

Now it has been shown in the Preceding article; that the
action of that part of the surface of contact of the teeth which
s included in each of the lamine AH, AK, is ideptical with
the action of teeth of the same form and pitch upen two
lindrical wheels AD and AL of the same small thickness,
Stuated in a plane EAD perpendicular to AC, and having
their centrog in the intersections, & and g, with that plane of
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the axes CB and CG produced. The reciprocal pressure R
of the teeth of the element has therefore its direction in the
plane EAD; and if its direction coincided with the line of
centres DL of the two circles EA and AD, then would its
inclinations to the planes of AIT and AK be represented
by DAH and LAK, or by ACDB and ACG.

The direction of R is however, in cvery case, inclined to
the line of centres at a certain angle, which has been shown
(Art. 218.) to be represented in every position of the teeth,
after the point of contact has passed the Jine of centres by
{8+ ¢); where f represents the inclination to AL of the line
A, which is drawn from the point of contact A of the pitch
circles to the point of contact of the teeth, and wherc ¢ repre-
sents the Hlnitillg angle of resistance between the surfaces of
the tecth. To determine the inclination y, of RA to the
plane of the circle AH, its inclination RAD to the line of
centres being thus represented by (§+ ), and the inclination
of the plane AD, in which it acts, to the plane Al being
DAH, which is equal ACB, let this last angle be represcnted

. by i3 and let Ae in the accompanying figure
Zji represent the intersection of the planes AD
_/rh and AH; Aard rcpresenting a portion of

T

Aéfj://lJﬁ the former plane and Aach of the latter. Let
s morcover Ar represent the direction Of.the
pressure Rin the former plane, and let Ad and Ak be portion?
of the lines AD and AH of the preceding figure. Draw 7 per”
pendicular to the Aach, and rd and ck parallel to Aag, a0
join dh ; then rAc represents the inclination , of the direcs
tion of R to the plane AD, dAr represents the inclinatio
(¢+6) of AR to AD, and dA% represents the inclination #
of the planes AD and AH to one another. Also, since A1
perpendicular to the plane Akd, thercfore dr is 1131'P‘3mﬁcmlar
to that plane,

... re=Arsin, v1=Ad scc. (§ + ) sin. ;-
Also hd=Ad sin. i, but re=hd,
2. Ad sec. (84 ¢) sin, yi1=Ad sin. 113
++ 8,y ==cos. (8 + ¢) sin. e
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In like manner it may be shown thatsin, ya==cos. (§ + PYsin. i
i being taken to represent the inclination KAL of the
planes AE and AK, which angle is alto equal to the angle
ACG.-

From the above equations it follows that
R =R cos. Y1=Ry/ 1= cos.2(0 + ¢) sin.gs,} ... (219)

Ry=Rcos. yy=R /1= cos. 20+ ¢) sin. %z :
From the centre b of the circdle AD draw bm per-

Yendicular to RA, then is BM (the perpendicular let fall
from the centre of the circle AH upon the direction of Ry)
the projection of bm upon the plane of the circle AH. To
determine the inclination of bm to the plane AH, draw As
Parallel to bm; the sine of the inclination of An to ‘the
D}ane AH is then determined to be cos. DAn. sin. i, pre-
“sely as the sine of the inclination of Am to the same
Plane was before determined to be cos. DAm . sin.4y.

Now DM:AM:%-DAR:%-—(H@); therefore the

ii\ne of the inclination of A, and therefore of b, to the plane
%I 18 represented by the formula sin. (§+¢) sitt. 4, and the
“osle of its inelination by /1 —sin. %8+ ¢} gin. “n 3

K ml=BM:b_1;‘/l'— sin, {0  ¢) sin, by,
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Now it has been shown (Art. 218.) that the perpenflicu_lar
b let fall from the centre of a spur wheel upon the directm}l
of the pressure upon its teeth is in any position of their
point of eontact represented (equation 244) by the formula

7y sin. (64 9) 4+ A sin. g,

where 4, ¢, A represent the same quantities which they
have been taken to represent in this article ; but 7, represent;
the radius 2A of the circle AD, iustead of the radius BA 0

the circle A ; now A =BA scc. DAH=7rsec. s ; subst-
tuting this value for 71in the preceding formula we have

bm =rysin, (§ + ¢) sec.s, + 2 sin. ¢ 3

<o my={rysin. (94 ¢) sec,i, + A sin, 2} o/ L —sin. 2§ + p)sin.
Similarly it may be shown that

g {TQ Sin. (8 -+ @) BBC. iy — A, 3‘1“' ¢} J-]_:Sinﬁ)(ﬂ-jp)zi}l. ‘llgo J

Substituting the values of m; and m, above deterrﬂlr'!edf
and also the values of R, and R, {cquations 278)in equa‘nt'ms
(272), and climinating R between those equations, a relation
will be determined betwen " and Pa which is appllcable.to
any distance of the point of contact of the teeth from the line
of centres,

! iy
Let it now be assumed that the number of the t‘;;th )

x
the driven wheel ig considerable, so that the angle g trer

versed by the point of contact of each tooth may l'lf’ 5maU’
and the greatest value of the line A, the chord of an exl—
ceedingly small arc of the pitch circle of the driven wheel

In this case §4¢ will very mearly cqual ;E (Art. 2225 %
that cos, H+o) will be a

may be neglected
Substituting thes
have

n exceedingly small guantity a;xd
> and sin, (§4-¢) very nearly equal wni -‘76:
© values in equations (273) and (274) W

R‘:R, Rg:l{,

P2+ A sin. ¢ cos, by Mg =rge—e 5in. § COB. g

(2T
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Substituting these values in equations (272) and dividing
those equations by one another so as to eliminate R,

. P]L1 .
)+ A s  cos. 1y + T4y S ¢y

h__f
= = +
Py @
£ @ rg—Asin, ¢ cos. ‘g—'(P_:ZE) sin. Pp
A, el .
e 1 +;t Si. @ CO8. 1 + (‘;E) 81, @
TP arry palie

N .
1 —— sin. & cos. 1g— (w) Sin. P
Ty v 2 GgTy/ ¢

Whence performing actual division by the denominator
of the fraction, and neglecting terms involving dimensions
ahove the first in sin. g, sin, Py Bl dgy

§=Z‘:‘{ l+?\(c—0—:-‘lfi+99§;—‘g)sin. o+ (%%) sin. ¢.+(%:)siu.¢.}.

Now if ¢ represent the angle described by the driven
"f’h‘fel or circle ELA, whilst any two teeth are in contact,
sinee A is very nearly s chord of that circle subtending this
smal angle § (Art. 222.), .- A=rol. Let ¥ represent the angle
described by the conieal wheel FK, whilst the circde ELA
describes the angle ¢ ; then, since the pitch cirele of the thin
wheel AK and the circle ELA revolve in contact at A,
_the)’ deseribe equal arcs whilst they thus revolve, respect-
Ively, through the unequal angles ¢ and ¥. Moreover, the

Tdius Ag of the circle AL =AG sec. GAg=r, sec. 53, there-
fore by sec. tg==ry

Cob=¥ COBuig « » o+ + (2T5)
S“bstituting the above values of ¢ and A, and observing
that ":Q:’B’

nom .
F_am, h Y o .
el o8, .t 'L . P:L: *
o ulu2{1+ﬂz (Hztj+‘i‘l:"i)w o8,y 8in. ¢+ (’%r_:) sin. &+ (a—ﬁ)sm.%} .« (276).

sy, : ) G .
Multlplymg both sides of this equation by pg—l:l—!. and ob-
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\ 7y gy AV
serving thatplalﬂl :p,a,m- A
ingly small angle described by the driving wheel A‘N, whilst
the driven wheel describes the angle A¥, so that if Au re-
present the work done by the pressurc p, upon the lamna

AH, whilst the angle A% is described by the driven wheel,

and that :;?‘A‘-Il is the exceed-
¥

iy
then plalé-A\P:Aul, we have
)

A 3. 03, . Ly . FPJ:!) i)
A_:3=1’2"?{ i -}-rrz(cq,}:l-l‘@s'jz)‘? cos. 1y sin. ¢+ (P] 1) sin, o1+ (ﬂzrz sl fie)
\

ny oy,
or assuming A infinitely small, and integrating between the

C . 2
limits 0 and ~-- (Art. 222,
iy

3
paay [ cCs. Yy |, COS. 4 . oLy . (p,,Le) Sin.
m:‘“;z;“’ <L1 'a-( .;l] +7?; )cos. i s1n.¢+(a]r.)51n.r;,+ s ,,I

Now the above relation between the work u; done by -the
pressure py upon the extreme clement AH of the driving
wheel whilst any two tceth are in contact, and the pressure
Paopposed to the motion of the corresponding element of the
driven wheel, is evidently applicable to any other two ¢0f
responding elements ; the values of Pas Ty, 735 Ln and Lo proper
to those clements being substituted in the formula. Tf there
fore we represent by AU, that increment of the whole work
U, dane upon the driving wheel, which is due to any one of
the elements into which we have imagined that wheel t0 be
divided, and if we substitute for Pe its value %Aﬂ?, assign 1

* e_
Ly Loy 7, 7y their values proper to that element, and repr
seut those values by L, 12, T

]

xl,

_ Bl CO8, 1, €08 4, . ILp:y . Epf)sin %}M:

ayr
. . . . he
or assuming Ax infinitely small, and integrating betweel t

- 2
limits 0 and &, and observing that Pﬂag—;; represents the
2

whole work U, done upon the driven wheel under the 0%
stant pressure P, during the contact of any two teeths
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|

& L]
S C0s.q  COS. ) in, in. 4
i 2 a8 e, o
¢ 0

n ny

l Now a+x being taken to represent the distance of the

peint of contact of any two such elements from C, and a to
| represent the distance CF, the radii r and # of these ele-
! ments are evidently (by similar triangles) represented by

| a+x & e+ ol
; o or (1 +;‘)'r1.and g Te or (1+&) re 7y and 7y Te-

Presenting the radii of the extreme elements NF and OF, or
| of the pitch circles of the lesser extremities of the wheels.
Also assuming, as we have done, the pressures Ry and Ry
to be perpendicular to the lines BA, GA joining the centre
_ of each clement with their point of
/" contact A, so that the points M and
N (see fig. p. 315.) coincide with the
point A (see accompanying figure) *;
and representing the angles ABD and
& ACE made by the perpendiculars DB
e and CE with the line of centres by 4,

and 4, respectively ; observing also that ADR= BA?—2BA.
. o 2 BD
BD cos. ABD 4 BD", so that (4%2) —_] B(ﬁ) cos.l ABD

BD\2 '
+ (BA) , WE hﬂve’ Substituting, in the Becond member Of

this cquation, for BA or # its value * (1 +§)
1

(%)“-_-1—2(%) (1+'2 -‘ms. 61+(;-_-_:)*(1+_§)_e;

4} . . . . . - . 4
' expanding the binomials in this expression, observing

T . S,
fhat ¢ '8 2 exceedingly small quantity, neglecting terms in-

Yolving powers of that quentity above the first, and reducing,

in: Th.e C’il‘(‘.les in thiﬂ ﬁgure represent two Of tha Wﬂd‘ing ]amina: ol
© which wheela have been imagined to be divided; they are not, there-

“Tein the same plane, Their planes intersect in AH.
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(L) =1-2(]")cos n+(, )l +2(’:l‘) (cos. el—:f)f;’ (279)

Now I representing the value of T, when »=0, and § re-
maining constant,

() =12 (")eon s+ ()
fj(f:) (cos. 81-—-(:_1) =1— (f:)’_ (]:1)9

Let now the angle ADB, made in respect to the first ele-
ment of the driving whecl between the perpendicular BDor
@, and the chord AD or I, be rnpresented by 75, and let %
represent the corresponding angle in the driven wheel, then

LF——-ZL,tzlcos.m+a{“:T1Q, L‘) L]"a] cos +( ) =

" ry

_z%f;zm_m:l*() (n) 2(2) (cos - o)

3 - l a
Substituting thesc values of (L‘) and 2(&__,) ('305'8".,-])
I8l LY !
in equation (278);

= 52) e (5 ) e
Extracting the square root of the binomial, and neglecti®g

terms involving powers of © above the first,

== o= ften):

* (Equation 277) FLsin. 2, ’_I_‘d —P15iD. ¢ Ll_% €os. m}

bay J r 7y @)
]

. 5
Similarly B?_S,IE..@_Q/._I_jd —p,a 810, sin. P2 { Lo % Cos. ’12}

bag Ll ?J 'rg ag
0

Substituting these values in the modulus (equation 277),
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JsiL gy fLy b
U =T, { 14= (C‘P_E._:_,‘{_COS. b‘) COS. 1 5iN. ¢+P i (;l—wk;‘ cos, lll) 4

Ty

’ " g
pasin gy (Yw B }
Bt (igeos )

Now let the angle BCG, or the inclination of the axes, |
from one to the other of which motion is transferred by the
wheels, be represented by 2:; therefore s +1o=2s Also
asin.g =) and g sin. ig=ry,

. SiLn__m_ny,
TS, Ty fg
sin. % _sin.% . 1 _cos.®y 1 cos %9,

3 - 4 ¢ a - -3 F] ’
n;? ng’ n? n® iy fig

) 1 1 _costy coslyy__ cos. 4 , COS. lg) (cos. iy _CO8. lg) —
.?1.12 ﬁea 'R . ?!9:2 , ng 7, g

.

(cos. n +°Ls','2) 1 cos. ll__li) €08 Ig}

™ fig ny cos. iy R
1 1
._‘j——i
cos, L 1 n
. 5.4 4 CO% & 2)005.:;,: 1~ T i .
Lt np 1 cosnn 1
1, COS. Iy Tig

Now €051 cos. s + 3y —ia)} 1 —tan. §(n—t) 0.1 |
C0s. 1,  cos. {1—4(h—w)} 1+tan §(n—1) tan.s

also ! :SE n_sin. {1+ 4(n =)} —ML““W—)

) Sin.?;"sin.{l —~3(,— 1)} = tan, 1 — tan, ${n =)

o~y .
o tan, d(n—ig) =l an

7y + g
—El_ng '.9 . S .
RO VR T tan '_("1 + fig) — (s —1he) t‘“":‘ s
€08, 1g 14— P e a‘““(ui.i.,g,)f(n“-n')-tan.-; 1
m +ﬂg . . N
clemn 11 eosn L1 (=) + (ap—nt) tans

Ty Cog, l;';‘;*—m g cobiig '-!lh) =}Tﬂg -(m +ﬂg) + (ﬂz-—-ﬂi) tlll-’l
Y
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' — T, SeQ, “i 3T Ta
"y e nt ngt .
s — SO N — —— T
(}—+—1)-— l~—} tan. 4 l-f-—l) cos. 2 — 1-—4—) sin®s
Ty Ry g fy fi2 n, Ny

.2
i . feosn %) _(1_ _f,) ) *) 9_(,! _',)_9_51“:
+ ( “‘ + g COS. tp== n1+n2 d:os.z'i—-(nlwJ S 2= +”! P

3

Substituting in the preceding relation, between U, and Us,

1 1 2 821} py SN, tpx(Ll b )
T Z. = ST £ Tl NS .
L,—{l-}-w{(nl-f-ﬂz)— P sin. ¢+ (h & €Ot +

Ty

sin. ¢, /L A
fz ??E(af--%(; €0s. qz) } U:.....(279),

which is the modulus of the conical or bevi] wheel, neglecting
the influence of the weight of the wheel,

If for cos.w and cos. y, we substitute their values (see
p- 320.), we shall obtain by reduction

U= {1+w{(,l7+,1,)_23;n_‘ ”'i“'“&i:i.%f{fﬂ (1- -f’) +bﬁzﬁ€:ﬂ}

o
pe sin. ¢, [

B\ b(rg—an .
. + a.gz‘i‘*z(l"-i;)Jr QML‘f --)}}Uz. ... (280).
from which equation it is manifest that the most favourable

directions of the driving and warking pressures are, those
determined by the equations

X 2 2 9
L= (Lﬁ,) o (ag Ty )
! b 4«@___2) ] ng —-b 4(],-——6 .

234, It is evident, that if the plane of the revolution
of such a wheel be vertical, the influence of its weight
must be very nearly the same as that of a cylindrical or spur
wh(.?el of the same weight, having a radius equal to the meal

L radius of the conical wheel, and revolving also in a vertieal
: plane. If the axis of the wheel be not horizontal, its weight
must be resolved into two pressures, one acting in the plane of

the wheel, and the other at right angles to ita;' the latter is ef
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fective only on the extremity of the axis, where it is borne as
by a pivot, so that the work expended by reason of it may be
determined by Art. 177., and will be found to present itself
under the form of N;. 8, where N is a constant and S the
space described by the pitch circle of the wheel, whilst
the work U, is done. The resolved weight in the plane
of the wheel must be substituted for the weight of the
wheel in equation (252), which determines the value of N.
Assuming the value of N, this substitution being made, to
be represented by Nj, the whole of the second term of the
modulus will thus present itself under the form (N, + Ng)S.

= { (1 D)2t gy gy pit et B )

"
" R0, gy
i

+

(I;_ig ¢°5~:";)}Ue+(N1+N=)S v (281

235, Comparing the modulus of a system of two conical
wheels with that of a system of two cylindrical wheels
(equation 257), it will be seen that the _fractional excess
of the work U, lost by the friction of the latter over

that Tost by the friction of the former is represented by the
formula :

?Tr sin, 2 sin. b g o
s "nT“?-i-%*(P—' cos. 77 Sin. ¢|+&C05.1}gsm- qag) ... (281).
a\ry T2

The first term of this expression is due to the friction of
the teeth of the wheels alone, as distinguished from the fric- -
Hon of their axes ; the latter is due exclusively to the friction
of the axes, Both terms are essentially positive, since n

o ] x
40d vy are ipn every case less than 5. B

'T.hus, then, it appears that the loss of power due to the
friction of bevil wheels is (other things’ being the same)
essentially less than that due to the fiiction of spur wheels,
0 that there is an economy of power in-Hheisubstitution of &
“¥il for & spur wheel wherever such substitution is prac-
Beable.  This regult s entirely consistent with the experience

vy 2
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of engineers, to whom it is well known that bevil wheels run
lighter than spur wheels,

236. THE MODULUS OF A TRAIN OF WHEELS.

Ina train of wheels snch as that shown in the accompanying
figure, let the radii of their pitch
circles be represented in order by
Tyy Toy T3 . » . 74, beginning from
the driving whecl; and let @ Te-
present the perpendicular dis-
2 tance of the driving pressure
from the centre of that wheel, and @, that of the driven
pressure or resistance from the centre of the last wheel
of the train; U, the work done upon the first wheel, s
the work yielded by the second wheel to the third, %
that yielded by the fourth to the fifth, &c., and U, the
work yielded by the last or nth wheel upon the resistance,
then is the relation between U, and u, determincd by the
modulus (equation 257), it being observed that the point of
application of the resistance on the second wheel is its point
of contact b with the third wheel, so that in this case 4a="%
These substitutions being made, and L, being taken 0
represent the distance between the point & and the pfrqy'ectéon
of the point ¢ upon the third wheel, we have

1 1

Ul:[l +7r(ﬂ_1+”_2)sin-¢+ i%f: sin, ¢1+%§F:Sin. ‘Fﬁ]ue‘f'Nl*‘ S.
To determine, in like manner, the relation between % and

43, or the modulus of the third and fourth wheels, let it be
observed that the work #y which drives the third wheel has
been considered to be done upon it at its point of contact 0
with the fourth; so that in this case the distance betwee
the point of contact of the driving and driven wheels and the
foot of the perpendicular let fall upon the driving pres”

* See note, p., 269,
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sure from the centre of the driving wheel vanishes, and the
term which involves the value of L. representing that line
disappears from the modulus, whilst the perpendicular upon
the driving pressure from the centre of the driving wheel
becomes 7. Let it also be observed, that the work of the
fourth wheel is done at the point of contact ¢ of the fifth and
sixth wheels, so that the perpendicular upen the direction of
that work from the axis of the driven wheel is r5. We shall
thus obtain for the modulus of the third and fourth wheels, .

_ 11y, Logs . } S.. |
Ug— {l+w(;3-+—_;z;)31n.¢+r‘fa 3.111.¢3 us'l'Ng ge
In which expression Ly represents the distance between the

point ¢ and the projection of the point b upon the fifth
wheel,

In like manmer it may be shown, that the modulus of the
fifth and sixth wheels, or the relation between us and uy, is

11y, | Q..
U= {1+w(h;+n~s)sm.¢+}£sm-¢4}“4+N3‘Ss’

and that of the seventh and eighth wheels, or the relation
between uy and us, -

Lgs . e
u4:{1+n(%+"ls)sin.¢+;:—i§sm-?s}“ﬁ‘*N*-'S“

and that, if the whole number of wheels be re‘presehted by
2p, or the number of pairs of wheels in the train by p, then
18 the modulus of the last pair, o

Hﬁ: { 1 +ﬂ' _._l_k-i—__l:_ sin'Q_I.._Ii'tl_Pﬁlsin. ¢P+’- }U3+N . .SP H
fgp—1 Mgy Totte '. .'

In which expressions the symbels Ni, Ng, : N: ;“-_--‘__Nm are
tken to represent, in respect to the successive pairs "f wheels
of the train, the -values. of that fanctien {equation 252),

which determines the friction due to the weights of those

Wheels; ang each of the symbols Ls, Ly, Ld' o :the 'dls. '
tance between the point of contact Oﬁ"l'mesl)‘mdmgéwr
¥ 3 R
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of wheels and the projection upon its plane of the pIOint of
contact of the next preceding pair in the train; whilst the
symbols ny, ngy my . o . fgyy Yepresent the numbers of .teeth ‘m
the wheelsy 7, ry 73, . . . Taps the radii of their pitch cir-
cles; and §), 8y, S, ... S,, the spaces described b?r their
points of contact a, &, ¢, &e, whilst the work U, is done
upon the first wheel of the train. _

Let us suppose the cocflicients of ug, s, s - . » Ug, In thest

moduli to be represented by (Vpy), (14 pe), (L+pa) -
{1+4,); they will then become

Ui=(14p) v+ Ny . Sy
Uy =1+ pa) wy 4+ Ny . Sy,
3 =(1 4 pus) uy+ N3 . Sy,
&e. =&e.

upy=(14p,) Up+ N, .S,

Eliminating u,, ug, Uy« « o Uy between these equations, W
shall obtain an equation of the form

Un=(T i) (L o) (1t pg) ... (14 po) Up+ N S - (289)

where

NS=NSi+ (144 )N,8, 0 (3 40, ) (b ) NaSot + - - -
FO+p) (bp) oL Q)N e e (283).

Now let it be observed, that the space described by the ﬁr;t
wheel, at distance unity from its centre, whilst the space

S
: . . . . Hoand
s described by its circumference, is represented by " a

that this same space is represented by§ if 8 represent the
a

1
space described in the same time by the foot of the P_er'
pendicular a;, or the space through which the .movmgo
pressure may be conceived to work during that time; S

S .
that ;1-'-_—.2—. Also let it be observed that the space ¢

scribed by the third wheel, at distance unity from its centr®
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is the same with that described at the same distance from

its centre by the second wheel, so that =2 5, S‘; in like
s Tg

manner that the spaces described at distances unity from

their centres by the fourth and fifth wheels are the same, so

g

that “5 Sﬁ, and simjlarly, that > S4 Sa, &c.==&ec.; and
s T4 7 T

fmally,__s_. Sp1 ]

Tope1  Tgp-z
Multiplying the fwo first of these equations together, then
the three first, the four first, &ec., and transposing, we have

S, =718, §,=T1eTs ( )(_@)s,

% ay . ?'2 g
So=T1TaTog (E‘}) (ﬂa . ﬂa)s’

@« T2 .7y ay/ \ng . Ny
§="1""8 T Trg (D) (EL_E’L_"J) s,

1. Ty o Ty « Ty a,/ \ng . Ng + B
&e.=&e.

Sp :rl_, Ty . 5 2+« Top—1 ’F'gp 1 ( )(ﬂa . 95 . )S
fI] 'rg ’r,’ e rﬂp 9 nﬁ ﬂ4

Sﬂbstltutmg these values of Sl! Sg, &c lﬂ equatlon (283)1

and dividing by 8, we have

V= ()*N1+(l+p.)(”3)NQ+(1+ﬁ)(1+pg)("ﬂ )Ng+....

or if we ohserve that the quantities gy, B Fas are composed
of termus all of which are of one dimension in sin. ¢, 65 @1,

Sin. ¢5, &e. and that the quantities Ny, No, Nov &, (eque- _

those exceed-

tion 25¢ dimension in
2) are all likewise of one dime ;bove the ﬁrst

ingly small quantities ; and if we neglect terms
dimension in those quantities, then '

v4

N )
.

N= (”l){Nﬂ' ("3 No+ naﬂa)N + (ﬂsﬁ‘,lﬁ)N‘.i. e _} . _.@34«). ‘r::':




n-(-f--}-

1.1

Ny
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If in like manner we neglect in equation (282) terms of
wore then one dimension in @y, po, pg K. we have

Ul:{l+,‘-"1+fl-2+‘u—3+ vor+ it Us+ NS,

Now p.l-:.w(%l -l,--i;) sin. ¢ +I%':—1 sin. §1 + %7% S P
p.g_-:vr(;—a + :;; )sin. ? +£Q—;:f sin. @3,
p.sz—.-r(i—s + %;) sin, ¢ -+ f_f;% sin. a4
&e. =&c.
pp =7 (ﬁi + n}%;) i, ¢ -+ }i‘:i sin. ¢,.

Substituting these values of p,, k,, &, in the preceding
equation, :

1 L

n, n 2,0, o'

Lo, . .
e LN ;;;zsm.(p,,}Ug-}-N LB {285),

which is a general expression for the modulus of a train of
any number of wheels.

237, The wark U, which must be done upon the first
wheel of a train to yield a given amount U, at the last wheel,
exceeds the work Uy, or, in other words, the work done upo®
the driving point exceeds that yielded at the working pointy
by a quantity which is represented by the expression

. l . L]P - . L Dy . S .
5 )sinp. st (o 51"~¢,+%fﬁz st gope 52 sin.g,) Ut

In which expression the first term represents the expenditme
of work due to the friction of the teeth, and varies directly 25
the work Uy, which is done by the machine. The secfmd
term represents the expenditure of work due to the friction
of the axes of the wheels, and varies in like manner directly

1,11 Lo . Dok o
Ut:"{"{‘“‘(;l‘l"“'"--;;)sin.gs-l-—”:i sin. ¢,+-7-,-2'nzsm. $t ,;‘,.55’""?’

N
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as the work done, Whilst the ¢hird term represents the ex-
penditure of work due to the weights of the wheels of the
train, and is wholly independent of the work done, but only
upon the space S, through which that work is done at the
point where the driving pressure is applied to the train.

%38, The expenditure of work due to the friction of the teeth,

The work expended upon the friction of the teeth is_reflre-
sented by the formula '

1 1 1 1y.
bty e @80,

whose value ig evidently less as the factor sin. ¢ is less, or as
the coefficient of friction between the common surfaces of the
teeth is less ; and as the numbers of the teeth in the different
wheels which compose the train are greater. "The number
of tceth in any one wheel of the train may, in fact, be taken
50 small, as to give this formula a considerable value as com-
Pared with Uy, or to cause the expenditure of work upon the
friction of the teeth to amount to a considerable fraction of
the work Vielded by the train: and the numbers of teeth
of {wo or more wheels of such a train might even be taken
%0 small as to cause the work expended upon their friction to
equal or to surpass by any nwnber of times the work yielded
by the train at its working point.. This will become the
More apparent if we consider that the surfaces of contact of
the teeth of wheels are for the most part free from unguent
after they have remained any considerable time in Mﬁ*_m; 80
that the limiting angle of resistance assumes in mest cases
amuch greater value at the surfaces of the teeth of the wheels
than at their axes. From this consideration the importance
of assigning the greatest possible number of teeth to the
Wheels of a train individually and collectively is apparent.

B
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239. The expenditure of work due to the friction of the axes.

This expenditure is represented by the formula
(3;_1}81_1 sin. ¢1+% sin. gy +. . . +%;§ZZ sin. ¢F)Ucz ... (288},
forming the sccond tenn of formula 285. Now, cvidently, the
value of this formula is less as the quantities sin. ¢y, sin.¢z
&c. are less, or as the limiting angles of resistance between
the surfaces of the axes and their bearings are less, or the
lubrication of the axes more perfect; and it is less as the
fractions Ijﬁ, L—lﬁ, Logs
GFL Fryt Tk
Now, L, being the distance between the point of contact ?

, &c. are less.

: y» of the third and fourth wheels
(. ? 23 i and the projection of the point of
2 3 contact @ of the first and second

upon the plane of those wheel§,
it follows that, generally, Ly 3

- least when the projection of ¢ fﬂns
on the same side of the axis as the point b* ; and that it 18
least of all when this line falls on that side and in the line
Joining the axis with the point 4; whilst it is greatest of all
when it falls in this line produced to the opposite side of the
axis, In the former case its value is represented by 3=
and in the latter by ry+ 7, ; so that, generally, the maximu®
and minimum values of L, are represented by the expressioll

Lipe
75272 and the maximum and minimum values of . by

1 1
(.,Tai?.;),fza And similarly it appears that the maximum and

. . L, 1.1
minimum values of }f? are represented by (;:ﬁ:;‘)Fﬁ" asd
5 4 75
so of the rest. So that the maximym and minimum values of

. T This i“_“POTt"_o“t condition is but a particular case of the general pﬁ}?.
cipte established in Art, 168. ; from which principle it follows, that the

driving pressure on cach wheel should be applied on the same side of e
axis as the driven pressure,
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the work lost by the friction of the axes are represented
by the expression .

11 1 1 .

{ (&li ;I)Flsin-?ﬁl + (;l_;i :—a)pgsin.cpg %(ﬁi *;)pasin.epi- ces } Us;
from which expression it is manifest, that in every case the
expenditure of work due to the friction of the axes ia less as the
radii of the axes are less when compared with the radii of
the wheels; being wholly independent of actual dimensions of
these radii, but only upon the ratio or proportion of the
radius of each axis to that of its corresponding wheel: mores
over, that this expenditure of work is the least when the
wheels of the train are so arranged, that the projection of the
point of contact of any pair upon the plane of the next
following pair shall lic in the line of centres of this last pair,
between their point of contact and the axis of the driving wheel
of the pair; whilst the expenditure is greatest when this pro-
jection falls in that line but on the other side of the axis.
The difference of the expenditures of work on the friction of
the axes under these two different arrangements of the train
1s represented by the formula

fa . . . Pa . .
2{rlsm- ¢)+§§sm. cpg-i-%z-sm. tp3+r7 gin, $gtee v }U:h

which, in a train of a great number of wheels, may amount
t a considerable fraction of Us; that fraction of U, repre-
senting the amount of power which may be gacrificed by a
false arrangement of the points of contact of the wheels.

0. The expenditure of work due to the weights of the several
wheels of the train. L
The third and last term N . § of the expression (285) re-
Presents the expenditure of work due to thewcl‘gf&il of tlle
several wheels of the trainy of this term ':_thé’-'fa’ctor Nis
'epresented by an expression (equation 284), ' esch of the -

tirms of which, involves as a factor '@ﬁ’ﬁh"’ Qthi?ieg' N" .
Na Ny, &e. whose general type orfonn is that given ia. -
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equation (252), it being observed that the direction of the
driving pressure on any pair of the wheels being supposed
that of a tangent to their point of contact; the case is that
discussed in the note to page 289. The other factor of ea}ch
term of the expression (equation 284) for N, isa frz{ctloll
having the product 2y n; ... of the numbers of teeth in i'i“
the preceding drivers of the train, except the first, for its
numerator, and the product ng.n,. ng . . . of the numbers c'vf
teeth in the preceding followers of the train for its denomi-
nator; so that if the train be one by which the motion is to
be aceelerated, the numbers of teeth in the followers bem'g
small as compared with those in the drivers, or if the m\'ﬂ.“'
plying power of the train be great, and if the quantities
Ny Ny, Ny, &e, be all positive ; then is the expenditure of work
by reason of the weights of the wheels considerable, as com-
pared with the whole expenditure. Since, morcover, the co-
efficients of Ny, Ny, Ny, &c. in the expression for N {equa-
tion 284) increase rapidly in value, this expenditure f’f
work is the greatest in respect to those wheels of the train
which are farthest temoved from its first driving wheel for
which reason, especially, it is advisable to diminish the weights
of the wheels as they recede from the driving point of the
train, which may readily be done, since the strain upon each

. 3 » i r
successive wheel is less, as the work is transferred to it unde
a more rapid motion,

\ al
4. The modulus of a train in which all the drivers art eq-u‘:s
to one another and alf the Jollowers, and in which the pott

of contact of the drivers and followers are all similary
situated.

The numbers of teeth in the drivers of the train being It
this cage supposed equal, and also the radii of these wheels,
m=ty=n;=n,=&e,, n=ry=ry=r,=&c. The numbel"‘so
teeth in the followers being also equal, and also the radil ©

the foilowers Re=ty=ng=8&c., ry=r,=rq—=&¢.
It moreover,

s . L - ing WOIK
to simplify the investigation, the driving ¥
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U, be supposed to be done upon the first wheel of the train
at a point situated in respect to
the point of contact & of that
« wheel with its pinion precisely as
8 that point of contact is in respect
i § to the point of contact b of the
- ¥ next pau' of wheels of the train;
and if a similar supposition be made in respect to the pomt
at which the driven work U is done upon the last pinion
of the train, then, evidently, Li=Iy=Ls;=...=L;, and
(see equation 252) N,=N,=...=N,.

The modulus (equation 285) will become, these substi-
tutions being made in it, the axes being, moreover, supposed
all to be of the same dimensions and material, and equally
lubricated, and it being observed that the drivers and the
followers are each p in number,

.Ui-—{1+wp(— )sm $+p ]—J‘“" sin. 1’1]U9+NS (289),

which is the modulus required.

Moreover, the value of N (equa.tmn 284') will become by
the like substltutmns,

N (2) L () (2 + (;;)+...+(~)""‘}

@ N=w, () E;,;)-ll @0

TeE TRAIN OF LEAST RESISTANCE.

M2 Atrain of equal driving wheels and 8Mf°"°”‘" being
roquired to yield at the loet wheel of -m"’ﬂ;" 4 givop
amount of work U,, under & velodi
or less than that under which the work Uy hick d’w” tb‘
train i dome by. the moving power, P tjg_ﬁut wheal; #
@ required fo determine -what M,h the numbc:p,q".' .
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pairs of wheels in the train, so that the work U, e
pended through a given space S, in driving it, may be ¢
minimui.

Since the number of revolutions made by the last wheel of
the train is required to be a given multiple or part of tue
.g—.‘ ' number of revolutions made by the first wheel, which ﬂllul'
tiple or part is represented by m, therefore (equation 236),

I3 r Ry '] "
m={— 15 ., —=mf =7
g ;
1

My (o]
1
1 m” 1 m?
W 'ng_ 2 an ;;:?'1 ¥
1 1
1 1 mP+1 1__0}{
R R

Substituting these values-in the modulus (equation 289);

substituting, moreover, for N its value from equation (290},
we have

1
i : . L, L . ® . '?_91)'
U;::{l-{»;{lp(mwi-l) s, 4+ (?]Z_)Pmp sing} U Ny(m— l)(m;ff_) S...ed

mP—1

It is evident that the question is solved by that value of 7
which renders this function a minimum, or which satisfies the

.. au 2 . .
conditions ﬁdj =0 and —, ,*>0. Tlhe first condition gives
by the differentiation of equation (2913,
1 1
; logoomy /o Lo, . T f(m—1)log : Moe o_p ... (2000
{m (l-—- ij‘ ) ('ﬂ—l it ¢4 _;;l‘sm. q,]) 4+ " sin, ¢} Uz-}-m __(_1"_‘_]7_}”, g;_},js..n.
p(wr—1¥
This equation may be solved in respect to p, for any g“’efl
: vabues of the other qQuantities which enter into it, by appro*
: mat“m'_ K, being differentiated a second time, the ab"vef
FXpression represents a positive quantity when the value Ot
v P (before determined) is substituted in it, then does tha

, velue satisfy both the conditious of a minimum, and supphe”
therefore, its solution to the problem.
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If we suppose ¢, =0 and N, =0, or in other words, if we
neglect the influence of the friction of the axes and of the
weights of the wheels of the train upon the conditions of the
question, we shall obtain

mb(1—

1 log.e M T .,
)E; Si. ¢+;z‘15111- ¢=0;
whence by reduction,

log.. m )
P= __,_'*.......(293).
1+m *

* This formula was given by the late Mr, Davis Gilbert in his paper on
the « Progressive improvements made in the efficiency of stenm engines in
Cornwall,” published in the Transactions of the Royal Society for 1880.
Towards the conclusion of that paper Mr. Gilbert has t‘l‘eated'of the
methods best adapted for imparting great angular velocities, and, in con-
Tection with that subject, of the friction of toothed wheels ; having reference
0 the friction of the surfaces of their teeth slone, and neglecting all con-
siderstion of the influence due to the weights of the wheels and to
the friction of their axes. The author has in vain endeavoured.to fol-
low out the condensed reasoning by which Mr, Gilbert has arrived st
thls- temarkable result; it supplies another example of that rare sa-
Bacity which he was accustomed to bring to the discussion of guestions
of practical science, Mr. Gilbert has given the following exampies
of the solution of the formnla by the method of approxima.tion:—]_f
™=120, or if the velocity is to be increased by the train 120 times, then
the valye of P given by the above formula, or the number of pairs. of _
Wheels which should compose the train, so that it may work with a mini-
T resistance, reference being had only to the friction of the surfaces of

1
the teeth, is 3745; and the value of the factor p(m® +1) (equation 2913,
*hich beiog multiplied by%sin.‘p U, represents the work expended on
?:13 friction of the surfaces rl:f the teeth ; is in this case 17-9; ‘whereas its

Y& would, according to Mr. Gilbert, be 121 if the veloéty were got up
:JI{ ah single pair of wheegls. So that the work lost by the friction of the teeﬁ
l.kt € oue cage would Outy be one seventh Pm of thag m the ou]er. C
¢ Mammer Mr, Gilbert found, that if »==100, then p should equat 36 ; in

:‘Il;lllch case the loss by friction of the teeth would smount to the sixth part

¥elocity wepe £ot up by one pair of wheels.

¥ of the loss that would result from that cause if pe 1, or if the reqim'ed S
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If =40, then p=2'88, with a gain of one third over s single pir.

If m=3-59, then p=1.

If m=1285, then p=2,

If m==46°3, then p=3.

If m=166'4, then p=-1\.

It is evident that when p in any of the above examples appears nnd‘tr
the form of a fraction, the nearest whole number to it, must be taken 1n
practice, The influcnce of the weights of the wheels of the train, and that
of the friction of the axes, so greatly howcver modify these results, that
although they are fully sufficient to show the cxistence in every cast of
u certain number of wheels, which being assigned to a train destined to
produce a given acceleration of motion shall cause that train to pruduf‘e
the required effect with the least expenditure of power, yet they do not it
auy cuse determine correctly what that number of wheels should be.
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Tor INcLINED PLANE.

243. Let AB represent the surface of an inclined plane on
which 35 supported a body whose centre of gravity is C, and
its weight W, by means of a pressure acting in any direc-
tion, and which may be supposed to be supplied by the ten-
sion of a cord passing over a pulley and carrying at its
extremity a weight.

Let OR represent the direction of the resuitant of P and
W. If the direction of this line be inclined to-the perpen-
dicular ST to the surface of the plane, at an angle OST
cqual to the limiting angle of resistance, on that side of 8T
which is farthest from the summit B of the plane (as in
fig. 1), the body will be upon the point of slipping upwards ;
and if it be inclined to the perpendicular at an angle OST,
(2) ’

®qual to the limiting angle of resistance, but on the side of
ST nearest to"the summit B (as in fig. 2.), then the body
Wil be upon- the point of slipping downwards (Art. 138.);
the former condition corresponds to the superior and the
latter to the inferior state bordering upon motion (Art. 140)
Now the resistance of the plane is equal and opposite to
the rosultant of P and W ; let it be represented by R. N
_There are then three’ pressures P, W, and, R in equili-
Tum, . ; : . ;

_ P sin. WOR

co(Art. 14) =g POR”
Let £ BAC =i, £ OST = lims. £ of resistance =¢, let §
z :
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yepresent the inclination PQB of the direction of P to the

surfiee of the plane, and draw OV perpendicular to AB;
then,

in fig. 1., WOR=WOV + SOV=BAC+O0ST=i+¢,
and POR=PQB + 0SQ=PQB + ;—OST=5+-¢i

in fig. 2., WOR=WOV — SOV =BAC—-O8T =1—9,
and POR:PQB+OSQ:PQB+%+OST:2+9+¢;

. WOR=i+¢; and POR=}+(079);

the wpper or lower sign being taken according as the body
is upon the point of sliding up the plane, as in fig- 1
down the plane, as in fig. 2. Or if we suppose the .':mgl‘?.qJ
to be taken positively or negatively according as the body 1
on the point of slipping upwards or downwards ; then gene-

rally WOR =i + ¢ POR :Z +(8—9);
P sin(ite)  sin(i+9)
- W Gin. (g . 8—-@) cos. (8—¢)

 P=w, G4 (294).

If the direction of P be parallel to the plane, £ PQB ™
§=0; and the above relation becomes

PwW 'sin.(s+£)

cos. @

fFf 1=0 the plane becomes horizontal (fig. 3.) and the
lation between P and W assumes the form

P—W sin. ¢

. m) ..... (296).
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If6=0, P=W . tan, ¢, as it ought (see Art. 138.).

If the angle PQB or 6 (fig. 1.) be increased so as to be-
come 7—8, PQ will assume the direction shown in fig, 4.,
and the relation (equation 294) between P and W will be-
¢ome
sin. (s + @) »

?O_S—--(Q-F‘ﬁ_) ..... (291).

The negative sign showing that the direction of P must,
in order that the body may slip up the plane, be opposite to
that assumed in fig. 1. ; or that it must be a pushing pressure
in the direction PO instead of a pulling pressure in the di-
rection OP,

If, however, the body be upon the point of slipping down
the plane, so that & must be taken negatively; and if, more-
over, ¢ be greater than i, then sin. (s+ ¢), will become sin.
(i~¢) = — sin. (p—+), so that P will in this case assume ‘the
positive value

sin. (@—
P:W . (;(-)_S—.—(e-—ﬁ)) ..... (%8),

which determines the force just necessary under these cir-
cumstances to pull the body down the plane.

=g, P =0, the body will therefore, in this ease, be upon
the point of slipping down the plane without the application
of any pressure whatever to cause it to do so, other than -i_tﬂ
own weight. The plane is, under these circumstances, said
' be inclined at the angle of repose, which angle is there-
fore equal to the limiting angle of resistance.

P——

Q4. The direction of least traction. ‘

Of the infinite number of different dirﬁ.ctiouf'i“: which the
Pressure P may be applied, each requiring 8 different amount
0 be given to that pressure, so as to cause thg-body to slide
UP the plane, that direction will require the least ‘:alue_ to be :
4ssigned to P for this purpose, or will be the direction of = -

least traction, which gives to the denominator of the fractjon .

z 2
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in equation (294) its greatest value, or
which makes 9—2=0oré=%. Thedi
rection of P is theretore that of least trac-
tion when the angle PQB is equal to the
limiting angle, a relation which obtains in
respect to each of the cases discussed in
the preceding article.

245. Toe MoveaeLe IncLIiNED PLANE.

Let ABC represent an inclined plane, to the back AC of

. which is applied a given pressure
Py, and which is moveable between
the two resisting surfaces GH and
KL, of which either remains fixed,
¢—=% and the other is upon the point
=2 " of yiclding to the pressure of the
planc.

1f we suppose the resultants of the resistances upon the
different points of the two surfaces AB and BC of the plane
to be represented by R, and R, respectively, it is evident
that the directions of these resistances and of the pressure
P, will meet, when produced, in the same point O%; and
that, since the plane is upon the point of slipping upon eac_h
of the surfaces, the direction of each of these resistances is
inclined to the perpendicular to the surface of the plane, 3t
the point where it intersects ity at an angle equal to the
corresponding limiting angle of resistance.

So that if ET and ¥S represent perpendiculars 10 the
surfaces AB and BC of the plane at the points E and F and
P15 92 the limiting angles of resistance between these SiI”
faces .Of the plane and the resisting surfaces GH and KL re
‘spectively, then R\ ET =¢1, R,FS=¢..

M};ow the pressures P,, R,, R, being in equilibrium (Arts
el

A

P, _sin.EOF P, sin. EOF

R, Tsin.DOJ> &0 R, " sin. DOE’

* & ; :
Since either is equal and opposite to the resultant of the other t¥9-
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But the four angles of the quadrilateral figure BEOF
being equal to four right angles (Euc. 1'32.), BEOF=2x»—

EBF~OEB—OFB; but EBF=:, OEB=3+4,, OFB=

Z+¢-z- o EOF =7 et = @) — &5
Similarly, DOE=2r— ADO—-AEO—DAE; but ADO
T o x

S AEO:Q—%, BAC:;—:: DOE=2+|+Q,.
Since, moreover, DO is parallel to BC, both being per-

pendicular to AC, .-. DOF=2~0FC; but 0FC=%—% 3

. DOF=]+¢s

. By _sin {ar——(s+rp1+tpq)}__sin.(|+¢'1+¢i) )
R, - cos. r-
Re sin. (g +¢e ) Fe

P.:Rf—“-"(‘:;z%?i) ..... (299.)
Py sinda—(:+¢,+0a)} s (161 +¢s)
R~ w T cos.(i+)
sin, (§ +i+ cp.)_
. _ sin. (s + ¢1 + ¢3) 300,
- Pi=Ry . =) Gy (800.)

In the case in which the surface GH yields to the pressure
of the plane, KI, remaining fixed, we obtain (equation 121.)
for _the modulus (see Art. 148.), observing that ‘P, =

18104 (equation 229),

U~ sin. (.l +¢+ ¢g) . (301}.
=" sing.cosps - " " _
1o the cage in which the surface KL‘yigldg,,Cl_E_:remaining

flxed, observing that P,®=Retan.s (equation 300), we -
lave, ) '

U=y S Gtete)  (302)
I*U.Ecos.(g.-]-%)mm;,.'_ . . ( ) o
z 3
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Equations 301 and 302 may be placed respectively under
the forms

Ur=Us™ gpsay (0t (it po) oot
) 11 €052 +¢9) § tan.e 4 taﬂ@_lt?ﬂ_), }
and U, =0, i P (_(Et¢—1— tan.)tana J

The value of U, corresponding to a given value of Uy is in

7 .
the former equation a minimum when 1=, and in the latter
L d

when

_ L Lesgs ... . (308).
tan. = {/\/sin. ersin. (g +og) 1 }tan. (pr+92) (

From the former of these cquations it follows, that the ‘jVO_I'k
lost by fiction (when the driving surface of the plane is its
hypothenuse) is less as the inclination of the plane is greatety
or as its mechanical advantage is less.

R48. A system of two moveable inclined plancs.

Let A and B represent two inclined plancs, of which A

£L

rests upon a horizontal surface, and

receives a horizontal motion from
. the action of the pressure P); cot®
" municating to B a motion WI?ICh 18
restricted to a vertical direction b
the resistance of the obstacle Ds
which vertical motion of the plane
is opposed by the pressure P? ap-
plied to its superior surface. 1t is required to determune a
relation between the pressures P; and Py, in their state bor-
dering upon rotion ; and the modylus of the machine.

Let B, represent the pressure of the plane A upo? the
- plane B, or the resistance of the latter plane upon the forme:
and Ry the resistance of the ohstacle D upon the back Of. the
plane B; then is the relation between R, and P, determin®
by equation (299). And since R, R;, P,are pressures I
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equilibrium, the relation between R, and P, is expressed
(Art. 14.) by the relation %;:%. Now RsQ is
inclined to a perpendicular to the back of the plane B, at an
angle equal to the limiting angle of resistance between the
surface of that plane and the obstacle D on which it is upon
the point of sliding. Let this angle be represented by ¢s,
then is the inclination of R4 to the back of the plane or P.Q

represented by;—-@a ; so that PSQR"}:%_%'

And if RyQ be produced so as to meet the surface of the
plane A in V, and VS be drawn horizontally, R,QRg==

QVR,+ VR,Q=R,VS + SVA+ VRQ=¢s+s+ 5+ 1,

where s represents the inclination of the superior surface of
the plane A or the inferior surface of the plane B to the
horizon. Substituting these values of P;QR; and R,QR; we

obtain
. 3
R, sl (é - ?’3) cos. ¢
P,=" /A “cos. (1 + 3+ 1)
sm,(é—}-n +p3+¢,)

Multiplying this equation by equation 299, and solving in
fespeet to Py, :

_p Sin (s + ¢, + 94) C08. P3 . (304)..
PI_PQCOS.(I+‘P[+P3)cOS'Pg v e e ( ) .

. . sin. (149 $a)eos- 85 a0
.. (A.l't. 152.) Ul:UQCOS. (1+4p1+tp3)tan.ic08.¢g L (305)5

A system of threo inclined planes, two of which are moveable,
and the third fived. -

247, The inclined plane A, in the 3W@P‘nying ﬁg:n'e, is
fixed in position, the plane B is moveable upob A, having its
Upper surface inclined to the horizon at & less angle than the
lower; and C is an inclined plane resting upon B, which is

z 4 *
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¥ prevented from moving horizon-
% b tally by the obstacle D, buF may
be made to slide along this ob-
stacle vertically. It is required
to detcrmine a rvelation betwecn
P, and P,, applied, as shown
the fizure, when the system 1810
P the state bordering upon motion.
Let Ry, Ry, Ry represent the resistances of the surfaces ob
which motion takes place, ¢, ¢, ¢5 their limiting angles of
resistance respectively, and i, 1, the inclinations of the two
qr J
surfaces of contact of B to the horizon. Since Py, Ry, Re
are pressutes in cquilibrimm, as also Py, Ry, Ry
i P__l _sin. R,0R, R, sin, P,QR;4
" Rg7sin, PLORY P, "sin. R,QRy
Multiplying these equations together,
P, sin. R,OR, . sin. P,QR;
Py 7sin. Py OR, . sin. R,QRY
Draw OS and OT parallel to the faces of the plane B then

R,OR, =R, 08 + QOT —TO8 ; but R,0S = —&,,since 03

- w
is parallel to the inferior face of the plane B,also QoT= Q"'*’Q’

since OT is parallel to the superior face of the plane B; and

TOS = the inclination of the faces of the plane B to one
another =i —,,

) + (g—¢~2) ""(11 '-IQ) :,'»jr__(¢l + ‘P‘g)—(‘l"‘i ).
Ao P = R~ g,

Let PO be produced to V ; therefore P,OR, =5~ ROV =

WE(R‘OS"SOV):”"{(;—"PI) —-u} :Z+ by P 'LastI_Y
RQR;=0QM+ MQR,.  Now, MQR, =¢5; also, 0QM=

.4
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+Y@ﬁ' e RQQR:}:%—--IE-F ¢2+¢3=%_(‘2—¢2-—¢3)'
{ ) P] msin. {W—((Pl -+ ¢Q)—(l1“""‘lg)} Sin- (%—@3)
‘ * sin. (; +a+ 451) - sin. {; - (‘e-‘P-z"“‘Ps)E
o P,=P,. S0 {(#1+ o)+ (n—19)} cos. 8
*" cos. (h + 1) cos. [ig—(Pa+ ¢3)} s (306) f
Whence we obtain for the modulus (Art. 152.), observing -

that b, @ o= 572 (1 ==12)
TTCOS. 1y COS. 15

. sin. (@, + @3+ 43 —tp) COS. 45 COS. Ip COS. Pg
€os. (1o — @y —@y) cos, (1 + @1) SiD. (n—1g) *

.. (307).

1—

Tue WEDGE DRIVEN BY PRESSURE.

?18. Let ACB represent an isoscelés wedge, whose angle
ACB is represented by 2, and which is
driven between the two resisting surfaces
DE and DF, by the pressure P;. Let
. R, and R, represent the resistances of
these surfaces upon the acting surfaces
CA and CB of the wedge when it is upon
the point of moving forwards. Then
are the directions of R; #nd Rg in-
clined respectively to the perpendiculars
Gs and R¢ to the faces CA and CB of
bomi the wedge, at angles each equal to the:
ther 1;'5 angle of resistance ¢. The pressures R, and Rg are
0 t"']"“'e ‘eqm_tlly inclined to the axis of the wedge, 'and
and ;;—' direction of P,, whence it follows - that- Ry =R,
e (if‘x"eforel (Art. 13)) that P,=2R, cos. 1GOR. Now,
o e' ‘(’_OR is a quadrilatersl figure, its four angles are equal

o right angles; therefore GOR=2r~GCR-0GC—

*

ORC. But GCR=2/: OGC=ORC=5+9¢; ... GOR=

"&+20) ' JGOR=L—(+¢)
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S Pr=2Rysing (i) L L (307).
Whenee it follows {equation 121) that the modulus of the
wedge is -
UI:UQS_‘ES_(‘:.'" ¢ .
sin.

.. (309).

This equation may be placed under the form
U, =U, {cot. ¢ + cot. s} sin. ¢,
The work lost by reason of the friction of the wedge is
greater, therefore, as the angle of the wedge is less; and infi-
nite for a finite value of ¢, and an infinitely small value of 1

The angle of the wedge.

249. Let the pressure P\, instead of being that just suffi-
elent to drive the wedge, be now supposed to be that whicit
is only just sufficient to kecp it in its place when driven. The
two surfaces of the wedge being, under
these circumstances, upon the point of
sliding backwards upon those between
which the wedge is diiven,at their points
of contact G and R, it is cvident that
the directions of the resistances 3'1(}'and
R upon those points, must be inelined
to the normals sG and ¢R at angles, each
equal to the limiting angle of resistancé,
but measured on the sides of those N0
mals opposite to those on which the e
sistances R, G and RoR arc applied.*

In order to adapt cquation 307 to this case, we have ouly

then to give 10 ¢ a negative value in that equation. It will
then become

Pi=2Rysin. G-} . . . . . (310).

* This will at once be apparent, if we consider that the direction of the
resultant pressure upon the wedge at (+ must, in the one case, b b€
that, if it acted alone, it would cause the surface of the wedge to slip dowr-
wards on the surface of the mass at that point, and in the other case up-

- ite t0
w:?.rds ; and that the resistance of the mass is in each casc oppositt
this resultant pressure,
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So long as + is greater than ¢, or the angle C of the wedge
greater than twice the limiting angle of resistance, P, is posi-
tive; whence it follows that a certain pressure acting in the
direction in which the wedge is driven, and represented in
amount vy the above formula, is, in this case, necessary to
keep the wedge from receding from any position into which
it has been driven. So that if, in this case, the pressure P,
be wholly removed, or if its value become less than that re-
presented by the above formula, then the wedge will recede
from any position into which it has been driven, or it will be
started. If : be less than ¢, or the angle C of the wedge
less than twice the limiting angle of resistance; P, will be-
come negative; so that, in this case, a pressure, opposite in
direction to' that by which the wedge has been driven, will
have become necessary to cause it to recede from the position
into which it has been driven; whence it follows, that if
the pressure P be now wholly removed, the wedge will
remain fixed in that position; and moreover that it will still
remain fixed, although a certain pressure be applied to cause
it to recede, provided that pressure do not exceed the nega-
tive value of P,, determined by the formula.

Itis this property of remaining fixed in any position into
which it is driven when the force which drives it is removed,
that characterises the wedge, and renders it superior to
every other implement driven by impact. L

Ttis evidently, therefore, a Principle in the formation of a
wedge to be thus used, that its angle should be less than
twice the limiting angle of resistance between the matenal
which forms its surface, and that of the mass into which it is
to be driven, ' ‘

Tur WEDGE DRIVEN BY IMPACT.

#30. The wedge is usually driven by theampmgmg of &
%‘eavy body with a greater or less velocity upon its back,
In the direction of its axis. Let W represent the weight. of
stch a body, and V its velocity, every element of it being.
conceived to move with the same velocity. The work ac<
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cumulated in this body, when it strikes the wedge, will then be

1w :
represented (Art. 66.) by p V2, Now the whole of this
work is done by it upon the wedge, and by the wedge upon the
resistances of the surfaccs opposed to its motion; il the
bodies are supposcd to come to rest after the impaet, and i
the influence of the elasticity and mutual compression of the
surfaces of the striking body and of the wedge are neglected,
and if no permanent compression of theiv surfaces follows the

impact. * .+, Uj=; —-.

Substituting this value of U, in equation 308, and solving
in respect to Uy, we have

_IWVE iy

T2 g sin(i+4)
by which equation the work U, yielded upon the resistances
opposed to the motion of the wedge by the impact of a given

U,

C (811);

* The influence of these clements on the result may be deduced from
the principles about to be laid down in the chapter upon impact. It results
from these, that if the surfaces of the impinging body and the pack of the
wedge, by which the impact is given and received, be excecdingly hard) 8
compared with the surfaces between which the wedge is driven, then the
mutual pressure of the impinging surfaces will be exceedingly great &
compared with the resistance opposed to the motion of the wedge. Now
this latter being nerlected, as compared with the former, the work rcqud
or gained by the wedge from the impact of the hammer will be shown it

the chapter upon impact to be represented by (;;ki%'j—lvag}’ where Wi
represents the weight of the hammer, W, the weight of the wedges a.nd :
that measure of the elasticity whose value is unity when the elasticity 13
perfect. Equating this expression with the value of U, (equation 30%), snd
neglecting the effect of the clasticity and compression of the surfices |
and.R. between which the wedge is driven, we shall obtain the approst
mation
v _(HePWoAw Ve sin

FT 2 (WL W) sl (i)
F::om this expression it follows, that the uscful work is the greatest: Ut.her
things being the same, when the weight of the wedge is equal to the weight
of the hammer, and when the striking surfaces are hard metals, s0 that L1
value of ¢ may approach the nearcst possible to unity.
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weight W with a given velocity V is determined; or the
weight W necessary to yield 2 given amount of work when
moving with a given velocity ; or, lastly, the velocity V with
which a body of given weight must impinge to yield a given
amount of work,

1f the wedge, instead of being isosceles, be of the form of
a right angled triangle, as shown
in the accompanying figure, the
relation between the work U,
done upon its back, and that

posed to its motion at either of
its faces, is represented by equa-
tions 301 and 302. Supposing therefore this wedge, like the
former, to be driven by impact, substituting as before for U,

its value 2y V2, and solving in respect to Uy we have in
the case in which the face AB of the wedge is its drmng
surface
Ui 1 WV2  gin.icos. @
T8y sin G P+ 02
when the base BC of the wedge is its driving surface,

Ry Fa A B

231. If the power of the wedge be applied by the interven-
tion of an inclined plane moveable
in a difection at right angles tothe
s direction of the impact ®, as ‘shown
in the accompanying figure, then
substituting for U, in equahon 305
half the vis viva of the Hmpinging
body, and solving, o8 befare in

respecttoUg,weba_"m
; 1 Wy

U,—> WY V? cos. (s+¢1+¢3)tan wos.tpg_ L (314N
Y279t s (a+«p;+p.)co&¢a I ( )'

* This is the form under wblch the po'a' uf ﬁle weige is 'PP
the expresgmg of oil, i

yielded upon the resistances op- -
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If instead of the base of the
plane being parallel to the direc-
tion of impact, it be inclined to it,
as shown in the accompanying
figure, then substituting as above
in equation 307, we have

1 WE COs

—

8. {13—8; — ¢3) cos. {1 + ) sin, (11— k) (315,

=2 g Si, (§) & Py + 4y —15) €OS. §, COS. i3 COS. P

THE MEAN PRESSURE OF [MpacT.

252. Itis evident from equations 311, 312, 313, that, since,
whatever may be the weight of the impinging body or th‘e
velocity of the impact, a certain finite amount of work Us i
yielded upon the resistances opposed to the motion of the
wedge ; there is in every such case a certain mean resistance R
overcome through a certain space S, in the directionin which

that resistance acts, which resistance and space are such,
that

RS=U,, and therefore R:g'e-
If therefore the space S be exceedingly small as compared
with U,, there will be an exceedingly great resistance
overcome by the impact through that small space, howevet
slight the impact. From this fact the enormeus amount of
the resistances which the wedge, when struck by the hammen
is made to overcome, is accounted for. The power of thus
subduing enormous resistances by impact is not however
peculiar to the wedge, it is common to all jmplements of
Impact, and belongs to its nature ; its effects are rendered
Permanent in the wedge by the property possessed by tbat
implement of retaining permanently any position into which
it "f driven between two resisting surfaces, and thereby op”
posing itself effectually to the tendency of those surfaces,
by reason of thejr elasticity, to recover their original for™
and position, It is equally true of any the slightest direct
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impact of the hammer as of its impact applied through the
wedge, that it is sufficient to cause any finite resistance op-
posed to it to yield through a certain finite space, however
great that resistance may be. The difference lies in this, that
the surface yielding through this exceedingly smail but finite
space under the blow, of the hammer, immediately recovers
itself after the blow if the limits of elasticity be not passed;
whercas the space which the wedge is, by such an impact
made to traverse, in the direction of its length, becomes a
permanent separation.

Trr ScREW.

253. Let the system of two moveable inclined planes
represented in fig. p. 342. be formed of ex-
| ceedingly thin and pliable lamina, and con-
ceive one of them, A for instance, to be
wound upon a convex cylindrical surface, as -
shown in the accompanying figure, and the
other, B, upon a concave cylindrical surface
) 2 having an equal diameter, and the same
aXis with the other ; then will the surfaces EF and GH of
these planes represent truly the threads or helices of two
screws, one of them of the form called the male screw, and
the ‘other the female screw. Let the helix EF be continved,
80 as to form more than one spire or convolution of the
thread ; if, then, the cylinder which carries this belix be made
o ?evd"e upon its axis by the action of a pressure P, applied
10 its circumference, and the cylinder which carries the helix
GH_ be prevented from revolving upon its axis by the_ op-
Position of an obstacle D, which leaves that cylinder neverthe-
less free to move in a direction parallel to its axis, it is evi-
dent that the helix EF will be made to siide beneath GH,
;md the cylinder which carries the latter helix to traverse
ongitudinally ; moreover, that the conditions of this mutual
action of the helical surfaces EF and GH will be precisely
analogous to those of the surfaces of contact of the two
Moveable inclined planes discussed in Art, 246. So-that the
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conditions of the equilibrium of the pressures P, and Py in
the state bordering upon motion, and the modulus of the
-system, will be the same in the one case as in the other ; with
this single exception, that the resistance R, of the mass on
which the plane A rests (see fig. p. 342.) is not, in the case
of the screw, applied enly to the thin edge of the base of the
lamina A, but to the whole extremity of the solid cylinder on
which it is fixed, or to a circular projection from that ex-
“tremity serving it as a pivot. Now 1if; in equation 304,
we assume ¢;=0, we shall obtain that relation of the
pressures Py and P; in their state bordering upon motion,
which would obtain if there were no friction of the extremity
of the cylinder on the mass on which it vests; and observing
that the pressure P, is precisely that by which the pivot at
the extremity of the cylinder is pressed upon this mass, and
therefore the moment (see Art. 177, equation 188} of the
resistance to the rotation of the cylinder produced by the

friction of this pivot by 3ng tan. p,, where p represents the

radius of the pivot; observing, moreover, that the pressure
which must be applied at the circumference of the cylinder
to overcome this resistance, above that which would be re-
quired to give motion to the screw if there were no such

2
friction, is rcpresented by SPQE tan. ¢y, r being taken to re-

present the radius of the cylinder, we obtain for the entire
value of the pressure P, in the state bordering upon motion,
sin. (1 + ¢1)cos. ¢,
2 eos. (144, +0y)
The pressure P, has here been supposed to be applied to
‘turn the screw at its eircumference ; it is customary, however,
to apply it at some distance from its cireumference by the
intervention of an arm.~ If a represent the length of suchan
arm, measuring {rom the axis of the eylinder, it is evident that
the pressure P, applied to the extremity of that arm, would
produce at the circumference of the cylinder a pressure

2
P‘ =P + 3 PQf_ tan. Pa.

a . ) .
represented by P.;, which expression being substituted for



THE $CREW. 353

Py in the preceding equation, and that equation solved in
respect to P, we obtain finally for the relation between P,
and P, in their state bordering upon motion,

s —p (7 fein{i+prjeos s 27p vers (316).
I]mPg(a){cos.(i-f-qbl—}-%) +3(r)tw'%} oo B16)

If in like manner we assume in the modulus {(equation 305)
#:=0, and thus determine a relation between the work done
at the driving point and that yielded at the working point,
on the supposition that no work is expended on the friction
of the pivot ; and if to the value of U, thusobtained we add
the work expended upon the resistance of the pivot which is
shown {cquation 189) to be tepresented at each revolution

4
by g7rPstan. ¢, and therefore during # revolutions by

4
37¢Py, we shall obtain the following general expression for

the modulus; the whole expenditure of work due to the -
prejudicial resistances being taken into account.
_ sin. (i + @, )cos. ¢ 4
s aA i L L
Representing by A the common distance between the threads
of the screw, i. e. the space which the nut B is made. to
traverse at each revolution of the screw; and obaery-

: 4 40U,
g that naPg=T,, so that gﬂ'ﬂPPg tan. fe=35% 3P tan. o=
2 2mr . 2 :

85 "' Ustan. ¢o, in which expression == cot.s, We

obtain finally for the modulus of the screw

— sin. (s 4+ ¢,)cos. ¢g 2 - X
It is evidently immaterial to the result ‘at what -ﬁi_ftance
from the axis, the obstacle D is opposed to the revolation of
that C)’linder which carries the lamina B s: !inw the amount
f’f that resistance does not enter inwthﬁi?m?“ expressed
I the above formula, but onlyits direction determined by-
the anglo ¢y, which angle depends -upoft the nature of the -

AA RS
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resisting surfaces, and not upon the position of the resisting
point.

APPLICATIONS OF THE SCREW.

251. The accompanying figure represents an application
of 7 the screw under the circumstances deseribed in the pre-
ceding article, to the well known machine called the Vice.

AR is a solid cylinder carrying on its surface the thread of 4
male screw, and within the picce CD is a hollow eylindrical
surface, carrying the corresponding thread of a female screws
this female screw is prevented from revolving with the male
screw by a groove in the picce CI), which carries it and
which is received into a corresponding projection EF of the
solid frame of the machine, serving it as a guide; which guide
nevertheless allows a longitudinal motion to the piece CD- A
projection from the frame of the instrument at B, met by @
pivot at the extrcmity of the male screw, opposes itse]f to
the tendency of that screw to traverse in the direction of
its length. The pressure P, to be overcome is applied B¢
tween the jaws H and K of the vice, and the driving pre™
sure P, to an arm which carries round withit the sere¥
AB.

Ft is evident that, in the state bordering upon motion, the
resistance R upon the pivot at the extremity B of the screW
AB, resolved in a direction parallel to the length of that
screw, must be equal to the pressure P, (see Att. 16.)i %
that if we imagine the piece CD to become fixed, 0
the piece BM to become moveable, being prevented from
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revolving, as CD was, by the intervention of a groove and
guide, then might the instrament be applied to overcome any
given resistance R opposed to the motion of this piece CD by
the constant pressure of its pivot upon that piece. E
The screw is applied under these circumstances in the
common, screw press, The piece
A, fixed to the solid frame of the
machine, contains a female screw
whose thread corresponds to that
of the male screw ; this serew,
when made to turn by means.of a
handle fixed across it, presses by
the intervention of a pivot B, at its
extremity, upon the surface of a
solid piece EX moveable vertically,
but prevented from turning with
the screw by grooves receiving two
vertical pieces, which serve it as
guides, and form parts of the

frame of the machine.

The formule determined in Art. 253, for the preceding
case of the application of the screw, obtain also in this case;
if we assume ¢3==0. The loss of power due to the fnctmn
of 'the piece EF upon its guides will, however, in this caleu-
lation, be neglected ; that expenditure is in all cases exceed-
ingly small, the pressure upon the guides, whence their frie-
ton results, being itself but the result of the friction of the
Pvot B upon its bearings; and the former friction being
therefore_, in all cases, a quantity of two dimensions in re
Sbect to the coefficient of friction. ' :

I, instead of the lamina A (p. 251.) being 'ﬁx“'l e
the convex surface of & solid cylinder, and B vpon the
“0ncave surface of a hollow cylinder, the order be reversed,
.A.being fixed upon the bollow and B on t‘hemhd cylinder,
'3 cvident that the conditions of the equilibrium will re-

™0 the same, the male instead of the female screw being . .

' this case mage to progress in the direction of its length.

If, however, the longitudinal metion of “the male scmwﬁ > o

AAZ
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{p. 251.) be, under these circumstances, arrested, and that
screw thus become fixed, whilst the obstacle opposed to
the longitudinal motion of the female serew A is removed,
and that screw thus becomes free to revolve upon the
male screw, and also to traverse it longitudinally, except
in as far as the latter motion is opposed by a certain Tesist-
E ance R, which the screw is intended,
under these circumstances, to over
come; then will the combination as-
sume the well known form of the screw
e and nut,

To adapt the formule of Art.253. to this case, ¢g must be
made =0, and instead of assuming the friction upon the
extremity of the screw (equation 316) to be that of 2
solid pivot, we must consider it as that of a hollow pivet,
applying to it (by exactly the same process as in Art. 25%)
the formulee of Art. 178. instead of Art. 177.

Tre DIFFERENTIAL SCREW.

255, In the combination of three inclined planes discussed
in Art. 247, let the planc B be conceived of much greate’
width than is given to it in the figure (p. 344.) and lel‘.. i
then be conceived to be wrapped upon a convex cylindri
surface. Its two edges b and cd will thus become the hel.lces
of two screws, having their threads of different inglinatios®
wound round different portions of the same cylinder; #

- L
T fefaliss

-7

represented in the accompanying figure, where the thread

> . N 1
of one screw is geen winding upon the sarface of 3 sol
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eylinder from A to C, and the thread of another, having a
different inclination, from I to B.

Let, moreover, the planes A and C (p. 344.) be im-
agined to be wrapped round two hollow cylindrical sur-
faccs, of equal diameters with the above-mentioned solid
cylinder, and contained within the solid pieces E and F,
through which hollow cylinders AB passes. Two female
serews will thus be generated within the pieces E and F,
the helix of the one adapting itself to that of the male serew
extending from A to C, and the helix of the other to that
upon the male screw extending from D to B.  If, then, the
piece I be conecived to be fixed, and the piece F moveable
in the direction of the length of the screw, but prevented
from turning with it by the intervention of a guide, and if a
pressure Py be applied at A to turn the screw AB, the action
of this combination will be precisely analogous to that of the
System of inclined planes discussed in Art. 247, and the
conditions of the equilibrium precisely the same ; so that the
relation between the pressure P, applied to turn the screw
(when estimated at the eircumference of the thread) and that
Py, which it may be made to overcome, are determined by
¢quation (306), and its modulus by equation (307). _

The invention of the differential screw has been claimed
by M. Prony, and by Mr. White of Manchester. A com-
Paratively small pressure may be made by means of it to
}'@ld a pressure enormously greater in magnit.udg.' It ad-
its of numerous applications, and, among the rest, of that
Suggested in the preceding engraving. '

P ¥ Tt will be scen by reference to equation (306), that th.e wgrking pressure

»depends for its amount, not upon the actua) inclinations s v of the
threads, but on the difference of their .inclinations ; so that its amount
74y be enormously inereased by wmeking the threads mlyef the sama
Inclinazion. Thus, neglecting friction, we have, - by equation (806),
P, p 2981 cos.1y ' '

Tsin. (u—ry) 5 Which ¢xpression becomes exceedingly great when
" bearly equals o, . T
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HuxtER's ScrEW.

256, If we conceive the planc B {p.314) to be divided
. by a horizontal line, and the upper
part to be wrapped upon the imver
or concave surface of a bollow cylin-
der, whilst the lower part is wrapped
upont the outer or convex circumfcrel_ice
of the same cylinder, thus generating
the thread of a female screw within t.hc
cyiinder, and a male screw without 1t
and if the plane C be then wrapped upen
the convex surface of a solid cylinder just fitting the inside
or concave surface of the above-mentioned hollow cylinden
and the plane A upon a concave cylindrical surface just capable
of receiving and adapting itself to the outside or convex S}lf'
face of that cylinder, the male screw thus gencrated adapting
itself to the thread of the screw within the hollow cyli“de,r’
and the female screw to the thread of that without it; i
mareaver, the female screw last mentioned be fixed, and t%)e
solid male screw be free to traverse in the direction of its
length, but be prevented turning upon its axis by the inter-
vention of a guide; if, lastly, a moving pressure or powet be
applied to turn the hollow s-crcw, and a resistance be OPPosed
to the longitudinal motion of the solid serew which i.S re-
ceived into it; then the combination will be Obm‘“‘?d’
which is represented in the preceding engraving, and which
1s well known as Mr. Hunter's screw, having been first de-
scribed by that gentleman in the seventecnth volume of 1
Philosophical Transactions.
The theory of this serew is identical with that of the P’
ceding, the relation of its driving and working pressures 15

?etermi_ned by equation (306), and its modulus by equatioﬂ
307),
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Tae Turory oF Tue Screw witH A SQUARE ThrEAD
IN REFERENCE TO THE VARIABLE INCLINATION OF THE
THREAD AT DIFFERENT DISTANCES FROM THE' AXIS.

257. In the preceding investigation, the inclined plane
which, being wound upon the cylinder, generates the thread
of the screw, has been imagined to be an exceedingly thin
sheet, on which hypothesis every point in the thread may be
conceived to be situated at the same distance from the axis of
the screw; and it is on this supposition that the relation
between the driving and working pressure in the screw and
Its modulus have been determined.

Let us now consider the actual case in which the thread
O_f the screw is of finite thickness, and different elements of it
Situated at different distances from its axis. e
. Let mb represent a portion of the square thread of a screw,
b which form of thread a line be, drawn from any point b on
the outer edge of the thread perpendicular to the axis efy
touches the thread throughout its whole depth bd. _Let_ AC
“¢Present a plane perpendicular to its axis, and “f_ the pro-
Jection of be upon this plane, Take p any point in be_'i, and
et ¢ bo the projection of p. Let ep=r, mean radius. of
threag =R, inclination of that helix of the t'hread yvhose
Tadius i R* =1, inclination of the helix'pw!?‘.ng,th‘:"’“gh
P=1, whole depth of thread =2T, distance between threads
(or piteh) of screw =T. N ow, since the helix g through

* This may be called the mean helix of ﬂ!ﬁm The term helix. . -

1 hore taken to represent any spiral line drawn npon the.surface of the::

“‘?ﬂd: the distance of every point in which; ficin the axis of the screw s -
Same, . A i

AAd
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p may be considered to be gencrated by the enwrapping of
an inelined plane whose inclination is + upon a cylinder whose
radius is r, the base of which inclined plane will then become
the arc g, we have pg=#q. tan.s. But, if the angle Afabe
increased to 2%, pg will become equal to the common distance
L between the threads of the screw, and fg will become 2
complete circle, whose radius is »; therefore L=2xr tan.s
and this heing true for all values of r, therefore L=2rR
tan. I.  Equating the sccond members of these equations
and solving in respcct to tan.

fan =2 L @),
r

From which expression it appears, that the inclination of the
thread of a square screw increases rapidly as we reeede from
its edge and approach its axis, and would become 2 right
angle if the thread penetrated as far as the axis. Consider-
ing, therefore, the thread of the screw as made up of m
infinite number of helices, the modulus of each one of whith
1s determined by equation (317),in terms of its coryesponding
inclination 4, it beeomes a question of much practical import-
ance to determine, if the serew act upon the resistance at 0n¢
point only of its thread, at what distance from its axjs thaf
point should be situated, and if its pressure be applied at o
the different points of the depth of its thread, as is commo{lly
the case, to determine how far the conditions of its actioh
are influenced by the different inclinations of the thread st
these different depths,

We shall omit the discussion of the former case, and pro-
cecd to the latter, i

Let P, represent the pressure parallc] to its axis which ¥
to be overcome by the action of the screw. Now it 5 €%
dent that the pressure thus produced upon the thread of the
SCIew is the same as though the whole central portion of
within the thread were removed, or as though the whole
pressure Py were applied to o ring whose thickness i3 A,
2T. Now the arca of this ring is represcnted by "’{(PH'T)-
—(R-="Tp, or by 42RT. So that the pressure of Py, upo”
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P .
every square unit of it, is represented by ;;I%T. Let‘ Ar .

represent the exceedingly small thickness of such a ring
whose radius is #, and which may therefore be eonceived to
represent the termination of the exceedingly thin cylindrical
surface passing through the point p; the area of this ring is
then represented by 2arAr, and therefore the pressure upox
it by PQ%QRTTI,AT, or by I;;;:IT Now this is ev:dently ﬂle
Pressure sustained by that elementary portlon of the thread
which passes through p, whose thickness is Ar, and which’
may be conceived to be generated by the enwrappmg of a
thin plane, whose inclination is 1, upon a cylinder whase, zadivg
is 7; whence it follows (by equation 816) that the elementary
Pressure APy, which must be applied to the arm of the sprew :
to overcome this portion of the resistance P, thus applled
parallel to the axis upon an element of the thread is TBP“"
sented by : :

PorAry st (l +¢1)cos. Ps } ;
AP]'—(EERT ){ cos. (i + ¢+ @3 +§ tan. pe

whence, passing to the Iimit and 1ntegratmga we have

P =/ {sm R L

QRDa cos, s+ ¢; + ?3)
Now
sin, -(1 + @) cos, ‘Ps tan. i tan. g
cos, (4o +@g) —1—tan.p, tan. ps--tan 1, @g = tam, +{tan. fp.+tan <ps)

tan. s+ tan. ¢ . _m +%§h 1
(l-tan ¢, tan. gg){1 —tan.s tan. (g1 ¢a)} ﬁ

*tan. (¢ +gg) tan. %, Neglecting dimensions nf ;sn ip; ami
tan. ¢, ahove the first®, B T ER

* The integration is readily effected Wlthou&m&ﬂﬁ!ﬂmi and #
Might hie desiraBle o to effect it where thé thedry of wpeden’ screwe.is.
Under discussion, the limiting angle of resistance being, in respect to: such
Screws, considerable, The length and compligatian of the Tesulting.gx-"
Pfessmn have caused the omission of it in the text, L

.4

#pA A0
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BR+D
P,
P1=*§ﬁ%—a-[_§§*an~ Brtan. o+ an (o,+ o) tan 2?4 gpr tan-g}dr. . (510

Substituting in this expression for tan.: its value (equation
318), it becomes
R+D
P, =§-1%3—&f rtan. gy+ Rrtan. |+ R2 tan2 T tan.(p, +s)+2pr tan g}
R-D

Integrating and reducing,
PRT D# a0 «
P=='" 1t€m.I+(l+,_‘;R—2)tan.¢,+§(%)tan-¢e+tan.‘?ltun-(¢1+¢'a)} ... (320);
whence we obtain (by equation 121) for the modulus,
Y €q

Ui=1, { 1+ {(l‘;‘%%:) ta“-%-f-%(%)tan. do+tan. 2l tan.(¢,+¢,)} cot. I} e

whence it follows that the best inclination of the thread, in
respect to the economy of power in the use of the squar®
screw, is that which satisfies the equation

tan. = { (1 'f‘“%%&;) tan. ¢, +§(%) tan. ‘Pi}%

o E_@: +¢s)

258. The inclination of thread of a square SCrew rarely
excecds 7% s0 that the term tan, *I tan, (g, + ¢a) rarely exceeds
‘015 tan. (@, + ¢4), and may therefore be neglected, as €0m"
pared with the other terms of the expression ; as also may

D2 .
the term %(ﬁ) tan. ps, sinee the depth 2D of a square 5T¢

being usually made equal to about 1th of the diametef, this
term docs not commonly exceed g tan.e,.

Omitting these terms, observing that L=2rR tan. 1, and
eliminating tan, I,

IrL .
P;:Pg.&{é; + R tan. ¢, + §p tan.cpg} Ce e (329)

2 .
U\'—:Ue{lﬁ-{(Rtan, Pt gp tan.?se)} o B9
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Tue BeaM or THE STEaM ENcINE,

259. Let P,, Py, P;, P, represent the pressures applied by
the piston rod, the crank rod, the air pump rod, and the cold

water pump rod, to the beam of 2 steam engine ; and suppose
the directions of all these pressures to be vertical.® _

Let the rods, by which the pressures Py, Pg, Pg, P, are Ap-
Plied to the beam, be moveable upon solid axes or godgeons,
whose centres are a, d, b, e, sitnated in the same straight line
Dassing through the centre C of the solid axis of the beam,

Let py, g, pss pa Yepresent the radii of these gudgeons, p
the vadius of the axis of the beam, and ¢y, fg, P3, Po @ the
!imiting angles of resistance of these axes respectively. Th‘en:,
if the beam be supposed in the state bordering upon wmotion
by the preponderance of P;, each gudgeon or axis being
Upon the point of turning on its bearings, the di}‘“‘?’?“’ Of
e pressures P, Py, Py, P, R, will not be through the centres
of their corresponding axes, but separated' from them by
Perpendicular  distances severally repl‘%ented_ by F1 810, )y
PaSin, 2, py sin. g, pesin. po and psin.p, which distances,
being perpendicular to the directions of the pressures, are ‘ﬂ_l
Measnred horizontally. U

Moreover, it is evident that the direction of the pressure P,

* A supposition which in no case deviates T thc truth, and
@y error in which may be neglected, inasmuch as it et only influence tbe '
Tesults about to be obtained in as far as they have reference to the m :
of the beam ; 80 that any error in the resuls wat be of two dimensions &t
1635t in respect to the coefficient of frietion and the small angle by which
307 pressure deviates frot a vertical direction. S
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1s on that side of the centre ¢ of its axis which is nearest to
the centre of the beam, since the influence of the frietion of
the axis @ is to diminish the effect of that pressure to tum
the beam. And for a like rcason it is evident that the di-
rections of the pressures P,, Py, P, are farther from the
centre of the beam than the centres of their several axes,
since the effect of the friction is, in respect to each of these
pressurcs, to increase the resistance which it opposes to the
rotation of the beam; moreover, that the resistance R upont
the axis of the beam has its direction upen the same side of
the centre C as Py, since it is equal and opposite to the re-
sultant pressure upon the beam, and that resultant wolﬂ‘d,
by jtself, turn the beam in the same direction as Py turns i
Let now a2 Ca, a=Cd, a3 =Cb, @y=Ce. Draw the horl-
zontal line of fCq, and let the angle aCf=4. Let, moreover,
W be taken to represent the weight of the beam, supposed
to act through the centre of its axis. Then since Py, Pa ?3’
Py, W, R are pressures in equilibrium, we have, by the prin-
ciple of the equality of moments, taking o as the point from
which the moments are measured, P, . of =1;. og+ Py 0ht
Py.ok+W.oC.

Now of =Cf—Co=aq, cos. §—~p) sin. py—p sin. ¢, 05:0%
+Co=a, cos. i+ 4, sin, $2-tp sin, ¢, oh=Ch—Co=az o>
- pasin. o —psin. ¢, ok = Ch + Ce=a,cos. b ~1‘~,045i“-‘?544'931“'@'1

[ : . in, g 83 |
B—le'sin. o1+ ¢ sin. 2) Jome | Py{a; co8. 0:+(g, sin, ttesin. o) |+ Py{a cos. i+ (s '

}
+P'{“4 o6, B4 (g sin. g, sinn. @) } + Wy sin. 9 )
Multiplying this equation by 4, obscrving that a;d repre-
sents the space deseribed by the point of application of P1, 50
that Piai§ represents the work U , of P;; and similarly tllﬂ;
Pouyf represents the work U, of P,, Pyay, that Uy of P, an
I

"aa4fy that U, of P, also that @9 represents the space Si de-
scribed by the eXtremity

of the piston rod very neatly; ¢
have

. : in. st gin.»‘*l
f Uz{mo. B-i-(‘ﬁs'_'l'%:i’m_"’)] +U3{cns. o S B

+U4{cus, e+(e;iif;a;t,g,s£¢)}+ws,(§_l) s
4

which is the modulus of the beam,

&

1
- } -
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Its form will be greatly simplified if we assume cos. =1,
since § is small*, sappose the coefficient of friction at each axis
to be the same, so that ¢=¢; =gs=@s=¢4, and divide by the
coeflicient of U, omitting terms above ! the first dimension in
£

0 sin. ¢, &ec. ; whence we obtain by reduetion

(. Ue{ l+(9%ﬁ+%“*) sin.¢} +U,{1+(%”‘—%‘) sin-¢}

.. (326).
+U.{1+(”—"a'l"i+”*‘;—:") sin.tp}-*-WSl(z'l) sin. o

260. The best position of the axis of the beam.

Let o be taken to represent the length of the beam, and «
the distance aC of the centre of its axis from the extremity
to which the driving pressure is applied.

Let the influence of the position of the axis on the eco-
oy of the work necessary to open the valves, to work the
dir-pump, and to overcome the friction produced by the
Weight of the axis, be neglected ; and let it be asaumed.to be
that, by which & given amount of work U, may be yielded
Per siroke upon the crank rod, by the least possible amount
Ui of work done upon the piston rod. If then, in equation
(326), we assume the three last terms of the sgcop;i*;liemi_ler
PO be Tepresented by A, and observe that a; in th'a't equation
1S represented by «, and a, by a—zx, we gh_?_.ll _qbfgam N

*I“Pmcﬁcethean ceeds 20°, so that ¢os. 6 never differs
] gle 0 never ex 8 207, . " ifters
Foun unity by more than -060307. The errof, mahiugﬁ'mn w!uch differ-
egIce, in the friction, estimated as above, st in all cases be inconsider-
anle,
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pte et} oo }U+A-
U1:{1+("'&; +£t-—.‘1,‘)81n $ 2

is i i alue
The best position of the axis is detf::rmmed by' t}}-m:cal‘; e
of & which renders this function a minimum ; which v
a is represented by the equation

wm— L (320
Cet)

etps)d 1 in this case, there-
If ps>p1, then (;;Pl) >land z< day in

s s the
fore, the axis is to be placed nearcr to the dm:mg tha{:étzxed
working end of the beam, If p2< p1, the axis is to o
nearer 1o the working than to the driving end of the bes

261. It has already been shown (Art.168.), that a mac?::;?
working, like the beam of a steam engine, 1‘1“‘191" tworfatest
pressures about a fixed axis, is worked with the %ied o
economy of power when both these pressures arc E'Lf’p v vio-
the same side of the axis. This principle 1s mﬁn_leSt-Y Ked
lated in the beam engine ; 1t is observed in the eﬂgme WOI‘_HES
by Crowther’s parallel motion * and in the marine ensglthe
recently introduced by Messts. Seaward, and known 2 e
Gorgon engines. It is difficult indeed to defend.tli'le t;:;t o
the beam on any other legitimate ground than this; roion
some degree it aids the fly-wheel to equalise the Ie"f ko
of the crank arm 1, an explanation which does not ex ﬂtains
its use in pumping engines, where nevertht-ﬂess 1td rle) e
its place ; adding to the expense of construction, ands by

: s . osed
welight, greatly increasing the prejudicial resistances Opp
to the motion of the engine.

* Asused in the mining districts of the north of England. aalising
t The reader is referred to an admirable discussion of_' the c}? volume
power of the beam, by M. Coriolis, contsined in the thirteent
of the Journal de P E'cole Polytechnique,
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Tue Crawk.

262 The modulus of the crank, the direction of the resist-
ance being parallel to that of the driving pressures.

Let CD represent the arm of the crank, and AD the con-
necting rod. And to simplify the
investigation, let the connecting
rod be supposed always to retain its
vertical position.* Suppose the
weight of the crank arm CD, acting
through its centre of gravity, to be
resolved into two other weights
(Art. 16.) one of which W, is ap-
plied at the centre C of its axis,
and the other at the centre ¢ of the
axis which unites it with the con-
necting rod. Let this latter weight,
when added to the weight of the
/" connecting rod, be represented by
e W, Let P, representa pressure
OPposed to the revolution of the crank, which would at any
mstant_be just sufficient to balance the driving pressure P,
Pransrflltted through the connecting rod; and to simplify the
ivestigation, let us suppose the direction of the pressure Pg
t be vertical and downwards. : :
Let Ce=g, CA,=a,, CA;=ay cCW,=4, radii of axes C
a‘fd ¢=2py, pg, lim, / s of resistance =, Pz, W = whole weight
of C‘fa“k arm and connecting rod =W, + W N
th Since the crank arm is in the state bordering upon n?iotion,
" ¢ Perpendicular distance of the direction of the resistance
bPon lt:s axis C from the centre of that axis, is represented
Y ¢isin, ¢, (Art. 153.). This resistance is also equal to

* ) ..
e Any.error resulting from this hypothesis a&bcnng the eo'ndmona of
i question only in as far ag the friction is concetned, and being of two
! Mensions at least in terms of the coeficient of friction and the small
"gular deviation of the connecting rod from the vertical.
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P +(P.+ W); P, being supposed greater than Ps+ W, and
the sign + being taken according as the dircetion of Py is
downwards or upwards, or ac-
cording as the crank arm is
describing its descending or
ascending arc.  Whence it
follows, that the moment of the
resistance of the axis about its
centre is represented by {F1+
(Po+ W)lp sin.¢,. Now the
pressures P;, P,, and the re-
sistance of the axis, are pres-
sures in equilibrium, There-
fore, by the principle of the
equality of moments, observing that the driving pressure s
represented by I+ W, according as the arm is descending
or ascending,

Py Wiy =Pea, + [P+ (Py+ W)ip, sin. 35

Since moreover the axis ¢, which unites the connecting rod
and the crank arm, is upon the point of turning upon ifs
bearings, the direction of the pressure P, is not through the
centre of that axis, but distant from it by a quantity repre-
sented by gqsin. ¢, which distance is to be measured on that
Sl-de of the centre ¢ which is nearest to C, since the friction
diminishes the effect of P, to turn the crank arm.

. alzasin- a-—FQSiD. ¢g e 80 (328)-

Substituting this value of @, in the preceding equatior

Py + W) (a sin. § = pg sin, Pa) = Potg + { P, + (P + W)lp, sin f1+«
Transposing and Teducing

(329

Pi{a sin. 0—pysin. ¢o—p, sin, ¢} =Py{a,tp, sin. ¢} + Wp, sin. ¢, T Ws(asin. g—psin 8t
whichis thfz relation between P, and P, in their state borderi®s
upon motion. Now if Af represent an exceedingly 2
angle described by the crank arm, a,A8 will represent the
space through which the resistance P, 13 overcome whilst
that angle is described, and P,e,A8 will represent the incre”
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ment AUj of the work yielded by the crank whilst that small
angie is described. Multiplying the above equation by:a,44,

we have ‘
2nfein, gy sin, gug, sin.g } Ab=fay 4 g, oin # YA, 3 Wage, sin. 9 A0 Wiinslasin, B—gysin ¢80 . .. (330}

whence passing to the limit, integrating from =@ to 8=
70, and dividing by a,
R B~{—263){45 alha. gty im, ,1)}.,{ L4 S1ain. g1} Vs 3 Win28),sln. o, 7 Wi {30008, O tilr— 8)sin. o) - (382).
ag

Now, let it be observed that 2a cos. ® represents the pro-
jection of the path of the point ¢ upon the vertical direction
of P}, whilst the arm revolves between the positions © and
"~0; so that P,2a cos.© represents (Art. 52.) the work
U, done by P, upon the erank whilst the arm passes from
oue of these positions to the other, or whilst the work U, is

, : 9]
yielded by the crank. Whence it follows that P1=Q£ sec. ©.

Substituting this value of P, dividing by a, and reducing,
we obtain

U{1—(5~6) sec. (" sia. 2 sin. ) } = {12 sin. 4} U,
TW(r—20) p, sin, ¢, T W,{2 cos. 8—ps (x—20) sin. gu} . - - K (339)-

By which equation is determined the modulus of the cmnkm
Tespect to the ascending or descending stroke, according as.
e take the upper or lower signs of the ambigyous terms:
Adding these two values of the modulus :tegether,:and
T¢presenting by U/, the whole work of P, snd ‘by Uy the
Whole work of Py, whilst the crank arm makes 8 .comylg:e
revolution, also by u, the work of Pq in the down stroke, and
I %1 the up stroke, we obtain e
z -
I [} ~ (§ - 9) sec, © (f—:sin. e+ % sin. 151) } ::_:Ug+(ul-,—ﬂ;)%m4p;... (333),

W:hich i3 the modulug of the crank in respest:to’ a verfical

direction of the driving pressure and of the resistance, %be

"™ being supposed in each half revolution; first; to receive

the action of the drlving pressure Whenlat,an inclinatlon of &

1o the vertical, and to yield it when it has again attained the
BB
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same inclination, so as to revelve under the action of the
driving pressure through the angle —20.

In the double-acting engine, %, —ug=0; in the single-
acting engine, #,==0, The work expended by reason of the
friction of the crank is therefore less in the latter engine than
in the former, when the resistance P, is applied, as shown
in the figure, on the side of the ascending are.

If the arm sustain the action of the driving pressure con-

stantly, @ =0, and the modulus becomes, for the double-acting
engine,

U, {1*2 (% sin. g + '2 sin. rp;) } =Uy;

or, dividing by the coefficient of U, and neglecting dimer-
stons above the first in sin. ¢y, sin. gy,

U1={1+;(% sin.¢1+%sin. %)}U,2 ... (338

The modulus not involving the symbol W which repre-
sents the weight of the crank, it is evident that so long as PE
and Py are vertical and P, greater than I, + W, the economy
of power in the use of the crank is not at all influenced .b)’
its weight and that of the connecting rod, the friction bPimg
upon the whole as much diminished by reason of that weight
in the ascending stroke as it is increased by it in the de-
scending stroke,

It is evident, moreover, that if the friction Pmducﬂd by
the weight of the crank be neglected, the modulus above de-
duced, for the case in which the directions of the Pr’essures
P, and P, are vertical, applies to every case in which the
directions of those pressures are parallel.

The condition Py > P+ W evidently obtains in every ?t"her
position of the crank arm, if it obtain in the horizontal posiio™

. . . o s e
Now, in this position, PQ:;P,, if we neglect friction- T
2

. a ]
required condition obtains, therefore, if P, > o P+ w. T

. . s the
satisfy this condition, @, must be greater than a, o the
resistance be applied at a perpendicular distance from
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axis greater than the length of crank arm, and so much

greater, that P, (1 -—-Z-) may exceed W. These conditions
2
commonly obtain in the practical application of the crank.

263. Should it, however, be required to determine the mo-
duius in the case in which P, is not, in every position of the
arm, greater than Py+'W, let it be observed, that this con-
dition does not affect the determination of the modulus (equa-
tion 332) in respect to the deseending, but only the ascend-
ing stroke ; there being a certain position of the arm as it
ascends in which the resultant pressure upon the axis re-
presented by the formula {P,—(Py+ W) pming_.through
zero, is afterwards represented by {(Pe+ W)—Pi}; ax:!d
When the arm has still further ascended so as to be again
inclined to the vertical at the same angle, passes again
through zero, and is again represented by the same for-
mula as before. The value of this angle may be determined
PY substituting P, for Py+ W in equation (329), and solv-
ng that equation in respect to f. Let it be represented
by &5 let equation (830) be integrated in respect to the
astending stroke from § =0 to §=#4,, the work of P; through
this angle being represented by w,; let the sigus of. 8}1
the terms involving p, sin. ¢ then be changed, which s
tGuivalent to changing the formula representing the pres-
sure upon the axis from {P,—(Ps+ W)} to {P +W)—F1}

i X
and let the equation then be integmte’d_. fxom 9‘-'_"9;= 't?'fz'z;s

the work of P, through this angle being Tepresented by #;
2+ uy) will then represent the whole work Uy ﬂon?ﬁy?g
In the ascending arc, To determine this sum, divide the
first integral by the coefficient of %, and the secottd by that
of%, 2dd the resulting equations, and ‘mulfiply”their’ sum
by 2; the moduluns in respect to the wn&mg’ni’cwill then
be determined ; and if it be added to the modulns in Tespect
to the descending are, the modulas in. fespect to an entize
remlution W]_H be known_ e e . ;
BB 2
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THE Deav Points 1x THE CRANK.

264, If equation (329) be solved in respect to Py it be-
comes

@ §il. 8—p, 810 g,—p, sin, @

P=P, { L mEpsing, } L Wo,sin. .~ W(a sin. 0-—p; . £
o

@ i, f—py SITL, ,—py I P

In that position of the arm, therefore, in which

sin = f2Sm Pt pising (g5
a

the driving pressure P necessary to overcome any given re-
sistance P, opposed to the revolution of the crank, assumes
an infinite value. This position, from which no finite pres-
sure acting in the direction of the length of the connecting
rod js sufficient to move the arm, when it is at Test in that
position, is called its dead point. .

Since there are four values of §, which satisfy equatio?
(335), two in the descending and two in the ascending sem-
revolution of the arm, there are, on the whole, four dead
points of the crank.* The value of P, being, however, in ol
cases exceedingly great between the two highest and the tW0
lowest of these positions, every position between the W0
former and the two latter, and for some distance on either

side of these limits, is practically a dead point.

THE DovsLg CrANK.

265. To this crank, when applicd to the steam engit®
are affixed upon the same solid shaft, two arms at right
angles to one another, each of which sustains the pressure ¢
the steam in a separate cylinder of the engine, which Pre
sure is transmitted to it, from the piston rod, by the interve®”
tion of a beam and connecting rod as in the marine engin®
or a guide and connecting rod as in the locomotive engine:

* It has been customar
of th"a crank, one in its hig
practical man is aequaint

ints
¥ to reckon theoretically only two dend %‘“;y
hest and the other in its lowest position. 2%
ed with the fallacy of this conclusion.
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In cither case, the connecting rods may be supposed to
femain constantly parallel to themselves, and the pressures
i} applied to them in different planes

i to act in the same -plane®, without.
materially affecting the results about
to be deduced.}

Let the two arms of the cran
be supposed to be of the same
length a; let the same driving pres-
sure P, be supposed to be_ applied
to each ; and let the same notation
[\ be adopted in other respects as was

-1 used in the case of the crank th'h
' / a single arm ; and, first, let us con--
sider the case represented in fig. 1.,
in which both arms of the crank are
upon the same side of the centra C.

Let the angle W,CB=4; therefore WICE=%+B:_whence

1t follows, by precisely the same reasoning as in Art. 262.,
that the perpendicular upon the direction of the driving
Pressure applied by the connecting rod AB is represented
lsee equation 828) by a sin. §--p, sin. gp and the. pefe-
Pendicular upon the pressure applied by the rod CD-By

. I I S STIE RN~ E
8. (Q + 9) ~— pg SiIL. @y, OF @ cos. §—pg 8iN. Pye. Letmwn;
l)Ehtaken to represent the perpendicular distance from-the
s C, at which a single pressure, equal to-2Py;:must be-ap-
Plied, s as to produce the same effect to turn the:crank:as
' produced by the two pressures actually apphied: to-it-by
the two connecting rods ; then, by the principle of the ﬂqa]ity
of moments, _ SRR ey

2Py =P\(a sin. § — pg sin. ¢,) +P;(¢:¢b& 3

o This principle will be mare fully discussed Ey.a Fferoacs to the theoty
Statical couples, (See Pritchard on Statizal Couplne.). - .

T The relative dimensions of the crank mmd&ecmwﬂns “’d‘@

'€ SUpposed to be those usyally given € theae parts of the engine; |

e

"UPPosition does not abtain it the cese of w short comecting rod. %1%,

B
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. ay=4a(sin, § + cos. §)— o sin. P33

Pag 2

a g, - . ) L 6+3 e, 810, 821
. g,:ﬁ(sm.ﬁcos.i+ cos.ﬂsm.‘i_ -—p,sln.q;:—‘/é sin. 1)

which expression becomes jdentical with the value of a,, de-
termined by cquation (328), if in the latter equation a be

replaced by ;%, and 4 by 5%—1, Whence it follows that the

conditions of the equilibrium of the double crank in the
state bordering upon motion, and therefore the form of the
modulus, are, whilst both arms are on the same side of tb.e
centre, precisely the same as those of the single crank, the dr
rection of whose arm bisects the right angle BCE, and the
length of whose arm equals the length of either arm of the
double crank divided by /2.

Now, if §; be taken to represent the inclination W,CF of
this imaginary arm to W,C, both arms will be found on the

w
same side of the centre, from that position in whieh h=y
to that in which it equals {m— g) If, therefore, we substitute

3 . .
4 for ©, in equations (331), and for a, ”52" and add thest

equations together, the symhol 2U, in the resulting equs
tion will represent the whole work yielded by the working
pressure, whilst both arms remain on the same side of the
centre, in the ascending and the descending ares. We thes

obtain, representing the sum of the driving pressures upor
the two arms by Py,

T .
2P]{(E"é(lﬂg3]n. ¢Q+P| Sin. ]@)}': QUQ Poe oa o o# (336)-

Throughout the remaining two quadrants of the revolutio?
of the crank, the directions of the two equal and PM""Iie
pressures applied to it through the connecting rods being o
posite, the resultant pressure upon the axis is represente
by (P2+w-): instead of {Pl i(Pg"}‘ W)} H whilst, in other ‘re-
spects, the conditions of the equilibrium of the state bordering

* Whewell’s Mechauics, p. 25.
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upon motion remain the same as before; that is, the same
as though the pressure P, were
applied to an imaginary arm,
whose length is :/ié’ and whose
position coincides with CF, Now,
referring to equation (329), it is.
apparent that this condition will
be satisfied if, in that equation,
the ambiguous sign of (P;+ W)
be suppressed, and the value of
P, in the second member, which
K is multiplied by pysin. g1, -be
assumed = 0 by which assumption the term —py sin. ¢y
will be made to disappear from the lefi-hand member of
equation (330), and the ambiguous signs which affect the
first and second terms of the right-hand member will become
P_OSItlvc Now, these substitutions being made, and the equa-
tlon being then integrated, first, between the limits O and

4’ and then between the limits 3: and =, the symbol Ugin

it will evidently represent the work done dunng each °f
those portions of a semi-revolution of the imaginary arm in
“'fhlch the two real arms of the crank are not.on. the. same:
Side of the centre. Moreover, the integral of that 3‘1““50“

betwoen the limits O and ;, is 'evident_ly the same W w:th m

Integya] between the limits §E and = Taking, th@refm

twice the former integral, we have :
QPIQQ{ V’z(] —COo8. 4‘)__- P2 sin. PQ} {Gg"{'f’!mﬁ}gU!
zwaif’l in. %_5_2 W]“g{ J (l--m E)-M*P’m%}

D“’ldlng this equation by (GH”PI m‘ 93)’ or. by a’ f
(I+—~sm p,) and neglecnng ﬁum a’bm the first: dis -

menBlOH n gm ¢1 and sm. Ps, .

5.;;.‘!.1:‘_35
"BB4 R




376 THE DOUBLE CRANK-.

21’[{ :gié(l —cos, z-) (I-—%‘; sin. qj,)-—lpg sitl, qug} =20, i

T . _ o\/é - - . f
+§Wp1 sin. ¢, F2W, {—[;(1 --cos.-Z) (] -—;f;l sin. (Pl)-";l:Fg sm-#:&}a ‘

in which equation 2U, represents the work done I the 1
descending or ascending ares of the imaginary erm, accord: l
ing as the ambignous sign is taken positively or negatively.
Taking, therefore, the sum of the two values of the equation :
given by the ambiguous sign, and representing by 4Us fhe i
whole work dene in the descending and ascending ares, during
those portions of each complete revolution when both of the
arms are not on the same side of the centre, we have

1 n o, ', ST 013
4P, {;ig(l-— COS. ;) (1—;2 sin. (,51) —4;;2 sin. 5“'-’} =44 Wrp, s 1M

. 1
o1, obs N
, observing that cos, 1=

ap, {a(q/é-;l)-—a(mfg— l)gfl sin. é,——;-rp, sin. ¢=} =40, 4 Wapsin e i
2

Adding this equation to equation (336), and representing .by !
U, the entire work yielded during a complete revoluio? |
of the imaginary arm,

2P, { avea(y E—1)2 sin. 6, — 5(2py s kg, sin. @) | = Uit WS

But if U, represent the whole work done by the driving
pressures at each revolution of the imaginary armh then

4-P,=U,. Since 2-%- is the projection of the S
N2 1 e V3 18 the projectio
described by the extremity of the arm during the ascen[d;ﬂg
1

and descending strokes respectively, therefore 2P=,v7

Substituting this value for 2P,

21
I-2 & . 2 .
U] { ‘\/5 E;S!Il. & — 2‘:;—% (ngsin. ¢2+:—lBiﬂ. ¢¢) } =U,+ W?rpl sin. ¢ - -

e i

i
which %8 the modulus of the donble crank, the directions H
the .drlvmg pressure and the resistance being both suppof;e
vertical; or if the friction resulting from the weight of
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crank be neglected, and W be therefore assumed=0, then
does the above equation represent the modulus of : the
double crank, whatever may be the direction’ of the driving
pressure, provided that the direction of the resistance be
parallel to it. D