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PREFACE.  

IN the following work, I have  proposed to myself 
to apply the principles of mechanics to the discussion 
of the most important  and obvious of those  questions 
which  present  themselves  in the practice of the en- 
gineer  and  the  architect ; and I have  sought to in- 
clude in  that diicusilon dl the  circumstances on which 
the prscticd solution of such  'questions may be as- 
sumed t o  depend. It includes the substance of a 
course of lectures  delivered to the students of King's 
College in the department of engineering and  archi- ', 

tecture, during the years 1840,  1841,  1842.* 
In the first part I have treated of those portions of 

the science of STATICS which  have their application 
in the theory of machines and the theory of con- 
struction. 

In the second, of the science of D m ~ ~ ,  and, 
under this head, particularly of that mi011 of a con- 
tinued  pressure with a continued mation which has 
received from English writera the v d o w  nlimes of 

The first I70 pagee of the work wem' printed for the use of 
my pupila in the yesr ism. Copies of them were abut the y e  

1 
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time in the papeasion of several of my Mends  in &e Univerdtia 
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vi PREFACE. 

1‘ dy~~an~ ica l  efkct,” ‘L efficicncy,” “ mork done,” ‘‘ la- . 
\muring force,” “work,” &C.; and “mon~ent d‘activit4,” 
“ quant,it,& d‘action,” “ pnissnnce dcaniquc ,”  “ tra- 
vail,” from French  writers. 

Among the latter  this v:viety of terlrls has at length 
given place to  the most intelligible :~nd the simplest 
of them, L‘ travail.” The  khglish word work” is 
the obvious trarrslation of “ travail,”  and the usc of it  
:Ippears to i)c reeolnmendccl hy the same consider- 
ations. The work of‘ overcoming a prcssnrc of‘ one 
ponnd  througll :I space of one foot has in  this  country 
been taken as the unit,  in  terms of mhirh any  other 
amount of work is estimated ; and in France the 
work of overcoming a pressure of onc kilogl-amme 
through a space of one mctre. M. Dupin has pro- 
posed the  application of the term dynnrnc to this 
unit. 

I have  gladly  sheltered myself from the chargc of 
having  contributed  to increase the vocabulary of 
scientific words by assuming the obvious term “ unit 
of work” to represent concisely and conveniently 
enough the idea which is attached  to  it,, mit.hout 
translation. 

The work of any pressure  operating  through  any 
space is evidently measured in terrns of such  units, 
by multiplying the  number of pounds in  the pressure 
by the  number of feet in  the Space, if the direction of 
the pressure  be  continually that in which the space is 
described. If not,, it follows, by a simple geometrical 
deduction, that it is rneasured by the  product of the 
nulnbcr of pounds in thc pressure, by the nurnber of 
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feet in the projection of the space  'described', upon 
the direction of the pressure ; that is, by the product 
of the pressure by it,s virtual velocity. Thus, then, 
we  conclude, at oncc,  by the principle of virtual 
velocities, that if a machine  work under a  constant 
equilibrium of the pressnres  applied to it, or if it work 
uniformly,  then is the aggregate work of .those  pres. 
sures  which  tcnd to accelerate its motion equd to the 
aggregatc  work of those  which  tcnd to  retard it ; and, 
by the principle of vis viva, that if the machine  do 
not work under an equilibrium of the forces  impressed 
upon it, then is the aggregate work  of those  which 
tend to accelerate the motion of the machine greater 
or less than the aggregate work of those  which  tend 
to ret'ard its motion by one  half the aggregate of the 
vires viva! acquired or lost by the moving parts of tho 
system,  whilst the work is being  done upon it. In no 
respect  have the labours of the illustrious president 
of the Academy of Sciences more eo&ributd to the 
developement of the theory of machines than in thd 
application  which  he h so successfully  made to it of 
this principle of vis wiua.t h the el em&^  die- 
cussion  of this principle,  which is givea * ~M.:%n-: 
celet, in the introduction tb his M&mipe Idw- 
trielle, he  has  revived the term vis inert& (uis i 

If the direction of the  pressure ramain dwlipsrjarailel to it&; ~. 

the rpwe described may be any fieita qwm; if itdo not, +e rprss . . . j 
I is understood to be so n d ,  that *e d i d i o n  .af the p r ~ m  mly . .  

be supp&ed to remain parallel ti itself &ht that  space in d&i 
scribed. 

t See Poncdet, M b + c  zodurrrielye, * o S i  lJlrtia +. . :. ..:. 
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inertie, v is  insita, Sewton),  and, a,ssoc,iating with it 
the definitive idea of a force of resistauce opposed to  
the acccleration or the retardation of a hody's motion, 
he has shown (Arts. 66. and 122.) the work expended 
iu overcoming this resistance through  any space to be 
measured by 011e half the ais aic:tr nccumulated through 
the S J J ~ C ~  ; so that  throwing  into  the consideratiuu of 
the forccs under wl~ich a maclline works, the vires 
inertice of it,s moving elements, :mtl observing that one 
llnlf of thcir  aggrcgatc vis vian is equal to  the  aggre- 
gate work of t,hcir uires inertice, it  follows, by  the 
principle of virtual velocities, that  the Lliffercncc  be- 
tween the 8,ggregate work of those forccs impressed 
upon a machine, which tend  to a.ccelerate its motion, 
and  thc  aggregate work of those which terd  to  retard 
the motion, is equal t o  the  aggregate work of the 
vires inestiiz of thc moving parts of the machine: 
under which form the principlc of vis viva resolvcs 
itself  into the principle of virtual velocities. So many 
difficulties, however, oppose themselvcs to  the  intro- 
duction of the  term vis inertie, associated with  the 
definitive idea of an opposing force, into  the discussion 
of questions of mechanics, and especially of practical 
and elementary mechanics, that it has appeared to  the 
author of this work desirable to avoid it. It is with 
this view, that  in  the following work a new interprct- 
ation  is given to tlvat function of the velocity of a 
moving body which is known as its vis viva ; one half 
that function  being  interpreted t o  represcnt  the  num- 
ber of units of work accumulated in  the body so long 
a8 its motion is continued, and which number of units 
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of work it is capable of reproducing  upon  any resist- 
ance  which  may  be  opposed to  its motion,  and  bring it 
to rest. A very  simple  investigation (Art. 66.) esta- 
' blishes the  truth of this interpretation, and gives to 
the principle of vis viva the followiig new  and  more 
simple  enunciation :- " The difference  between the &g. 
gregat,e  work  doue upon the machine, during any time, 
by  those forces which tend to accelerate the motion, 
and  the  aggregate  work, during the same time, of those 
which tend to retard the motion, is equal to the ag- 
gregate  number of units of work mhted in the 
moving parts of the machine during that time if the 
former aggregate exceed the latt,er,  and  lost from 
them during that time if the former  aggregate  fall 
short of the latter." Thus, then, if the aggregate 
work of the forces  which tend to accererate the motion 
of a machine exceeds that of the forces which tend 
to retard it, then is the surplus work (that done upon 
the driving  points,  above that expended  upon the 
prejudicial  resistmc'es  and  upon the working  points) 
continually  accumulated in  the moving  elementa of 
the wh ine ,  and their motion is thereby conth&y 
accelerated.  And if the former  aggregate be lesa than 
the latter, then is the deficiency supplied from the 
work already accumulated in the moving elements, so 
that their motion is in this w e  continually~retded. 

The moving  power divida its elf^ whilst it Ope- 
rate in a machine, first, .into  that which owmmnea 
the prkjudicial resistances of ,%he: md&e, or those 
which are oppmed by friction and other c a a q  u~e- 
lessly absorbing the work in ita transmidon. se- 

e 

.i 
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conclly, into  that  whicl~ acc,eleratcs the motion of the 
various  moving  parts of the Inacbine, ancl which nccu- 
mulate$  in  them so long .as the work done by the 
moving power upon it exceeds that espended upon’ 
the various ~.esist:rr~ces opposed t,o the motion of t,he 
machine. Thirdly,  iuto  that which overcomes t,lle 
useful resistanccs, or tllose mhich are opposed to  the 
motion of the machine at the working point, or points, 
by the useful mork which is done by  it. 

Between  thesc three elements t,here o h i n s  in  every 
machinc a mathernaticd relation, which I have called 
its MOUULI:~. ‘ h  general form of this modulus I 
haw discussed in a memoir on the “ Theory of Ma- 
chines” published in the Plrilvsopl~icul Trrrnsnctivns 
for the  year 1841. The  determination of the  par- 
ticular moduli df those elerrlents of machinery which 
are most commonly in  use  is  the subject of the  third 
pzrt of the following work. From a combination of 
the moduli of any  such  elements  there resu1t.s nt once 
the modulus of the machine compoundcd of them. 

TVheu a machine lms acquired  a state of uniform 
mot,ion work ceases to accunlulate  in its moving 
elernents, and its modulus assumes the form of a 
direct relation between the work done by  the motive 
power upon its  driving point and  that yielded at  its 
working  points. I have d e t e r i n i d  by a general 
method’ the modulus in this case, from that statical 
relation between the driving  and working pressures 
upon the machine which obtains  in the  st& bordering 

. 

Art. 152. See Phil. Trans., 1841, p. 290. 
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upon its motion, and which  may  be  deduced  from the 
known conditions of equilibrium and the established 
laws of friction. In making this deduction I have, in 
every case,  availed  myself of the following  principle, 
first published in my paper on the theory of the arch 
read before the Cambridge Philosophical Society in ~ 

Dec. 1833, and  printed in their Trummtiom of the ': 

following year : - '' In  the  state bordering upon mo- 
tion of one  body upon the surface of mother,  the 
resultant pressure upon their common surface of  con- 
tact is inclined to the normal, at  an angle whose 
tangent is equal to  the coefficient  of  friction." 
This angle I have called the limiting angle of resist- 

ance. Its values calculated, in respect to a great 
variety of surfaces of contact, are given in a table at 
the conclusion of the second part, from the admirable 
experiments of M. Morin', into  the mechanical details 
of  which precautions have been introduced hitherto 
unknown to experiments of this class, and which  have 
given to our knowledge  'of the laws of friction a pre- 
cision and a certainty  hitherto udoped for. 

Of the various elements of machinerythuse which 
rotate  about cylindrical axes are Of the most frequent 
occurrence and the most useful application; I have, 
therefore, in  the first place sought tQ establish the 
general relation of the  state bordering u p n  motion 
between the driving  and the working pressures upon 
such a machine,  reference being had to . t h e  weight of 

. . . . .  . .  . .  ~ 

. .. ~ 

* Nonwe+ l&p!rim8 m& la 'F- Park 1838.. , ;. 
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the machine.* This relation  points out  the existeuce 
of a particular  direction in which the  driving  pressure 
should be applied to any such mnchinc, that  the 
amount of work cxpcnclcd upon the friction of the 
axis may be the lcast possiblc. This direction of t,he 
driving  pressure always presents  itself on the mmc 
side of t,he  axis  with  that of the working pressure, 
and when the  latter is  vcrtical it,  becomes parallcl to 
i t ;  a principle of the economy of power in  lnachinery 
which has received its  application in thc parallel mo- 
tion of the  lnarinc engines known as  the Gorgon 
Engines. 

I haw devoted a considerable space in t,his portion 
of my work to  the determination of t,l~e modulus of D 

system of toothed wheels ; this determination I have, 
moreover,  extended to hevil wheels, and hwe included 
in it,,  with the influence of the  friction of the  teeth 
the wheels, that of‘ their axes and  their weights. 
An approximate  form of t,his modultls applies to 
any shape of the  teeth nn&r which they may be 
made to work corr&tly ; and d e n  in  this approx- 
imate form of the modulus the  tcrms which rcpresent 
the influence of t,he  friction of the axis  and  the  weight 
of the wheel are ncglected, it resolves itself into a 
well knom theorem of M. Poncelet,  reproduced by 
M. Navier  and  the Rev. Dr. Whewel1.t I n  respect 

* In my memoir on the $1 Theory of Machines ” (Phil. Tram. 
1841), I have extended this relation to the case  in  which the num- 
ber of the pressurea and their directions are any whatever. The 
theorem which expresses it is given in the  Appendix of this work. 

t I n  the discussion of the friction of the teeth of wheels, the 
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to wheels  having  epicycloidal  and  involute  teeth, the 
modulus  assumes  a  character of mathematid ex- 
actitude and  precision,  and at once  establishes the 
conclusion (so often  disputed) that the  loss of power 
is greater before the teeth pass the line of centres 
than at corn-esponding points afterwaxds ; that the 
contact  should,  nevertheless, in all cages take place 
partly before  and partly after the line of centres  has 
been  passed. In the case of involute  teeth, the pro- 
portion in which the  arc of contact.  should thus be 
divided  by the line of centres is determined. by a 
simple formula; a8 also areathe best  dimensions  of the 
base  of the.involute, with  a view to the most  perfect 
economy of power in the working of the wheels. 

The greater portion of the subjects  discussed in 
thc third part of my work I believe to be entirely 
new to science. In the fourth p& I have treated 
of ‘‘the theory of the stab;lity of structureq” referring 
its conditions, so far aa they are dependent upon m- 
tation, to the properties of a certsin line which may 
be  conceived to traverse every  structure, -pawing 
through those  points in it where ita surfaw~of mm- 
tact  are intersected by the  reaultmt ‘ $ m g m u w  upon 
them. To this line,  whose properties I fiist &S-; 
cussed in a memoir  upon ‘‘ the Stability of a &stmi 
of Bodies in Contact,”  printed in the S i  ,volume  of 
the Camb. Phil. Trans., I have given the ll~me of 

. .  ,. 

direction of tbe mutual pressurer of tbe tsecL~ W &-,W i 
method Amt applied by me to teat PlVpoIlE in a poptlbrd 

M*&, appkba * & h 1% <: : . i : : .~ 
. .  
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the line of resistance;  it diflers esscntially in its pro- 
perties  from a line  referred to  by preceding  writers 
under  the  name of the  curve of equilibrium or the 
line of pressure. 

The clistance of' the line of resistance from the  cx- 
trsdos of a structure,  at  the point  whcrc it most 
nearly  approaches it, I have ta,ken as a measure of 
the stability of a struct,ure,  and have called it  the 
modulus of stability* ; conceiving this  lnemure of' the 
stability to be of more obvious a rd  easier application 
than  the cocfficicnt of st,ability  used by  the  French 
writers. 

That structure  in respect to  cvcry independent 
clement of which, the  modulus of stability  is t,he 
same, is  cvidently the  structure of the  greatest 
stability  having a givcn quant,it.y of matcrial em- 
ployed in  its  construction;  or of the great,cst economy 
of material  having n given  stability. 

The application of these  principles of' construction 
to  the  theory of picrs, walls supported  by counter- 
forts  and shores, buttresses, walk  supporting  the 
thrust of roofs and  the  weights of the floors of dwell- 
ings, and Gothic  structures, has suggested to me a 

class of problems  'never, I believe, before treated ma- 
thematically. 

I have  applied the well known principle of Coulomb 

rev&tcment walls attributed to Vauhan, to the effect, that the re- 
* This idea was suggested to me by a rule for the stability Of 

sultant pressure should intersect  the base of such a wall at a point 
whose distance from its extrados is $ths the distance between the 
extrados at the base and the vertical through the centre of gravity. 

:l 



PREFACE. m 

to  the determination of the pressure of earth upon: 
rev6tement  walls,  and  a  modijication of that principle, 
suggested by M. Poncelet, to  the determination of the 
resistance opposed to the overthrow of a wall backed 
by earth. This determination  has an obvious appli- 
cation to the theory of foundations. 

In the application of the principle of Coulomb I 
have  availed  myself, with great advantage, of the 
properties of the limiting  angle of  re&tance. All 
my results have thus received a new  and a simplified 
form. 

The theory of the arch I have  discussed upon prin- 1 : 
ciples first laid down in my  memoir  on “ the Theory 
of the Stability of a System of Bodies in Contact,” 
before rcferred to, and  subsequently in a  ‘memoir 
printed in the “ Treatise on Bridges” by Pkfessor j i 
Hosking and Mr. Hann.+ They differ essentially  from ’( 

! /  

those on  which the theory of  Coulomb is founded?; 
when,  nevertheless,  applied to the caae treated by the 
French mathematicians they lead to identical  results. ; i: i .  

I have inserted at the conclusion of my work the 
tables of the  thrust of circnlar  arches, Calculsted by 
M. Garidel  from formulze founded W &e ,theorJTof 
Coulomb. 

The fifth part of the work treats of the ‘‘strength 

in the.following work, by the obliging permhim! of the publieher, 
* I have made extensive use nf the memoir above referred to 

Mr. W&. + The theory of Coulomb was uoknow G. at the tiwe OF (he 1 
publicatiou of my memoira printed ii the. &d. Phil. lbw. 1 
For a comparimn of the two method. tee Mr. Harm's treatise. . f . .  
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of matcrials," and a,pplies a new method to t.hc de- 
termination of the deflexion of a beam under givcn 
pressures. 

In  the case of a beam loaded uniformly over it,s 
mhole length, and supported at  four different points, 
I have determined  the  severd pressures  upon the 
points of support by a method applied by M. Navicr 
to a similar  determination in respect to a beam loaded 
a t  givcn points." 

In treating of' rupture by elongation I have been 
led to a discussion of thc  theory of the suspension 
bridge. This question, so complicated whcn reference 
is had t o  the  weight of thc roadway and  the  weights 
of the suspending  rods, and when the suspending 
chains are assumed to be of uniform thickness, be- 
comes comparatively easy when the section of the 
chain is assumed so to vary  its dimensions as to  be 
evcry  where of the same strength. A suspension 
bridge thus constructed is obviously that which, being 
of a given strength, can be construct,ed  with the  least 
quantity of materials ; or, which is of thc  greatest 
strength  having a given quantity of materials uscd~ 
in its  constructi0n.t 

The  theory of rupture by transverse  strain has sug- 

fiinns of girders having wide flanges connected by 
h wsted a new class of problems, having reference to  the 

* As in fig. p. 521. of the following work. 
t That particular case of this problem, in which the weights of 

kinson in the fourth vol. of the Manchestm T ~ ~ ~ a c e i o n s ,  with  his 
the suspending rods are neglected, h a  been  treated by Mr. Hodg- 

usual ability. He has not, however, succeeded in effecting ita 
complete solution. 
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slender ribs or by open frame work : the eonsideration 
of their strongest forms  leads to results of praetical 
importance. 

In discussing the conditions of the strength of 
breast-summers, my attention has  been directed to the 
best  positions of the columns  destined to support them, 
and t o  a  comparison of the strength of a beam CV- 

ing a uniform  load  and  supported  freely at its ‘ex- 
tremities, with  that of a b a n  similarly laded but 
having its extremities firmly imbedded in masonry. 

In treating of the strength of columns I have gladly 
replaced the mathematieal  speculations  upon this sub- . 
ject, which are so obviously  founded  upon  false data, 
by  the invaluable  experimental results of Mi, E. 
Hodgkinson,  detailed in his  well  known  paper in the 
P/dosophieal TTunsa,ctions for 1840. 

The  sixth and last part of  my work treats on “im- 
pact ;” and the Appendix  includes,  together with tables 
of the mechanical  properties of the materials of con- 
struction, the angles of rupture and the thrusts of 
arches,  and  complete  elliptic  functions, a demonstra- 
tion of the admirable  theorem of M. Poncelet for de- 
termining an approximate  value of the square toot of 
the sum or difference of two squares. 

In respect to the following  articles of my  work^ I, 
have to acknowledge  my  obligations the work of 
M. Poncelet, entitled Mbcanique IncEzdsrieUe. The 
mode  of demonstration is in some,  perhaps, so far 
varied as that their origin might with df icdty be 
traced ; the principle,  however,  of each demonstration 
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-all that constitutes its novelt,y or its v:rlue-i,e- 
longs to that distinguished :~ut,l~nr. 

202, 2671, 268, 269, 270, 349, 354, 365.9 
SO', 38, 40, 45, 46, 47, 5 2 ,  58 ,  62, 75, l o q ,  123, 

* The  enunciation o111y of this t.he0rc.m is given  in the MA-. 
Id., 2me partie,  Art. 98. 

t Somn important  elements of the  demonstration of this theorcm~ 
an! taken from the N k .  I d ,  Art. 79. 2me  partie.  The principle 
of tlka demonstration is not, however, the same  as ilr that work. 

$ In  this and the  three following articles I have  developed tllr: 
theory of  the fly-wheel, under a different form from  that  adopted by 
>f.Ponoclet (17fk. Id., Art .56 .  3me partic). The  principle of til<; 

constitutes  one  of  the most valuable of his contributions to prac- 
whole calculatio~~ is, however, taken from l i s  work. It probably 

tical science. 

deflection  of a  beam from  that  expended upon the compressiou 
4 The idea of determining  the  work necessary to  produce a given 

and the elongation of its component fibres was suggcsteil by an 
observation in the Ndc. Ind., Art. 75. 9me  partie. An  error 
presents  itself in the  determination  given by M. l'oncelet iu that 
article of tire linear  deflection f of a heam under a given deflecting 
pressure P. It consists in  ssuming  that   the work of thr  deflecting 
pressure is represented by Pf; as it would  be if, in order to deflect 
the beam, P must  always  retain  the aame value  instead  of  varying 

detcrmination of which  requires a knuwledgc of the law of the 
directly ay the deflection. The  trne  value of the work is 4Pf; the 

deflection, which the  demonstration  does not suppose. It is  due 
to M. Poncelet  to  state  that  the #&unique Industrielle  was puh- 
Listred (uncorrected)  without  his  con~:nrrencc or knowlcdgr, in 
Belgium, from, a MS. copy of his lecturcs  lithographed for thrr 
use of thc  workmen at Metz to whom they were addressed. 
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TIIE 

MECHANICAL  PRINCIPLES 

OF 

C I V I L   E N G I N E E R I N G .  

P A R T  I. 

STATICS. 
1. FORCE is that which tends to causc or to destroy motion, 
or which actually causes or destroys it. 

The direction of a force is that straight  line in which i t  
tcnds to cause motion in the point  to which it is applied, 
or in which i t  tends  to destroy the motion in it. 

Whcn more forces than one are applied to a body, and 
their respective tendencies to communicate motion to  it 
counteract one another, so that  the body remains at  rest, 
these forces are said to  be in EQUILIBRIUM, and are called 

It is  found by experiment, that  the effect  of a pressure 
when applied to a solid body, is  the same at whatever point 
in  the line of its direction it is  applied; so that  the condi- 
tions of the equilibrium of that pressure, in respect to other 
pressures  applied to the same  body, are  not altered, if, with- 
out altering the direction of the pressure, we remove its point 
of application, provided only the point to which  we  remove 
it be  in  the  straight line in the direction of  which it acts. 

The science of STATICS &,that which treats of the sguitk 
brium of pre8sures. When two preraures d g  are  applied ta 
a body, and hold it at rest, it 3s found by  experiment th.t 

PRESSURES. 
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2 T H E  r X 1 T  OP I'RESsUBE. 

tllese 1,rcssnrcs act iu oppnsiitc dircctious, and have th& 
directions d x t y s  in the same straight line. Two such pres- 
snrcs are said to  IIC eyuol.  

If instead of applying two pressures nhicll  are  thus equal 
in opposite directions, we apply them  both  in  the savic direc- 
tion,  the single pressure which must  he  applied  in a di- 
rwtion opposite to  the t u o  tu sustain  them,  is  said t(] 
double of either of them. If we take a third  pressure 
equal to  either of the two first, and opply the  three  in  the 
same direction, the single  pressure,  which  must be applied  in 
a direction oppsite tu the  thrcc  to  sustain  them,  is said to 
be  tripk~ of either of tllem ; and so of my number of pres- 
sures. Thlls fixillg uyor~ any m e  pressure, and ascertaining 
Iron. many p ~ s s u r c s  equal to  this  are nccessary, wllrn  applied 
in all uppositc direction, t,o sustain any other grcater pres- 
sure, we arrive a t  a truc conception of the  amount of that 
greater  pressure in  terms of the first. 

That  single pressure, in  terms of which the  amount of any 
other  greater pressurc is thus ascertained,  is called an UNIT 

of pressure. 
Pressures, tile amount of which are determincd in terms of 

some known unit of pressure, are said to he measu~ed. 
Different pressures, the amounts of which c m  be  deter- 

mined iu terms of the same unit,  are said tu he commen- 
surable. 

The units of pressure  which i t  is  found most convenient  to 
use, arc the wights of certaiu  portions of matter, or thc 
pressurcs with which they  tcnd  towards  the  centre of the 
earth.  The  units of pressure arc different in different  coun- 
tries. With  us  the  unit of pressure  from  which  all the rest 
are derived the weight of 22815 * cubic  inches of distilled 
water. This weight  is  one pound troy; bciog divided into 
5760 equal  parts,  the  weight of each is a grain  troy,  and 
$000 such  grains  constitute  the  pound avoirdupois. 

If straight lines be  takcn  in  the directions of any  number 

This standard was fixed by Act of Parliament in 1824. The tern. 
perature of the watcr is supposed to bo 62' Farenheit, the weight to be 
taken in air, and the barometer to  stand at 30 inelm. 



THE PARALLELOGRAM OF PRESSURES. S 

of pressures, and have their  lengths proportional to the 
numbers of units in those pressures respectively, then these 
lines having t o  oue another the same proportion in  length 
that  the pressures have in magnitude, and being moreover 
drawn in the directions in which those pressures respectively 
act,  are said to represent them in magnitude and direction. 

A system of pressures being in equilibrium, let  any num- 
ber of them he imagined to  be  taken away and replaced  by 
a single pressure, and let this single pressure he such that 
the equilibrium which before existed may remain, then this 
single pressure, producing the same effect in respect to  the 
equilibrium that  the pressures which it replaces produced, is 
said to  be  their RESULTANT. 

The pressures which it replaces are said to be the COMPO- 

NENTS of this single pressure ; and the act of replacing them by 
such a single pressure, is called the COMPOSITION of pressures. 

If, a single pressure being removed  from a system in equi- 
librium, it be replaced by m y  number of other pressures, 
such, that whatever effect was produced by that which they 
replace singly, the  wme effect (in respect to  the couditions of 
the equilibrium) may be produced by those pressures con- 
jointly,  then is that single pressure  said  to have been RE- 

SOLVED into these, and  the  act of making this  substitution 
of two or more pressures for one, is  called the RESOLUTION 

of pressures. 

THE PARALLELOGRAM OF PRESSURES. 

2. The resultant of any two pressures applied to a point, 
is represented i n  direction by the  diagonal of a paraL 
lelagram, whose adjacent sides represent tkosepressures in 
magnitude and direction.* 

(Duehayla’s  Method.) 
To the demonstration of this proposition. after the ex- 

cellent method of Duchayla, i t  is necessary in  the first place 

Statics. 
* This proposition constitutes the fonndntion of the entire science Of 

B 2  
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4 THR PARALLELOGRA>I 

to sl~om,  that. if there be any t v o  prcssurcs P, and P:, ~vhose 
dixections are in the  sxnc  straight  line, and a third  pressure 
PI i n  any  other  direction, and if the  proposition be true  in 
respect to P, and P,, and also in respect to PI and P3,  then 
it will be  true  in respect  to P, and P2 + P,. 

Let  P,, P,, and P,, fornl  part of any  systenl of pressures  in 
equilihriurn, and let  them he applied  to  the  point '?-..''>g ..' A ;  take AB and AC to  represent,  in  magnitude 

-+?-e% and direction, the pressures P, and P*, and  CD 
the pressure P:,, and  complete  the parallelogra1ns CB and 
DF. Suppose the proposition to be true  with  regard  to 
P, and P,, the  resultant of P, and P, will then  be  in the 
direction uf the diagonal 1iF of the  parallelogram BC, whose 
adjacent sidcs AC  and AB represcnt P, and P, in  magnitudc 
and direction. Le t  l', and P, bc replaccd by this  resultant. 
It matters  not  to  the  equilibrium  where  in  the  line AF i t  is 
applied;  lct  it  then be  applied at F. But  thus  applied a t  
k' i t  may, without affecting the  conditions of the  equilibrium, 
be in  its  turn replaced  by ( o r r e s o l d  into)  two other pressures 
acting  in CF and BF, and  these will manifestly be equal  to 
PI and P % ,  of which P, may be transrerred  without  altering 
thc conditions to  C, and P, to E. Let  this  be done, and  let 
PS be transferred  from A to C, we shall then have P I  and 
P;, acting  in  the  directions CF and CD  a t  C, and P,, in  the 
direction FE at E, and the conditions of the  equilibrium will 
not have been  affected by the  transfer of them  to  these 
pointx. Now suppose that  the proposition is also true in 
respect to  PI and Py as well as P, and Pp. Then siuce C F  
and CD represent PI and in magnitude  and  direction, 
therefore  their  resultaut  is in the direction of the diagonal 
CE. Let  them be replaced by this  resultant,  and let it be 
transferred to E, and k t  it  then  be rcsolved into two other 
pressures  acting  in  the  directious DE and FE; these will 
evidently be P, and P,. W e  have now then  transferred  all 
the  three  pressures PI, P,, P ,  from A to E, and  they  act  at E 
in  directions  parallel  to  the  directionsin which they  acted  at A. 
and  this has been  done  without  affecting  the  conditions of 
the equilibrium; or, in  other words, it has  been  shown that 

ar: 
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spects thc conditions of the equilibrium, whether they be 
the pressures P,, P2, Pa, produce the same  effect as it re- 

applied at A or E. The resultant of P,, P,, P,, must thcre- 
fore produce the same effect, as it regards the conditions of 
the equilibrium, whether i t  be applied at A or E. But in 
ordcr that this  resultant may thus produce the same effect 
when acting at A or E, i t  must  act  in the straight  line AE, 
because a pressure produces the same  effect  when applied at  
two different points, only when both those points  are in 
the line of its direction. On  the supposition made there- 
fore, the  resultant of P,, P,, and P,, or of P1 and P,+P, 
acts  in the direction of the diagonal AE of the parallel- 
ogram BD whose adjacent sides AD and AB represent 
Po+ P, and P, in magnitude and direction; and i t  has been 
shown, that if the proposition be true in respect to P, and 
P%, and also in  respect to P, and P,, then it is true in re- 
spect  to P, and Pp+Ps. Now this being the case  for all 
values of P,, P*, P,, it is the case when P,, P,, and P,, are 
equal to onc another. But if P, be  equal to P2.their result- 
ant will manifestly have its direction as much towards one of 
these pressures as the  other ; that is, i t  will  have its direc- 
tion midway between  them,  and it will  bisect the angle 
BAC: but  the diagonal AF in  this case  also bisects the angle 
BAC, since P; being  equal to PS AC  is equal to AB ; so that 
in  this  particular case thc direction of the  resultant ia the 
direction of the diagonal, and the proposition is  true, and 
similarly it is true of P, and PS, since these pressures are 
equal. Since then it is true of P, and P, when they  are 
equal, and also of P, and Pa, therefore it is true  in this case 
of P, and P,+P,, that  is of P, and 2Pl. And since i t  is 
true of P, and P,, and also of P, and 2 P,, therefore i t  is true 
of p1 and P9+2P,, that is of P, and 3 P, ; and so of P, and 
 PI, if m he any whole number; and similarly since it is 
true of mP, and P1, therefore it is  true of mP, and 2PI &C., 
and of m P, and n P, where n is  any whole number. There- 

nPI  which are cmmeneurable. 
# fore the proposition is true of any two pressures mP, and 

B Y  
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It is moreover true when the pressures  arc in- 
commensurable. For let  AC  and AB rcprcscnt 

and  direction, and complete the  parallelogram ABDC, then 
any  two  such pressures P, and l'% in  magnitude 

will the  direction of the  resultant of P, and PI be   in   AD ; 
for if not, let its direction bc AE, and draw E(; parallel to 
CD. Divide AB into equal  parts,  each  less  than GC,  and 
set ~ X o n  AC parts  equal  to those from A towards C .  One 
of the divisions of these will manifestly  fall  in GC. Let  it 
bc H, and  complete  the  parallelogram AIIFB. Then the 
pressure P, being conceived to  be  divided into  as  many  equal 
units of pressure  as  there  are  equal p a t s  in  the line AB, AH 
may be taken to  rcpresent a pressure P, containing as many 
of these  units u f  pressure as  there  are  equal  parts  in AH, and 
these  pressures PS and P, will  lie cumnzen.rura,hle, being 
measured  in  terms of the same  unit.  Their  rcsultant is there- 
fore in  the  direction AF, and  this  resultant of PS a d  PI has 
its direction  nearer  to AC  than  the  resultant AE of P, and 
PI has ; which is absurd,  since P, is greater  than Pa. 

Thcrefore A E  is not in the direction of the  resultant of 
P, and PI ; and i n  the same  manner it may be shown that  no 
other  than A D  is in that direction.  Therefore, &c. 

r). The resultant of two  pressures applied i n  uny directiom 
to a p i n t ,  i s  represented in magnitude  as  well  as in direc- 
tion by t h  diagonal of tile para&Lr)ggran?. whose udjacent 
sides represent ifhose pressures i n  magnitude and in direc- 
tion. 

0 

Let BA and CA represent, in  magnitude  and 

i A. Complete the parallelogram BC. Then  by  the 

these  pressures  in direction. It will also represent it in mag- 
nitude ; for, produce DA to G, and conceive a pressure  to  be 
applicd  in GA equal to  the  resultant of BA and CA, 
and opposite  to it, aud let  this  pressure  be  represented in 

T.. zk~\x / ,'... direction,  any two pressures  applied to  the  point 

m last  proposition AD will  represent  the  resultant of 
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magnitude by the line GA. Then will the pressures repre- 
sented by the lines BA, CA, and GA, manifestly he pressures 
in equilibrium. Complete the parallelogram BG, then is 
the resultant of GA and BA in  the direction FA ; also 
since GA and BA are  in equilibrium with CA, therefore this 
resultant is in equilibrium with CA, hut when two pressures 
are  in equilibrium, their directions are in  the same straight 
line ; therefore FAC is a  straight line. But AC is psrallel 
to BD, therefore FA is parallel to BD, and FB is, by con- 
struction, parallel to GD, therefore AFBD is a parallelogram, 
and AD is equal t o  FB and therefore t o  AG. But AG repre- 
sents  the  resultant of CA and BA in magnitude, AD there- 
fore represents it in  magnitude. Therefore, &c. 

THE PRINCIPLE OF THE EQU.~LITY OF MOMENTS. 

4. DEFINITION. If any number of pressures act in the 
same plane, and any point he  taken in that plane, and  per- 
pendiculars he drawn from it upon the directions of all these 
pressures, produced if necessary, and if the number of units 
in  each pressure he then multiplied by the number of units 
in  the corresponding perpendicular, then  this  product is called 
the mmnent of that pressure about the point from  which the 
perpendiculars are drawn, and these moments are said to he 
measured from that point. 

5. If three pressures be in equilibrium, and their momento  be 
taken about any  point in the plane  in which they act, then 
the sum of the msnnentr of thme two presswe8 which tend to 
turn the plane  in one direction about the point fran w&A 
the moments are measured, ir equal to ths merit of &t 
pressure which ten& to turn it in the c p p i t s  directias. 

y i p  ~~ V?, , I  , Let ' P,, P*, Pa, ~ acting in the directions 
P,O, PpO, P&, be any three pregsures in 

K- equilibrium. Take any point A ir>'t.he.pkne 
, . .,,. 

B 4  
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G .  If R be the resultant of P, and PS, then since R is 
equal to P, and acts in the same straight  line, m' IL=m'p,, 
:. m' €',+m' P,=m' R. (8) 

Thesumof tile moments therefore, about  any  point, of two 
pressures, P, and P,, in  the same plane, which tend  to  turn 
it in the same direction about that point, is equal to  the 
moment of their  resultant  about that point. 

If they had tended to  turn it in opposite directions, then 
the difcrenec of their moments would have equalled the 
moment of their rasultant. For let R be  the  resultant of 
PI and Pa, which tend  to turn the plane in  opposite direc- 
tions about A, &c. Then  is R equal  to P,, and in the same 
straight line with it, therefore moment Ris  equal to moment P*. 



EQUALITY OF MOMENTS. 9 

But by equation (1) mt P1-mt P,=m' PS; :. m' P1-m'P, 
=mt It. 

Generally therefore, m' P, + mt P,= m' R ..... (2). tlu 
mment therefore of the resultant vf any two pressures in 
the .same plane is egual to the sum or diference of the 
moments of its components,  according as they  act to turn the 
plane  in the same direction about  the point f r o m  which the 
moments  are measured, or in opposite directions. 

7.Ifany numberofpressures in the  sameplane be in equilibrium, 
and any  point be taken,  in that plane,  from which their m- 
ments are measure4  theu the m m  of the moments  of  those 
pressures which tend to turn the plane in one direction 
about that  point is equad to  the  sum of the moments of those 
which tend to  turn it in  the opposite direction. 
Let P,, PS,  P8 . . . . .  P. he  any number of pressures 

e,> 3 ;a. 
*?. in the same plane which are in 

n . -  - : '+y  T" % ~.~ .... ,- equilibrium, and A any point in 
- 4- L .e< 

* ;/ 
the plane from which their moments 
are measured, then will the sum of 

the moments of those pressures which tend  to  turn  the plane 
in one direction about A equal the sum of the moments of 
those which tend to  turn it in  the opposite direction. 

Let R1 be  the  resultant of PI and Po, 
& . . . . . .  R, and Pa, 

. . . . . .  & and Pa, 
&c. . . . . . .  &C. 
R,,-l . . . . .  R., and P,,. 

Therefore by the last proposition, it being understood that 
the moments of those of the pressures P,, PS, which tend to 
turn the plane to the left of A, are to be taken negatively, we 
have 

m' RI = m' P, + m'Pn, 
mt = m' R, + m' Pa, 
m' mt & -k m' Par 

&c. = &c. &C. 

m' R,I= m'R,,,+ m* P,. 
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10 'VUE EQUALI'l'Y ( IF bIOJIDZTi. 

Adding  thesc  equations  together, and striking  out the 
terms common to  both sides, WC have 

n ~ ' K . , , ~ l = m ' P 1 + m ' ~ p + m '  P$+ . . . . . +m'P,, . . . (S), 

where R,<-, is  thc  resultant of all the prcssures P,, P,, . . . . . P",. 
But these pressurcs  are in equilibrium ; they have, there- 

fore,  no resultant. 
:. Rn-, = 0 :. m' R,,-, = 0, 

:. mt P, + m' P p  + m' P3 + . . . . . m' = 0. . . . (4). 

Now in this equation the moments of those pressures w l d ~  
tcnd to turn the  system to the left  hand arc  to be taken 
negativcly. Moreover, the sum of thc negative terms must 

could not cqual zero. It follows, therefore, that  the sum ofthe 
equal the  sum of the positive terms, otherwise the whole sum 

moments of those pressurcs which tend to turn the systcm to 
the  right  must  equal  the  sum of the moments of those which 
tend  to turn it to the left.  Therefore, &c. &c. 

8. If an?/ number of pressures a c t i q  i n  the snme plane be i ? ~  
epkiiibrirm, and they be im,agined to  be moved parallel to  
their existing directions, and all  applied t o  the same point, 
SO as all to  act zq~on that point in directions paralld to  
those in which they bej+e acted upon dzferent points, then 
w i l l  t L y  be in eguilibriwm ahont that point. 

For (see the preceding figurej thc pressure R,  a t  what- 
ever poilit in  its direction i t  be  conceived to be applied, may 
bc resolved at that  point  into two pressures parallel and 
q u a l  to P, and P,: similarly, may be resolved, at any 
point  in  its direction, into two  pressures  parallel and equal 
to RI and PS,  of which R, may be resolved into two, parallel 
and equal  to PI and P,, so that R, may be resolved at any 
point of its direction into  three pressures  parallel and equal 
to  PI, p,, PS: and in likc  manner, Ra may be resolved into 
t W O  ~xessures parallel aud equal to and P,, and therefore 
into four pressures  parallel and equal  to P,, I>%, P3, P.,, and 
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so of the  rest. Therefore R,, may at any point of its 
direction be resolved into n pressures parallel and  equal  to 
P,, P,, PS, . . . . . P,; if, therefore, n such pressures were 
applied to that point, they would just be held in equilibrium 
by a pressure equal  and opposite to R-,. But R,=O; 
these n pressures would, therefore, be  in equilibrium with 
one another if applied to this point. 

Now it is evident, that if being  thus applied to this point, 
they would  he in equilibrium, they would be in equilibrium 
if similarly applied to any  other point. Therefore, &c. 

THE POLYGON OF PRESSURES. 

9. The conditions of the equilibrium of any number of pres- 
Sura applied to a point. 

Let  OP,, OP,,  OP,, &c. represent in mag- 
nitudc and direction pressures PI, PS, &c. 
applied to  the same point 0. Complete the 

nparallelogram OP,AP,, and draw its diagonal 
OA ; then will OA represent  in  magnitude  and 

direction  the  resultant of P, and Pp. Complete the parallelo- 
gram OABP,, then will OB represent in magnitude and direc- 
tion the  resultant of OA and PS; but  OAis  the resultant of 
P, and P,; therefore OB is the  resultant of P,, Pp, P,; simi- 
larly,  if the parallelogram OBCP, he completed, its diagonal 
OC represents the  resultant of OB and P4, that is, of P,, Pp, 
Pa, Pq, and in  like  manner OD, the diagonal of the parallel- 
ogram OCDP,, represents the resultant of P,, Pp,  PS, PA, PS. 

Now let it he observed, that AP, is equal and parallel to 
OP;, AB  to OP3 BC to OP4, CD to OP,, so that PIA, AB, 
BC,  CD,  represent Pp, P,, P,, P,, respectively in magnitude, 
and are parallel to  their directions. Moreover OP, is in the 
direction of P, and  represents it  in magnitude, so. that the 
sides OP,, PIA, AB, BC, CD, of the polygon OP,ABCDO, 
rcprcscut the pressures P,, Pp, PS, Pa,  P,, respectively in 
magnitude, and are parallel to  their directions ; whilst the side 
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OD, which  completes that polygon, represents tilt, resultant 
of those  pressures in magnitude  and  direction. 

If,  therefore,  the  pressures P,, P?, P:j, I’+ P:, be in equi- 
librium, so that they have no  resultant,  then  the side OD of 
the polj-gon must vanish, and the point U coincide with 0. 
Thus  then if’ any  nun~bcr of pressures  be  applicd  to a point, 
and  lines be drawn  parallel  to  the  directions of thosc pres- 
sures, and  rcpresenting  thcm in magnitude, so as to form 
sides of a polygon  (care  bcing take11 to draw each line from 
the  point where it  unites  with  the precediug, folcurds the 
direction  in  which  the  corresponding  pressure  acts), then the 
linc  thus  dravn parallel to  thc  last  prcssurc and reprvsenting 
i t  in magnitude, will  pass through the point  from which the 
l>olygon  commenccd, a n d  mill just complete it if thc pressures 
be in  equilibrium;  and if thcy  bc u o t  in  equilibrium,  then 
this last line  will  not  cornpletc  the  polygon, and if a linc be 
drawn  completing  it,  that line will  represent  the  rcsultnnt uf 
all  the  pressures in magnitude  and  direction. 

This  principlc  is  that of‘ the POLYGON OF rnEssut<Es; it 
obtains  in  respect to pressures applied to tho same  point, 
whether  they be in  the  same  plane  or not. 

10. If nny number of pressures in the same plana hr. in eyui- 
l i b r i m ,  and each be resolved i n  directivns parallel to any 
two rectan,plar axes, then the m m  of all those ~euolued 
2Ire.”S”res, zchose tendcney is t o  cowk?nunicate motion iw Olke 

direction along pi111er nris ,  i s  s p a 1  to  the sum of those 
whose t endewy  i s  in the opposite direction. 

Let  the polygon of prcssures be formed  in  respect  to  any 
nunlbrr of pressures, P,, P,, P,, Pq, in  the  same  plane and in 

polygon be projected on any  straight  line A X  
! S;’ I .’ in  the  same  plane. Now it is evident, that 

polygon  which  form that side of the figure  which is nearest to 
Ax, is equal  to  the  sum of the projections of those  sides which 

1 ?Q 

,I cquilibrium  (Arts.8,9.),nnd let the  sidesof this 

j I / /  , : Y j  
: ~ ..~. ~ ; , ~ ~ ~ ~  ’ ~ ’ .~--. ’ ~ the  sum of the  projections of thosc sides of the 
.> - 
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form the opposite side of the  polygon: moreover, that  the 
former are those sides of the polygon which represent pressures 
tending to communicate motion from A towards x, or from 
left  to  right in respect to  the  line Ax ; and the  latter, those 
which tend to communicate motion in the opposite direction. 
Now  each projection is equal to the corresponding side of the 
polygon, multiplied by the cosine  of its inclination to Ax. The 
sum of all those sides of the polygon which represent pressures 
tending  to communicate motion from A towards x, multiplied 
each by the cosiue of its inclination to Az, is equal, therefore, 
t o  the sum of all  the sides representing pressures whose tend- 
ency is iu  the opposite direction, each being similarly mul- 
tiplied by the cosine of ita inclination to Ax. Now the sides 
of the polygon represent  the pressures in magnitude, and are 
inclilled at the same angles to Ax. Therefore each pres- 
sure being  multiplied by the cosine of its inclination to Ax, 
the sum of all these products  in  respect  to those which tend 
to communicate motion in one direction equals the sum 
similarly taken  in respect to those which tend to communi- 
cate motion in t h e  opposite direction; or, if  in taking this 
sum it  be understood that each term into which there  enters 
a pressure whose tendency is from A towards x, is to be 
taken positively, whilst each into which there  enters  a pres- 
sure which tends from x towards A is to be  taken nega- 
tively, then the sum of all these terms will equal zero ; that 
is, calling the inclinations of the directions of P,, PS, PS. . . P., 
t o  A=, a,, a*, as . . . . an respectively, 

P,cos.u,+P,cos.a,+P,cos,n,+ .... +P,coS.u~=0...(5), 

in which expression all those terms  are to  be  taken nega- 
tively which include pressures, whose tendency is from a 
towards A. 

This proposition being true in respect to any axis, & is 
true in  respect to another axis, to which the inclinations of 
the directions of the pressures are represented by p,, &, 6% . . . . . P,, so that, 

P, cos. 6,  + P p  cos P* + . . . . + P* cos. p,= 0. 
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Lct this second axis be at right angles to the  first : 
a then P I=  - - uI :. cos. PI =sin .  al, p,=- - x 2  :. cos. p 1  

=sin. a,, &c. z &c. 

:. P, ain. ul +P, sin. a , +  . , . . +P,, sin. a,,=O . . . . (6) ;  

those  terms  in  this  equation, involvirrg pressurcs mhich tend 
to commnnicatc motion in  one  direction,  in  respect to thc 
axis Ay being  takcn with thc psit i \-e sign, and tlrosc  which 
tend  in  the opposite direction  with the ncgative sign. 

If the pressurcs P,, P,, &c. be  each of thcm resolved 
into two others, one of whicb is parallel to  the  axis Ax, and 
the other  to  the axis Ay, i t  is evident that  the pressures 
thus resolred  parallel  to Ax, will be represented by PI cos 
P, cos. DL,, &C., and those resolved parallel to Ay, b) 
P, sin. a,, P, sin. a*, &c. Thus then it follows, that if 
any system of pressures  in  equilibrium be thus resolved 
parallel to two rectangular axes, the sum of those resolved 
pressurcs, whose tcndcncy is in onc direction along either 
axis, is equal  to  the sum of tl~ose whose tendency is in  the op- 
posite direction. 

lh i s  condition, and that of the cqnality of moments, are 
necessary to  the equilibriunl of any  numhcr of pressures  in 

librium. 
the same planc, and they  are  togcther s ~ , c i e n t  to  that q u i -  

7? 

2 2 

, l  

11.  To detern~ine th.e resultant of any w m h r  of pressures 
i n  Like same plane. I equilibrium. and have a rcsultant, then om 

all the pressures in magnitude,  and is parallel  to its direction 
(Art.9.).  Moreover i t  is evident, that in  this case the sum of 
the projections on Ax (Art. la.) of those  iines  which form one 
side of the polygon, will be deficicnt of the  sum of those of 
the lines which furnm the  other side of the polygon, by the 

7 If the pressures P, P, . . . . P,, hc not in 

%: i! ' &? sidc is wanting t o  complete the polyygouofpres- 
-- l..- bL-&...L ' 1 ~ .-.... ~ sures, and that side reprcscnts thc rcsultant of 
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projection of this last deficient side ; and therefore, that  the 
sum of the resolved pressures acting in one direction along 
the line Ax, will bc less than  the snln of the resolved pres- 
sures  in  the opposite direction, by the resolved part of the 
resultant along this line. Now if R represent  this  resultant, 
and 8 its inclination to Ax, then R cos. B is  the resolved part 
of R in the direction of Ax. Therefore the signs of the terms 
being understood as before,  we have 

R cos. 8=PI cos. al + Pe cos. a,+. . . .+P, COS. a,, . . (7). 

And reasoning similarly in  respect to the  axis Ay, we have 

R sin. B =P, sin. a, +Pq sin. % +. . . .+P, sin. a. . . . (8). 

Squaring  these equations and  adding them, and observing 
tl1atR'sin." $+R1 cos2 b=R'(sin." B+cos.' 8)=RZ,wehave 

R'=(ZP sin. a)"+(ZP cos. a)" . . . . . . . . (g), 

where ZP sin. OL is taken  to  reprcscnt the sum PI sin. a,+ 
P, sin. a,+Ps sin. as+ &C., and SP cos. a to  represent  the 
sum PI cos. a, + Pn cos. up + P3 cos. a3 + &c. 

Dividing equation (8) by equation (7), 

tan. B =  . . . . . . . . (10). S' sin. a 
ZP cos. U 

Thus then by equation (9) the magnitude of the resultant 
R is known, and  by equotion (10) its inclination B to the axis 
Ax is known. I n  order completely to  determine it, we have 
yet  to find the perpendicular distance at which it acts from 
the given point A. For this we must have recourse to the 
condition of the equality of moments (Art. 7.). 

If the sum of the moments of those of the pressures, P,, 
PS . . . . P, which tend  to  turn  the system in one direc- 
tion about A, do not  equal  the sum of the moments of those 
which tend  to turn it the other way, then a pressure being 
applied to the system, equal and opposite to the resultant R, 
will bring  about the equality of these two sums, so that the 
moment of R must be equal to the difference nf these sums. 
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Thus  then by equations (g), (IO), (IO), the  magnitude of 
the  resnltant R, its  inclination  to the given axis ,Ax, and the 
pcrpendicular  distance uf its  direction frnm thc  point A, are 
known ; and  thns  the resultant pressure is completely deter- 
mined in  magnitude  and  direction. 



OF THREE PREYSUHES. 17 

their  resultant, is represented in magnitude and direction 
by AR. 

13. Three  pressures, PI, P,, P,, being in equilibrium, it is 
repuired to  determine  the  third P, in t e r n  of the  other 
tu% and  their  inclination to  one another. 

Let API and AP, represent the pressures P, and PS in 
magnitude and direction, and let  the inclination 
PIAP2 of PI to PS he represented by Com- 

,,A plete the parallelogram AP,RP,, and draw its 
diagonal AR. Then daes AR represent the re- 

sultant of P, and P, in  magnitude  and direction. But this 
resultant is in equilibrium with P,, since P, and Pp are in 
equilibrium with P,. I t  acts, therefore, in  the same straight 
line  with PS, but in an opposite direction, and is  equal to it. 
Since then AR represents this  resultant  in  magnitude and 
dircction, thercfore RA represents Pa in magnitude and 
rlirec.tion. 

Now, AR1=AP,’-22RP1 . P,R.  cos. AP,R+PIR2; 
also,APlR=r-P1APp=n-,BP, P,R=AP*, and AP,, AP,, 
Alt, represent P,, P,, Pa, in magnitude, 

<Y 12 
e’ 

~~ _ _  __ 

:. P,’=P,?-ZP,P, cos. (“-lo*)$ P*?. 

.e. P,=C/P,=+ZP~P, COS. le,-tp**. . . . . (IS). 
Now cos. (~--,9*)=-cos.~S~, . ~ . P 3 a = P ~ ~ + ~ P , P p c o a ~ 8 ~ + P ~ ~ ,  

14. If three  pressures, P,,  PS, P,, be in equifibriun, any two 
of then  are  to one another inversely ab the t i ~ a  of their 
inclinotwm to the  third. 

Let  the inclination of PI to P, be repraaented by and 

Now P1AR=w-P,APs=r-~8*, :. sip. PIAR=sin, ,es; 
that of Po to PS by *d3 

P&A=P*AR=r- P~Ak’s=~--pBs -*- tin. P I R A = k  o$. 
C 
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Also, 

That is, P, is to P, inversely, as the sine of the inclin- 
ation of P, to  P:i is to the  sine of the inclination ofP4 to  P,. 
Therefore, &c. &c. [Q. E. 11.1 
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Therefore multiplying by Am,, __ 
Aml.P,+Am,.P4=AG~.P*+~.PS+~.P5. 

Therefore, &c. [Q.E.D.] 

16. To $nd the resultant of  any umber of paruUe2 presswes 
in the same plune. 

It is evident that if a pressure equal and opposite to  the 
resultant were added to  the system, the whole  would  he in 
equilibrium. And being in equilibrium it has been shown 
(Art. H.), that if the pressures were all moved from their 
present  points of application, so as to remain parallel to their 

such as would he in equilibrium about that point. But being 
existiug directions, and applied to the same point, they are 

thus moved, these parallel pressures would all have their 
directions in the same straight line. Acting therefore all  in 
the same straight line, and being in equilibrium, the sum of 
those pressures whose tendency is in one direction along that 
line must equal the sum of those whose tendency is  in  the 
opposite direction. Now one of these sums includes the result- 
ant R. It is evident then that before R was introduced the two 
sums must have  been unequal, and that R equals the exces of 
the greater sum over the less ; and generally, that if ZP repre- 
sent  the sum of any number of parallel pressures, those whose 
tendency is in one direction being taken  with the positive 
sign, and those whose tendency is in  the opposite direction, 
with the negative sip ; then 

R = Z P . .  . . . . (15). 

the sign of R indicating whether it act in the direction of 
those pressures which are  taken positively, or those which m 
taken negatively. 

Moreover since these pressures, including R, are in e+- 
lihrium, therefore the sum of the rmmnentr about any point, .of 

c 2  
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those whose tendency  is to  cumn~unicate  motion  in one 
direction, must cqnal the sun1 of t!lc momcnts of the rcst,- 
these moments  being  measured on nny linc, ns AC; but one 

sums includes  the nronrrnt. of R ; these 
two sums must  tlrrcfurc, before the introduc- 

have been  unequal,  and t~ re  moment 
of R must he equal  to  the P . T ' C ~ ~ S S  of the  greater 

sum over the less, so that,  representing  the  sum of the mo- 
ments of  the  lxusures (R not  being  includcd) by 3 Int p, 
those whose tendency is tu  communicate  motion in one direc- 
tion, having tile positive sign,  and the rest  the  negative ; and 
rcpresenting try S the distance from A, ~ncasured along the 
line AC, at  wl~ich R intersccts t l l ; t t  !ine, we have, since xR, is 
the moment of R, .r.lL=Z m t  P, where  the  sign o f  ,xR in- 
dicates  the  dircction i n  whictl It tcnds  to  turn  the system 
about A, but H=ZP, 

Equations (15) and (16) detcrrnine  cou~plctoly  the mag- 
nitude  and  the direction of the resultant uf R system of parallel 
pressures  in  the  same  plan?, 

17. To determine the resdtant of any n ~ d ~ p y  of pral lc lpres-  
S2kres not in the same plane. 

Let P, and Pp be the points of application of any two of 
..- these  pressures,  and  let thc pressures themselves 

be represeuted lry P, and Pp. Also let their 
, f l  ~''1 - resultant El intersect  the  line  joining  the points 

p,, p,, to intersect  any  plane ghen in pusitio11, in  the  point L. 
Through  the  points PI, l', and R,, draw P,M,, P,M,, and 
R ~ N I  perpendicularly tu this plane : these  lines will be  in the 
same  plane  with  one  arlother  and  with PIL; let the inter- 
section of this  last  mentioned  plane  with  the first be L% 

5.2- 

/'I r P, and Pp in  the  point R ,  ; produce  the line ~ 
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then will PIMI, P,M,, and KIN, be perpendiculars to LM, ; 
moreover by the  last proposition, 

P, LC+ P, m=R, ji;ill ; 

Let  now the  resultant, R,, of R, and PS intersect the line 

and similarly let  the resultant, h, of F& and 
P4 intersect the  line joining the points and 
P4 in  the point R3, and so on : then by the 

r:,”’I 4 I j ! joining  the points’R, and PS in  the  point h, 
l WL p last equation, 

~ 

P, . l’,M, + P, , l”,M,=Rl RINI. 
Similarly, R, . RINl + P3 , P3M3=% hN, ,  

Rg . KN: + P4 . T K = R S  m,, 
&c. + &c. = &c. 

R,. Rn-gNne+ P,. P,M,=R,,, .-FL-lNn-~* 
Adding these equations, and striking out terms common to 

- ~. 

__ __ 

both sides, 
-~ -_ 

PI . P,M,+P, P,&+. . .+Pn. P,,Mn=R,, . R,+,N,, (17). 
~~ 

NOW, RI=PI+Pg, %=R1+Ps=PI+Pq+Ps, 
Rs=R,+P,=P,+P*+P,+P,, &e.=&c. 

Rn-,=P,+P,+P*+. . . . .+P*; 
:. R,,N,, . P,+Pp+Ps+&c.+P,=PI .m +Pn.  

~ ~ 

__ 
P,%+. . . . .+P, .  P,,&; 

-~ __ 
~ P, P1M, c PS PeMn + . . .+P. . P,M 

.S. R,-,N,, =- 
P,+Pp+P*+. . .+P, ---a (18), 

in which expression those of the parallel pressures P,, P* &e. 
which tend in  one direction, are to be taken positively, whilrt 

C S  

. .  . ,  
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those which tcnd  in  the  opposite  direction  are  to  be taken 
negatkely. 

The  line Rlt-lX,t-, represents  thc  perpendicular distance 
from the given p lmc of a point  through which the resultant 
of all the  pressures P,, FQ . . . . P,,, passes. I n  tllc same 
manner may be determined the  distauce of this  point from 
any other planc. Le t  this distance he  thus  determined in 
respect  to  tllrec given plancs at  right a11g1es to  one  another. 
Its  actual pusition in space will theu be known. Thus then 
wt. shall know a point  through which the  resultant of all the 
pressures  passes, alsu the direction of that  rcsultant, for i t  is 
parallel to  the common  direction of all tile  prcssures, and v e  
shall  know  its  amount, for i t  is equal to the sum of all the 
pressure  with  their proper signs. Thus the11 the resultant 
pressure will be completely  known. The point R,,-, is called 
the CENTRE OF PARALLEL PRESSURES. 

19. It is evident,  from  equation (17), that  the distance 
h - 1  N-1 of the centre of pressure of any  number of pa- 
rallel pressures from a.give11  plane,  is  independent of the 
directionr of these  parallel  pressures,  and  is  dependent wholly 
up011 their  amounts  and the perpendicular distances PIMI, 
P&, &c. of their  points of application from the given  plane. 

SO that  if  the directions of the  pressures  were changed, 
provided  that  their  amounts  and  points of application re- 
mained the same, their centre of pressure, determined  as 
above, would remain  unchanged;  that is, the resultant, 
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although it would alter  its direction with the directions of the 
component pressures,  would, nevertheless, always pass through 
the same point. 

The weights of any number of different bodies or different 
parts of the same body, constitute a system of parallel pres- 
sures;  the direction, therefore, through  this system of the 
resultant weight may be  determined by the preceding pro- 
position ; their  centre of pressure is  their centre of granrity. 

THE CENTRE OF GRAVITY. 

20. The  resultant of the weights of any number of bodies 
or part8 of the same  body united  into a system of dnoariabb 
form passes through the same point  in it, into  whatever 
position it may be turned. 

For the effect of turning it  into  different positions is to 
cause the directions of the weiyhts of its  parts to traverse 
the heavy  body or system in different directions, a t  one time 
lengthwise for instance, at another across, at another ob- 
liquely; and the effect upon the direction of the  resultant 
weight through  the body, produced by thus  turning it into 
differeut positions, and  thereby changing the directions in 
which the weights of its component parts traverse its mass, 
is manifestly the same as would  be produced, ifwithout alter- 
ing the position of the body, the direction of gravity could be 
changed so as, for instance, to  make it a t  one time traverse 
that body longitudinally, at another obliquely, at a third 
transversely. But by Article 19. this last mentioned cbange, 
altering the common direction of the parallel pressures 
through the body without  altering  their  amounts or their 
points of application, would not  alter the position of their 
centre of pressure in the body; therefore, neither would 
the$rst mentioned change. Whence it follows that the 
centre of pre8m-e of the weights of the  parts of a heavy 
body, or of a system of invariable form,  does not alter ita 
position in the body, whatever may be the position into which 

c 4  

i 
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the body is turned ; or in  other words, tllnt the resultant of 
the weights of its parts passes always through  the same point 
in  the body  or  systcln  in vhaterer position it Inay be placed. 

This point,  through which the  resultant of the weighu of 
the  parts of a body, or system of bodies of invariable form, 
passes, iu whatever position it is  placed; or, if it  be a body 
or syslcm of variable form, thr~rugh mllicll thc resultant weald 
pass, in whatever position it were placed, if it became rigid 
or invariable in  its form, is called the CESTRE or GILAVITY. 
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22. T o  deternine  the  position of the  centre of gravity of two 
weights, P, and P%, forming p a r t  of a 7igid system. 

Let i t  be  representcd by G. Then since the  resultant of 
p P, and P% passes through G, we have by  equation 

(l&), taking P, as  the  point from which the mo- 
I 

ments  are measured, 

whence  the position of G is known. 
I _  

23. I t  is required to  delemine the centre of gravity of three 
weights P,, P,, Pa, not in the same straight  line,  and form- 
ing part of a rigid  system. 

Find  the centre of gravity G,, of P, and P,, as in  the last 
FT proposition.  Suppose the weights P, and PS to 

bc  collected in G,, and find as before the common 
I centre of gravity GP of this  weight P,+Pe, so 
’I collected in G,, and  the  third weight PS. It is 

evident that this point G, is the  centre of gravity  required. 

5- i;T 

then it follows hy the principle of the equality of moments (Art.15.). 
that P,+]’, . P,R,=P,. PT9, so that for every aueh inclination of the 
pressures to P, l’., the line P,R, is of the same length, and the 
the point R, therefore the same point ; therefore, the line P8R, is always 
thz same line in the  body; and R, which equals P,+P, is always the 
same  pressure, as also is Pa, and these presaures always remain parallel, 
therefore, for the same reason as before, H, is always the sume point in 
the body in whatever position it may  he turned, and so of R., R, . . . . . 
and R.,. That is, in every position of the body, the resultant of the 
weighta of  its parts passes through the sume point R in it. Since the 
resultant of the weights of the  parts of a body always -S through its 
centre of gravity, it is evident, that a single force applied a t  that point 
equal and opposite to this resultant, that is, equal in   mount  to the whole 
weight of  the body, and in a direction vertically upwards, would m every 
position of the body suustain it. This property of the centre of gravity. e. 
that  it is B poiot in  the body where P +k force would mpport it, is 
romecimea taken 88 the defioition of iE 

_ _  
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25. THE CENTRE OF GRAVITY OF A TRIANGLE. 

Let the sides AB and BC of the triangular lamina ABC 
be bisected in E and D, and the lines CE and AD 
drawn to  the opposite angles, then is the intersection 
G of these lines the  centre of gravity of the triangle : 
for the triangle may be supposed to  be made 'UP 
of exceedingly narrow TectanPIaT strips 01 baods, 1:. 1 .  

3 



OF A TRIANGLE. 27 

parallel to BC, each of which will be bisected by the  line AD; 
for by similar triangles PR : DB : : AR : AD :: RQ : DC, 
therefore, alternando, PR : R&::DB : DC; but DB=DC; 
therefore PR=R&. 

Therefore each of the elementary bands, or rectangles pa- 
rallel to BC, which compose the  triangle ABC, would sepa- 
rately balance  on the line AD ; therefore all of them  joined 
together would balance on the line AD, therefore the  centre 
of gravity of the  triangle is in AD. 
In the same manner it may be shown that  the centre of 

gravity of the  triangle is in the line CE ; therefore the centre 
of gravity is  at  the intersection G of these lines. 

Now DG=) DA: for imagine the triangle to be  without 
weight, and three  equal weights to be placed at the angles 
A, B, and C, then it is evident that these three weights will 
balance upon AD; for AD being  supported, the weight A 
will be supported, since it is in that line ; moreover, B and 
C will  be supported since they are equidistant from that 
line. 

Since, then, all three of the weights will balance upon AD, 
their  centre of gravity is in AD. In like manner it may be 
shown that  the  centre of gravity of all three weights is in CE; 
therefore i t  is in G, and coincides with  the  centre of gravity 
of the triangle. 

NOW, suppose the weights B and C to be collected in their 
centre of gravity D, and suppose each weight to be  repre- 
sented in amount by A, a weight equal to 2A will then be 
collected in D, and a weight equal to A at A, and the  centre of 
gravity of these is in G ;  therefore DA x A=DG x (2A + A), 

:. DA=3 DG,.or D G = j  DA. [Q.E.D.] 

26. THE CENTRE OP GRAVITY OF THE PYBAMID. 

I& ABC be  a pyramid, and suppose i t   to  be 
made up of elemen- laminap bcd, parallel to 
the base BCD. Take G, the  centre of gravity 
of the base BCD, and. join AG ; then A.. :. 

will pass through the centre of gravity g of the h t m h  
. .  , .  . .  
.. :i . . . ~ .  
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28 T H E  CENTRE O P  G R l V l T Y  

bcd*, therefore each of the  lamin= will scparatrly balance on 
the straight,  line AG; therefore the l a n ~ i n ~  when comhined 
will  balance upon this  liue ; therefore the whole  figure will 
balance on AG, and  the  centre of gravity of the whole is in 
AG. In like manner if the  centre of gravity H of the face ABD 
be  taken,  and CH be  joined,  then  it may be  shown  that the 
centre of gravity of the whole is  in C H ;  therefore  the lines 
AG and CH intersect,  and  the  centrc of gravity is at their 
iuterscction K. 

Now GK is  one-fourth of GA ; for  suppose  equal weights 
to he placed at the anglcs h, B, C, and D of the p y r a d  
(the  pyramid itself being  imagined  without weight), then 
will these  four  weights  balance  upon the  line AG, for one of 
them A is in that line, and  the lirle passes through  the centre 
of gravity G of the  other  three. 

Since  then  the  equal  weights A, B, C, and D balance upon 
the  line AG, their centre of gravity  is in AG; in  the S ~ I U ~  

manuer it may  be shown that  the  ceutre of gravity of  the 
four weights is in CH, therefore it is in K, and coincides with 
the centre of gravity of thc pyramid. 

NOW let  the  number of units  in  each  weight  he represented 
by A, and let the  three  weights B, C, and D be  supposed ( 0  

be collected in their  centre of gravity C ; ;  the four weights 
will then he reduced  to two, viz. SA at G, and A at A, 
whose common centre of gravity  is K, 

:. G K x . ~ A + A = G A ~ A ,  
:. 4'GK=GA or GK=$ GA. [Q.E.D.] 

27. The centre of gravity of a pyramid with a polygonal base 
i s  situuted at a vertical  height from the base, epual to  
f owth  the whole height of the pyramid. 
For any such  pyramid ABCDEP may  be  supposed  to be 

l~ysimilartrian~~~~~~:~~::dm:m~,but~i~=~~;thereforedn=~"c. I 
* For produce the plane ABR to intersect the plane ADC in AM, theQ 

gm=+ h. Since  then dm=;dc and gm=.+ bm, therefore g is the Centre 
Also by similar triangles OM : BM::gm : bm, but GN=$BM ; therefore ; 

of gravity of the trianple bdc. 
? 

9 :  
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made up of triangular pyramids ABCF, ACDF, 
and ADEF, whose centres of gravity G, H, and 
K, are  situated in lines AL, AM, and AN, drawn 
to the centres of gravity L, M, and N of their 

U 0 bases; LG being one fourth of LA, MH one 
fourth of MA, and N K  one foiirth pf NA. The points G, 
H, and K, are therefore in a plane parallel to  the base of the 
pyramid, and wbose vertical distance from the base equals 
one fourth  the vertical height of the pyramid. 

Since then  the  centres of granty G, H, and K of the ele- 
mentary triangular pyramids which compose the whole  poly- 
gonal pyramid are  in this plane, therefore the  centre of gravity 
of the whole is in  this plane, i.e. the centre of gravity of the 
whole polygonal pyramid is  situated at  a vertical height from 
the base, equal to one fourth the vertical height of the whole 
pyramid, or at a vertical depth from the  vertex, equal to  three 
fourths of the whole.  Now the above proposition is  true, 
whatever be the number of the sides of the polygonal base, 
and therefore if they be infinite in  number; and therefore it 
is  true of the cone,  which  may  be considered a pyramid having 
a polygonal base, of an infinite number of sides; and it is 
true whether  the cone or pyvarnid be an oblipe or a right 
cone or pyramid. 

28. If a body be of a prismatic form, and symmetrical 
about a certain plane, then  ita whole weight may be sup- 
posed to be collected in  the surface of that plane, apd upi- 

ACBEFD represent such a prismatic 
....... '+6 body, and abc a plane about which it m 

p symmetrical: take m, an element of uni- 
form thickness whose  sides are parallel to the' sides of the ' 
prism, and which is terminated hy the hea .,ABC and 
DFE of the prism; it in evident '&et dtta .element 'm 
will be bisected hy the plane abc, aad that its centxi: of 
gravity will therefore lie  in  that plane, ' 8 0  that ita wWb 
weight may be supposed collected in that plane; and this 
beiig-true of evny other element, md:-&;:w . .: 

p fm2y distributed  through it. For let 
U,+ -$\ 
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30 TllE CENTRE OF GR.AVI1'Y. 

elements  being  equal; it follows that  the whole  weight of the 
body may be supposed  to be collected i / ~  and uniformly dis- 
tributed through that plane. It is in this  sense  only  that we 
can  speak  with accuracy of the  weight  and  the  centre of gra- 
vity of a plane, whereas a plane  being a surfax only,  and hav- 
ing  no thickness,  can have no  weight,  and  therefore no  centre of 
gravity. In  like  manner  when we speak of the  centre ofgravity 
of a curved  surface,  we rnean the  centre of gravity of a body, 
the weights of all whose pnrts  may  be  supposed  to be Col- 
lected  and  uniformly  distributed  throughout  that c u r d  
surface. I t  is  evident that  this condition is approached to 
whenever the body  being  hollow, its  material  is exceedingly 
thin. Its whole  weight  may  then  bc conceived  to be col- 
lected  in a  surface  equidistant  from  its two external surfaces 
I n  like manner am exceedingly  thin uniform  curved  rod may 
be imagined to have its  weight  collected  uniformly in a line 
passing  along the  centre of its thickness, and  in this sen@ 
we  may  speak of the  centre of gravity of a line, aIthou& 
a line  having no breadth or thickness  can have  no weight, 
and therefore no  centre of gravity. 

29. THE CENTRE OF GRAVITY OF A TRIPEZOID. 

Let AD and BC be the  parallel  sides of the trapezoid, of 
which A D  is the  less  Let AD be repre 
sented by a, BC by b, and  the perpen&- 
cular  distance NL of the  two sides bY 

be the  intersection of the diagonals of the parallelogram 
ABED, then  will GI be  the  centre of gravity of tha t   pad -  
lelogram. Bisect CE in L, join DL, and take DG,=$ DL 
then will G, he  the  centre of gravity of t,he  triangle DEC. 
Draw GIMl and G,M, perpendiculars to AD; then since 
AGI=& B E ,  therefore GIMl=& FE=+ h. And since 
DGg=+ DL, therefore G,M,=+ NL=+ h. Suppose  the. 
whole  parallelogram to be  collected in its  centre of gravity 
G I ,  and the whole triangle  in its centre of gravity G*. Let ,, 

h. Draw DE parallel  to AB. Let GI 
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G be the centre of gravity of the whole trapezoid, and draw 
G M  perpendicular to AD. Then would the whole  be sup 
ported by a single force equal to  the weight of the trapezoid 
acting upwards at  G. Therefore (Art. li'.), 
- ~ _ _ ~ _ _ -  
MG . ABCD=G,M, ..ABED+G& . CED 

Now, ABCD=& h (a+b) ,  ABED=ha, 
CED=& h (a-a), G,M1=& h G b M p = #  h, 

:. MG . g h ( u t a ) = +  h . ha+% h . 6 h(6-a) ,  
-. 

:, MG (a+b)=ha+Q h (b-a)=+ h (U+%), 

:. MG=+ h . a+2b  . . . . , (19). a + b  

30. THE CENTRE OF GRAVITY oF 'ANY QUADRILATERAL 
FIGURE. 

Draw the diagonals AC and BD of any quadrilateral figure 
ABCD, and let them intersect in E, 
and from the greater of the two par& 
BE and DE, of either diagonal BD set 
off a part B F  equal to  the less part. 

B Bisect the other diagonal AC in H, join' 
HF and take HG equal to one third of HP; then will G be 
the  centre of gravity of the whole  figure. 

For if not, let g be  the centre of gravity, join HB and HD 
and  take HG,=+ HB and HG,=$ HD, then will Q, and 
Go be  the centres of gravity of the  triangle ABC and ADC 
respectively (Art. 25.). Suppose  these triangles to be col- 
lected in their centres of gravity G,, G*; it is evident that 
the centre of gravityg, of the whole  figure, will be in the 
straight  line  joining  the  points G,, Go : let  this line intersect 
AC in K ;  then since a  pressure  equal to tbe weight of the 
whole figure acting upwards at. g, will be in equilibrium with 
the weights of the triangles collected in G, and GB we have, 
by the principle of the equality of moments. (Art. 15.) : 

G .  .xBm=q. ABC-m*. m. , . 

Now since HG,=+ HB, and HQB=& HD, therefore G,@& 
~. 

. .  
. .  
. .. .. , .  . .  
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parallel to  DB, therefore KG,=$ BE,  and KG,=+ DE. 
Now  let  the  angle AEI)=HEC=t. Therefore  the perpen- 
dicular from B upon AC=BE sin. I ,  and  that from D = D E  
sin. I ,  therefore  area of triangle ABC=t, AC . B E  sin. I, 

and  area of triangle ADC=$ AC . TjZ sin. I ,  therefore area 
of quadrilateral ABCD =i E . SE sin. L + 6 AC . DE 
sin. I =$ (BE +DE) sin. I .  Substituting  these values in  
the  preceding  equation, 

. 4 ( B E + D E )  Ac sin. I = +  B E  . A(: . BE sin. I -  

~~- - 

. 
f DIT. Ac . DE sin. I ,  

:. ~K7 . (HE + DE)=+ @ET-r@j, 
-~ 

. .  . K ~ = ~ ~ B E ’ ~ _ L ) E ” = ~ ( ~ ~ - D D F , ) = ; ~ B E - H ~ ) = $ F E .  
HE +DE 

But  since HG=+HF, :. KG=g FE, :. Kgig=KG; that 
is, the  true  centre of gravity g coiccides  with  the  point ‘3. 
Therefore, &c. [Q.E.D.] 

‘31. In  the  examples  hitherto given, the  centre of pressure 
of a system of wcights, or their  centre of gravity,  has been 
determined  by  methods which are indirect as compared with 
the direct and  general  method  indicated  in  Article 17. That 
method supposes,  however, a detcrmination of the sum of the 
moments of the weights of all the various elements of the body 
in  respect to  three given planes. Now  in a cowtimrous body 
these  elements  are infinite in  number,  each  being infinitely 
small ; this determination supposes,  therefore, the summation 
of an  inhi te   number  of infinitely  small  quantities,  and re- 
quires an application of the  principles of the  integral calculus. 

Let AM be taken to represent  any  small  element of the 
volume M of a continuous ‘body, and r its perpendicular 
distance  from a given plane. Then will zpAM represent the 
moment of the weight of this  element  about  that plane, p re- 
presenting  the  weight of each unit of the volume M. Let 
&zAM represent  the  sum of all  such  moments,  taken in re- 
spect  to  all  the  small elements, such as AM, which  make UP 
the volume of the body. Then if G, represent  the distance 
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of the centre of gravity of the body from the given plane; 
since Q x A M  represents  the sum of the m e &  of a system 
of parallel pressures about that plane, pM the sum of those 
pressures, and G, the distance of their  centre of pressure 
from the plane (Art. 19.), it follows by equation (18.) tht 

Now i t  is proved in the theory of the integral calculus*, 
that a sum, such as is represented by the above  expreesion 
XzAM, whose terms  are infinite in number, and each the pro- 
duct of a finite quantity z, and an in6ninitely  smaU quantity 
AM, and in which M ia, as in this case, a function of o (and 
therefore .v a function of M), is equal to the definite integral 

$&I. Therefore, generally, 
i s  

@M 

j& 

G, =LM- 

Similarly, G 9- -L- M 
. . . . . (91). 

In the two last of which equations y and z are taken to r e  
present, respectively, the distances of the element AM of the 
body  from two other planes, as z representa ita distance from 

* Poisson, S o d  de l%cole Polpechnique, 18me cahier, p. 300- 
or Art.4. in the Treatise m Definite Integrsle in the Encyclopdh 
Metropolitana by tht.auk of this work. &e Appendix, note A 
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R4 THE CENL'RE OF FRAYITS 

the first plane ; and G1 and GB to represent the distances of  its 
centre of gravity from those planes. The distances GI, GB 
G3, of the  centre of gravity from tlucc diffcrcnt planes being 
thus known, its actual position in space is fully determined. 
These  three planes are usually hken  at  right angles to one 
anothcr,  and  are  then called rectangular  co-ordinate planes, 
and their common intersections  rectangular co-ordinate 
axes. 

If the  centre of gravity of the body be  known  to  lie in a 
certain plane, and one of the co-ordinate planes spoken of 
above, as for instance that from which C;, is measured, be 
taken  to coincide with  this  plane in  which the  centre of gravity 
is known to lie, then G,=O, and  the  position of the centre 
of gravity is determined by the two first only of the above 
three equations. This case occurs when the body, whose 
centre of gravity is to  be determined, is symmetrical about a 
certain plane, since  then its centre of gravity evidently lies in 
its plane of symmetry. If  the  centre of gravity o f  the body 
be known to lie in a certain line, and two of the co-ordinate 
planes, those for instance from which GI and Gs arc measured, 
be  taken SO as to intersect one another in that line, then the 
centre of gravity will be i n  both those planes; therefore 
G*=O and G,=O, and  its position is determined by  the first 
of the preceding equations alone. This case when 
the body is symmetrical about a given  line ; its centre of 
gravity is then manifestly in  that line. 

*32. THE CENTRE OF GRAVITY OF A CURVED LINE WHICH 

LIES  WHOLLY  IN  THE SAME PLANE. 

Taking M to represent the  length S of such a line, W 
have, by equations (SI), 

EXAMPLE.- Let it be required to detemina the centre O j  
gravily of a circular arc EF. 



OF A CURVED  LINE, a5 

The centre of pa&y of such an arc ia evidently in .the 
radius CA, which  bisects i t ;  since the arc 

Y ' ,  is symmetrical about that radius. Take 
...... C.~<~ ~ 

1 , T 
....... JA . 3 a plane Cy perpendicular to this radius, and 

passing through the centre, to measure the 
moments from. Let x represent the dis- 

tance PM of any  point P in this arc from this  plane ; also let 
8 represent the arc PA, and S the =c EAF, a the radius CA, 
and C the chord EF. 

S 

:. x=PM=CTcos. CPM=TP cos. ACP=a cos. -; 
I 

a 

the integral being taken between the limits $3 and -as, 
because  these are the values of S which correspond to the 
extreme points F and E of the arc. 

S 
Now, 2asin.t(--) =chordofEAF=C, .:.JdS=aC, 

... G , = 7  ...... (23). a C  

The distance of the centre of gravity of a circular arc from 
the centre of the  circle is therefore a fourth pmportiond to 
the length of the arc, the length of the chord, and the radius 
of the arc. 

'53. TEE CENTRE OF QBAVITY OF A CUR-LINEAR  EA . . .  
. . . .  

WliXC€i LlES WEOLLY IN TEE S A m  
.. 

. . .  

. . .  . . .  .... 
. . .  ..... . . .  . 
.~ 

Let BAC ,represent such an area -If  E and 9 repre- . : ..a ... 

of any point P 'in  the curve AB kom plan- ..... .. 

given area and 4*, one another, M ..... ,- .......... :".. :_ ........ ~ ;<. 

... ... .~ 
sent the Perpendicd~' :PN,'and PBd ~ 

. .  .: :,I :. '* 
>.l 

. .F 

.... ... ... 
- ... ..... 
., 

AC and AD, perpendicular to the plane ef tbe . . . . . .   . . . . . .  . . .  . . .  . . .  . . . .  .... ........ 
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36 TIIF. CENTRE OF FILAYITT 

sent  the  area PAM, then, considering this  area to be made 
up of rectangles parallel to PM, the width of each of which 
is  represented by the excecdingly small quantity Ax, the 
volume AM of each such  rectangle will he  represented by 
yAz, and its  moment  about AD by pxyAz. 

/,*: 
J xyax 

Therefore by equation (ZO), G , - - fxyAx- - ~ ~ -  - . . 
M (24). 

axis is AC. 
EXAMPLE.-SuppOSe the curve APR to  be aparabula, 

By the equation to  the parabola ya=4U, i f a  
be the distance of the focus from the vertex. 
Moreover, the limits  between which the integra 1 
is to  he taken are 0 and xl and 0 and y,, since at 
A, x=O, y=O, and at  C, x=x1,  y=yl, 

3 
8 therefore G --g. 
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If, then, G be  the  centre of gravity of the parabolic area 
3 3 
5 8 ACB,tbenAH=-AC,  HG=-CB. 

*3P. THE CENTRE OF GRAVITY OF A SURFACE OF 

REVOLUTION. 

Any surface of revolution BAC is evidently symmetrical 
about its axis of revolution AD, its centre of 

-2' ments  be measured from a plane p d n g  through 
A and perpendicular to the axis AD, and let 
x and y be co-ordinates of any  point P in  the 

generating curve APB of the surface, and S the length of 
the curve AP. Then M hcing taken to represent the area 
of the surface, and  being supposed to he  made up of bauds 
parallel to PQ, thc areit AM of each such band ix rc- 
presented (see p. 44.) * by %yAs, and its moment by 
2wpzyAs, 

(J-J . gravity is therefore in that axis. Let  the mo- 

.2r .p' xyds :. G,= 2nXxyAs - S* 
M M 

- . . . . . . (26). 

EXAMPLE.-TO determine the centre of graoity of the wr- 
face of any zone or segment of a There. 

Let B,AC, represent the surface of a sphere, 
whose centre is D, and whose radius DP is repre- 
sented by a, and  the arc AP by 8. Then x=DM= 

DP cos. PDM=a cos.,, y=PM<DP sin. PDM 
8 

8 X 8 . 28 
= a  sin.- :. %y=2a*sin.-coa -=agsm.-. a' a a a 
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)I about  its a x i s  of revolution AD, its centre of 
gravity  is therefore in  that  line; and taking a 

that  axis as the plane from  which the moments 
are measured, we have only to determine the 

distance AG of the  centre of gravity, from that plane. 
Now,  if x and y represent the co-ordinates of any point P 

in the generating curve, and M the volume of the portion 

cylindrical lamince parallel to P&, the thickness of each of 
PA& of this solid, then, conceiving it to be  made up of 

which is Ax, the volume of each is represented by mfAx, 
and its moment by wpy*Ax. 

plane passing through A and perpendicular to 

EXAMPLE.-TO determine the centre of gravity of any solid 
segment of a sphere. 

Let BIACl represent'any such segment of a sphere 
whose centre is D and ita radius a. Let x and y 

P, x being measured from A ; then by the equation 
represent the co-ordinates AM and MP of any point 

c to the circle ya=2m-x2, 

:. GI= gm, - *.'l Sa-3x 
-9.1 
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36. The ceutrc oj'grncity of t h  srctnr circle. 

Let CAB represent such a  sector ; conceire  thc arc ADB 
to be a polygon of an infinite number of sides and 

e+< ... ~i' lines, to be drawn from all the angles of the P* 
lygon to the  centre C of the circle, these wiu 
dividc the sector into as nmny triangles. Now the 

centre of gravity of each triangle will be a t  a distancc from 
C equal tu the line drawn from the veytex C of that ti- 
angle  to  the biscetion of its base, that j s  equal to Q the radius 
of the circle, so that  thc centres of gravity of all the triangles 
will lie in a  circular  arc FE, whose centre is C and its 
radius CP equal to $CA, and  the weights of the triangles 
may be supposed to be collected in this arc FE, and to be 
uniformly distributed  through  it, so that  the centre of 
gravity G of the whole sector CAB is the  centre uf gravity 
of the circular arc FE. Therefore by equation (93), if S', c', 
and a', represent the arc FE, its chord FE, and its radius 
CF, and S, C,  a, the similar arc, chord, and radius of AD& 

then cG~-~q-; but since the ares AB and FE are 

similar, and that a'=& :. Cl=$c and s1,gS. Sub- 
stituting these values in the  last quation, we have 

1 &,: 

a'C' 

. . (32). 

37. The cerltre of gravity of an3 portiola of a circular rikg or 
of an arch of equal noussoirs. 

Let BICIC,B, represent  any such portion of a circular 
~ ring whose ceutre is A. Let al represent 

the radius, and C, the chord of the  arc B,Cn 
and S1 its length, and let a*, C, similarly re- 
present the radius  and chord of the  arc 

*.:&j, 
.% 

and SO the length of that arc. 
Also let G1 represent  the  centre of gravity of the aector : 
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AB,C,, G% that of the seetor AB&&, and G the centre of 
gravity of the ring. Then 
AG, X scct. AB&,+ KG x ' ingB,C,B,C,=m x s&t.ABIC1. 
-~ 

Now (by equation S2), AGl 4 1  , A G 2 = x ~ ,  *%G. 
I 4 

also sector ABIC,=$Sla,, sector  AB,Ce=+Snag, 
:. ringDlClC4BP=sect. AB,CI-sect. ABgCn=&Slal-@&, 

. . x ~ . &S2a, + AG 4(Slal -SS%) = 9 S; . + . Slat, . ,a&- pa,C,- 

:. AG . (Sla,-Shap)=%(C,a14-C~~), 

~ 

~ 

38. TIIE PROPERTIES OF QULDINUS. 

If NL represent any plane  area, and AB be any axis, in the 
same plane, about which the area is made to re- 
vohe, so that NI, ig by this revohtion made to 
generate  a solid of revohtion, then ia the oolme 
of this soZd equal to that of a prima whoae bore 
is NL, a d  whose height W squuC to the hmqth 

of the path which the centre of gravity G of lhe area NL 
is made to describe. 

For take any rectangular area PRSQ in NL, whom sides 
are respectively  parallel  and  perpendicular to AB, and let 
MT be the mean  distance of the points P and Q, or R 
and S, from AB.. Now it is evident that in the revolution 
of N L  about AB, P& will describe a .up.rseial.ring. 

Suppose this to be represented bJr:QFPK, let M be the . 

centre of the  ring, and let the:& subtended by the 
angle QMF at distance &ty &m M be rep&+l 
by 8, then the . a t e a . W K  e+ the =tq &'Wr . .  

>,. 
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like the steps of a staircase, all of which  (contained in one turn 
of the thread) might be made to slide  along the axis, SO that 
their surfaces should all lie in the same  plane ; in which  case 
they would  manifestly form one solid of revolution, such 88 

that whose  volume has been investigated. The principle is 
moreover applicable to determine the volume  of any solid 
(however irregular may be its form otherwise),  provided  only 
that it may be conceived to be generated by the motion of a 
given plane area, perpendicular to a given  curved  line, which 

always passes through the same point in the 
plane. For it is evident that whatever point in 

this curved line the  plane may at any instant be tramming, 
it may at that  instant be conceived to be revolving Bbout 
a certain k e d  axis, passing through  the  centre of cur- 
vature of the curve at  that point ; and  thus  revoking about a 
fked axis, it is generating for an instant a solid of revolution 
about that axis, the volume of which elementary solid of revo- 
lution is equal to  the area of the plane multiplied by the 
length of the path described by its centre of gravity; and 
this being true of all such elementary solids, each being 
equal to the product of the plane by the corresponding  ele- 
mentary path of the  centre of gravity, it follows that the 
whole  volume of the solid is equal to  the product of the area 
by the whole length of the path. 

41). If AB represent any curved line  mad^ to revohe about the . a x i s  AD so (U to generate the w f a c e  
of rmohtion BAC, a d  a  be^ the 

then is the area of this m&ce qual 
to the paduct of the Zength of lire curaed h dB, by the 
4 t h  of tAe path de8cribed by the pm& G, the re- 
v o h t h  af the cume abmt AD. 176ir U bBs r ~ c d  property 

---c:. ...I"-. . centre of gravity of this curved &e, 

of &&nu#* ,. . 

Let P& he any small element of the generating curve,t,yd7 
PQFK a zone of the surface generated by thia elqne&$& . .  

. .  . . .  . .  . .  

. .  ~. - ~. 
~ .. 

. .  .. . . . ... . .. .. . .  

. ._ 
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zone may be considered as a portion of the surface of a Cane 
whose apex  is M, where the  tangents  to  the curve at T and 
V, which are  the middle points of P&. and FK, meel when 
produced, Let this band PQFK of the cone QMF be de 

/-* ucZoped*, and let PQFK represent its dcvrlopement; 
this figure PQFK will evidently be a circular Ti% 

whose centre  is M ;  sincc the developement of the 
whole cone is evidently a  circular  sector MQF whose cenm 
M corresponds to  the  apex of the cone, and its radius "2 
the side M& of the cone. 

Now, as was shown in the last  proposition, the  areaofthi 
circular  ring  when  thus developed, and thcrefore of the Conid 
band before it was developed, is represented by 8 . MT . p@ 
where B represents the  arc  subtended by QMF at distance 
unity. Now the arc whose radius is is represented bY 
B . MT; but this arc, before i t  was developed from the cone, 
formed a complete circle whose radius was NT, and therefore 
its circumference 2rm; since then  the circle has not 
altered its length by its developemcnt, we have 

BMT =27rNT. 
Substituting  this valuc  of BMT in the expression for the area 
of the band we have 

"+-.,! 
I' 

~ - . ~~ 

~- 

area of zoue PQFK=% , . pa. 
Let  the surface be  conceived to  be divided into  an illfinite 

number of such elementary bands, and  let  the lengths of the 
comsponding elements of the curve AB be represented by 
813 82, 83, &c. and the  corresponding values of NT by $1, ?/e 
932 &C. Then will the areas of the corresponding zones be 
represented by 2rylsl, %ysse, 27ryg,, &c. and  the area ofthe 
whole surface BAC by 2 ~ 9 ~ 8 ,  +2?~yppq + %7ryas8 + . . . . or by 
2Zb181 +yp6p+Y:&3+ . . . .). But since G is the centre of 
gravity of the curved line AB, therefore  AB^ . G& repre- 
sents  the moment of the weight of a  uniform  thread or wire 
of the form of that l i e  about AD, p being the of each .. 

PQFKbeimagined to be cut upon it, and then unwrappdfrom the @ne :' 

* If the cone be supposed covered with D flexible sheer, and a band such 

hid upon a Plane, it is called the developement of the h o d .  

3: 
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unit  in  the length of the line : moreover, this moment equals 
the s u m  of the moments of the weights slp7 W ,  ssp, &c. of 
the elements of the line. - -  ... AB . G H / L = ( ~ ~ S ~ + Y $ ~ + Y S ~ +  : . .  -)P 

.:. m.  G H = y , ~ ~ + y p s ~ + y ~ ~ +  . . . .  
Therefore  areaof surface BAC=~=B . G H = A B  . (%.&E). 

But %GH equals the length of the circular path described 
by G in ita revolution about AD. Therefore, &c. 

This proposition, like the last, is true  not only in respect 
to a surfnce of revolution, but of any surface generated by a 
plane curve, which traverses perpendiculmlyanother curve of 
any form whatever, and is always intersected by it i n .  the 
same point. It is evident, indeed, that the usme demoasha- 
tion applies to both propositions. It 'must, howeveri be 
observed, that neither proposition applies unless the motion 
of the generating  plane or curve he such, that no two of its 
consecutive positions intersect  or cross one another. 

__ - 
~- 

41. The volume of any twncated  prismatic or cylindricd bo+ 
ABCD, of which one extremity CD upepnd icu lar  to the 
sides of the p~ism,  and the o t h r  AB inched to then, M 
epual to that of an upright prism ABEF, Aaabrg fw it0 bare 
the plane AB, and for its height tlas perpeendicukrr height 
G N  of the centre of gravity G of the p b  DC. abwe t b  
plane of AB. 

For  let I represent the inclination of the plane DC to AB ; - take m, any small element of the plane CD, 
and let mr be a prism whose base is m and 
whose  sides are parallel to AD and BC; of 
elementary prisms similar to which the 

whole solid ABCD may be supposed to be made up. Now the 
volume of this prism, whose base is msndit. height W, equals 

. .  

. .. 

.. .. ... ..... .. ,. . ., . 

.. 
... ... .... ... .~ . . . ~ ~  - - m7xm=see .1r (nar .cos . r )xna=see , rx (~r . r .s in . ) . l=  . . . .  
. .  

. .  

sec. I x mn x m. 
- . . . . .  .... . . . .  . . . . .  

.. 
Î 
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Therefore the whole solid equals  the sum of all such P" 
ducts as m n  X m, each such product being multiplied by 
constant  quantity sec. 8 ,  or it is equal to tLe sum just spoken 
of, that sum being divided by COS. I .  Let this sum be reere. 
sented by X& x m, therefore the volume of the solid is re 

presented by -~ - ~~ . Now suppose CD to represent a 

thin lamina of uniform thickness, the weight of each s q m  
unit of which is p, then will the  weight of the element *be 
represented  by p X m, and its  moment  about  the plane ABN 
by P X mlt X m, and p 2 2  X m will represent  the sum of the 
moments of all  the  elements of the lamina  similar  to m abut 
that plane. Now by Art. 15. this sum equals the moment of 
the whole weight of the lamina p x C>, supposed to be col- 
lected in G, about that plane.  Therefore 

%%X m 
cos. I 

- 

__ 
p x C D X N G = p Z G x m ,  

:.EDxN%=2,,xm. 
Substituting  this value of 2% X we llavc 

volume of solid=sec. I x CDx &G. 
But the plane CD is the projection of AB, therefore CD =AB Cos.1,:. C D x s e c .   r = A B ;  

-- .I. vol. of solid ABCD=AB x N G = ~ ~ ~ .  of prism ABSE 
Therefore, &c. 

[Q.E.D.] 
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P A R T  11. 

DYNAMICS. 

43. MOTION is change of  place. 
The science of DYNAMICS is that which treats of the laws 

which govern the motions of material bodies, and of their m- 
lation  to the forces whence those motions result. 

The SPACES described by a moving body are the distances 
between the positions which it occupies at different successive 
periods of time. 

UNIFORM MOTION is that  in which equal spaces are de- 
scribed in equal successive intervals of time. 

The VELOCITY of unijom motion is the space which a 
body  moving uniformly describes in each s e c 4  of  time. 
Thus if a body  move uniformly with a velocity represented 
by V, and during a time  represented in seconds by T, then 
the space S described by it in  those T seconds is represented 

by TV, or S=TV. Whence it followathatV=- and T=- S S 
T V:: 

so that if a body  move uniformly, the space described by it 
is equal to the  velokty multiplied by the time in &On& the 
velocity is  equal to the spaee divided by the he, aid the 
time is equal to  the space  divided by  the velocity. 

45. It is a law of motion, established from oonstantobsi?rv~ 
tion  upon the motions of the planets, and by @ent upu' 
the motions of the bo&& mound us, tbt.when Wm- 
mnnicated to a body, it remains in that %, unaffected by 
the lapse of time, carrying it forward Eoi ever with the h, 
velocity and in the m e  dir&@ in W h i c h  it fLrst Lwgna. tp, 
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48 VCLOCITY. 

movc, unless some force act afterzuard.s in a contranJ direc- 
tion to  deslruy it. * 

The velocity, at any instant, of a body moving  with a 
VAllIABLE MOTION, is thc space which it would  describe  in 
one second of time if its  motion  were  from that  instant to 
become UNIFORM. 

An ACCELERhTING  FORCE is  that which acting  continually 
upou a body in the direction of its motion,  produces in  it a 
continually  increasing velocity of motion. 

A RETARDING FORCE is that which  acting upon a  body  in 
a direction  opposite to  that of its motion  produces in  it  a 
continually  diminishing velocity. 

An InfPuLsIvc force is that which  having  communicated 
motion to a body, ceases to act upon  it  aftcr  an exccedingly 
small  time  from the commencemcnt of the motion. 

44. A UNIFORMLY acceleratiug or retarding force is  that 
which  produces  equal  increments or decrements of velocity in 
equal successive intervals of time. I f f  represent  the ad- 
ditional velocity communicated to a body by a uniformly 
accelerating  force  in  each successive seeoud of time, and T 
the number of seconds during which it moves, then since by 
the first law of motion it retains  all  these  increments of 
velocity (if its motion be unopposed), it  follows that  after T 
seconds, an  additional velocity represented by fT, will have 
been communicated to i t ;  and  if  at  the connbewcernent of 
this T secouds its velocity in  the same  direction was V, then 
this initial.velocity  having been  retained  (by  the  first law of 
motion), its whole velocity will have become V+fT. 

If, on the contrary, f represent the velocity  continually 
taken awag from a body in each successive second of time, hy 
a uniformly retarding force, and V the velocity with  which i t  
began to move in a direction  opposite to that  in which  this 
retarding force acts, then will its remaining velocity after T 

* This i8 the first LAW OF MUTION. For numerous  illustrat;ona ,$this 
fundmental law of motion, the reader is referred to  the author's 
entitled, ILLUSTRATIONS OF MECHANICS, &L 193. 

l 
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scconds  he represented by V - f T ;  so that generally th6 
velocity V of a body acted upon hy a uniformly accelerntidg 
or retarding force  is represented,~ after T seconds, 'by  the 
formula 

v=V*fT . . . . . (34). 

The force of gravity is, in  respect to the descent of bodies 
near the earth's surface, a constantly accelerating force, in- 
creasing the velocity of their descent by 32& feet in each 
successive  second, and if  they he projected upwards it is a 
constantly retarding force, diminishing their velocity by that 
quantity  in each second. The symbol g is commonly used to 
represent this  number 32+ ; so that in respect to gravity &e 
above formula becomes u=V+-gT, the sign k being thkeh 
according as the body is projected upwards or downwarda 

A VARIABLE accelerating force is that which communicates 
unequal increments of  velocity in equal successive intervals of 
time ; and 8 variable retarding force that which takes away 
unequal decrements of velocity. 

45. TO DETERMINE  THE  RELATION  BETWEEN  'THE VELOCITY 
AND THE SPACE, AND THE SPACE AND TIME 0 P . A  BODY'S 
MOTION. 

Let AM,, M&, &M,, &c. represent the e+5esbing m E and AP the velocity with which it,pgm to 
small successive periods of a i++&~&&, 

A 41: 
move, M,P~ the vdocity at the .xpi;.ri.. 
of the  first  interval of time, %P* &.'at 

the  expiration of the second, MspSof the ~thiriViaWv&l'of 
time, and so on ; and instead of the body varyin$ thavek&ty 
of its motion ccmthuadEy throughout the.peridc"AM1, aaP; . .  

Pose it to move through that interval with a velocicg whieh 
is a mean between the velocity AE nt .&,,M .that Bill& . .. . .. . 

Sinoe on this supposition it movwwith a U R + ~  moriDa, . ~ i . .  ~: 

. ,.. . .. 
~~ ~ ~ ~. at MI, or with a v e h i t y  equal to *{.~P+:&'I). , .  

., . 
~. . . .  

~. 

the space it describes during the pesicid-ikM, e q e a l a 3 & E ; p t o -  

duct of that .velocity by that pcaiod e€ h e ,  O F .  .it &@ 
. .  
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a(AP+M,P,)AMI. Now  this  product  represents  the  area 
of the trapezoid AM,P,P. Thc space  described then  in  the 
interval AM,, on the  supposition  that  the body moves during 
that  interval  with a d o c i t y  which is  the nlean between those 
actually  acquired at the  connnencement and termination of 
the interval,  is  represented b ~ -  the trapezoidal  area AN1PIP. 

Similarly the areas P,& P&, &c. reprcsent the spaces 
the body is  made to describe  in the successive intervals MliV*, 
M&, &c. ; and  thcrrfore  the whole polygmal  area APCU 
represents  the wholc  space the body is made to descrihe in 
the wholc time AB, on the  supposition  that  it moves in each 
successively exceerling  small interval of time  with  thc lman 
velocity of that interval.  Now  the less the  intervals  are,  the 
more  nearly does this  mean velocity u f  each iutcrval  approach 
the actual velocity of that interval;  and if they bc infinitely 
small,  and  thcrefnre  infinitely great  in  number,  thcn the 
mean velocity coincides with  the  actual velocity of each  in- 
terval,  and  in  this case the polygonal area passes into  the 
curvilinear  area APCU. 

Generally,  therefore, if we represent by the a&irsa of a 
curvc the times  through which a hody has lno5zcd, and by 
the corresponding ordinates of that curve  the velocitjcs WII~CII 
it has  acquired  after those  times,  then  the area of that curve 
Will represent  the space through  which  the  body bas m ~ e d  ; 
or in  other words, i f a  cuwc PC be taken  such  that  the number 
of equal  parts  in  any one of its alrscissa? AM, beillg taken 
to  represcnt  the  number of seconds during which a body has 
moved, thc  number of those equal parts in  the corresponding 
ordinate M:,P3 will rcpresent  the  number of feet  in  thc velocity 
then acquired ; then  the space which the body  has  described 
will be reprcscutedby  the  number of these  equal  parts squared 
which are  contained  in the area of that curve. 

46. To DETERMINE THE SPACE DESCRIRED IN A GIVEN 
TIME BY A BODY WHICH IS  PROJECTED WITH A GIVEN 
VELOCITY, A N D  WHOSE MOTION IS UNIFORMLY ACCELE- 
RATED, OK UNIFORMLY RETARDED. 

Take any  straight  line AB to  represent  the whole time T, 
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F i n  seconds, of the body’s motion, and draw AD 
~ : . % g ~  i perpendicular to it, representing on the same, 

~ ~ scale its velocity at  the commencement of its 
motion. Draw DE parallel to AB, and accord- 

ing as the motion is accelerated or retarded draw DC or DF 
inclined to DE, at an angle whose tangent equals 5 the con- 
stant increment or decrement of the body’s velocity. Then 
if  any  abscissa AM be  taken to represent  a  number of seconds 
t during which the body has moved, the corresponding ordinate 
MP or M& will represent the velocity then acquired by it, 
according  as its motion is accelerated or retarded  For PR= 
RQ=DR tan. P D E = m t a n .  PDE; butAM=t, and tan. 
PDE=f; thereforePR=R&=ft.  AlsoRM=AD=V,there- 
fore MP=RM+PR=V+ft,and  MQ=RM-RQ=V-ft; 
therefore by equation (34), M P  or MQ represents the velo- 
city after the time AM according as the motion is accelerated 
or retarded. The same being true of every other time, i t  
follows, by  the  last proposition, that the whole space de- 
scribed in the time T or AB is represented by the area 
ABCD if the motion be accelerated, and by the  area ABFD 
if i t  be retarded. 

Now area ABCD=+AB(AD+BC),  but ABET, AD= 
v, BC =V +D, 

.L -‘.r 9 ~ 

:. areaABCD=+T(V+V+fT)=VTt+fP. 
Also area ABFD=*AB(AD+BF), where AB and AD 

have the same values as before, and BF=V-fT, 

:. area ABFD=&T(V+V-fl)=VT-*JT. 

Therefore, generally, if S represent  the space described after 
‘F seconds, 

S = V T & & f F  . . . . . (35); 

in which formula the sign +- is  to be taken Bccording as the 
motion is accelerated or retarded. 
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47. TO DETERMINE A RELATION  BETWEEN T l l E  SPACE DE- 

SCRIBED AND  TAE VRLOCITY ACQUIRED BY A BODY WHICH 

IS PROJECTED WITS A GIVEN VELOCITY, AND WHOSE MO- 

TION IS UNIFOLLXLY ACCELERATED OR RCTARDED. 

Let 0 trc the velocity acquired  after T seconds, then by 
(11-V) 
S *  equation (34), v=V-cfT, :. T=%- 

area ABFD =+AB(AD + BF), where AB =T = - 
AD=.,  BF=V, 

(1) - v2 
S '  

(.-V) (v +V) (0% -v). 2 

f =-"f 
(v" -VI) 
S '  

. .  . a?-V'=+2fS . , . . . (36) ; 

:. area ABI?D=-$-- 

Therefore  generally, if S represent  the space through which 

the velocity v is acquired,  then S=+* 

in which formula the k sign is to  be  taken according as 
the motion is accelerated or retarded. 

ally be destroyed. Le t  SI be tbe space which will have  been 
If  the body's motion be retarded, ita velocity W will  eventu- 

described when 2) thus vanishes, then by the  last  equation 
O--V*=-ZfS1. 

:, V2=ZfS, . . . . . (37), 

where V is the velocity with which the body is projected 
in a direction opposite to the force,  and S, the whole  space 
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which  by this velocity of projection it can be made to 
describe. 

If the body's motion be aceeleruted, and it fall from rest, 
or have no velocity of projection, then b - O =  +2f S, 

:. v==2fs . . . . * . . (38). 

Let S* be  the space through which it must  in this c s e  
move to acquire a velocity V equal to that with which it 
was projected in  the last case, therefore V2=2fS9 Whence 
it follows that &=S,,  or that  the whole  space SI thmugh 
which a body  will  move  when projected with a given velocity 
v, and uniformly retarded by any force, is  equal  to the space 
S,, through which it must move to mpuire that velocity when 
uniformly accelerated by  the same force. 

In the case of bodies moving freely, and acted upon by 
gravity, f equals 326 feet, and is represented by g ; and the 
space S,, through which auy given velocity V is acquired, is 
thcn  said to be that due to  that velocity. 

49. THE UNIT OF WORK, The unit of work used . i n  this 
E 3  
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country,  in  terms of which to  estimatc every other  amount 
of work, is thc work necessary to overcome a pressurc of one 
pound  through a distance of one  foot, in  a  direction opposite 
to  that  in which thc  pressure acts. Thus, for instance, if a 
pound weight bc raiscd  through  a  vertical  hcigllt of one foot, 
one  unit of work  is  done ; for a  pressure of one  pound is 
overcnnle through a distance of one foot, in  a  direction oppo- 
site to that  in which the  prcssure acts. 

l ' !  

50. The nunlher of units .f work neressary to  occrcome a 

pressure uf M pounds lhrouyh a distnnce uf &l feet, is 
equal to the product MN. 

For since, to uvrrcome a pressure of one pound through 
one foot requires one unit of work, it is evident that to over- 
come  a  pressurc of M pounds through  the samc  distance of 
one foot, will require M units.  Since  then h1 units of work 
are required to overcome this  pressure  through one foot, i t  
i s  evident that N times as many  units (i. e .  N M )  are re- 
quired to overcome it  through N feet. Thus, if we take U 
to represent  the  number of units of work done  in overcoming 
it constant pressure of M pounds through N feet, we have 

U =MN . . . . . . . . (39). 

51. l'0 ESTIMATE  THE  WORK DONE UNDER A VARIABLE 

PRESSURE. 

L c t  PC be  a  curved  line  and AB its axis, such that  any one 
of its abscissa, AMs, containing as many 

',v equal parts as  there  are  units  in the space 

*%,,--Jzq becn  done, thc  corresponding  ordinate M,Ps 

as there  are  in  thc  pressurc  under which i t  is then being 
may  contain as mmy of those cqual  parts, 

done. Divide AB into exceedingly small equal  parts, 
AM,, MIM,, &c. and draw the ordinates MIPI, M,P,, &c. ; 

I?! 

r: _.- __, 

l ?([U 1 through which any portion of the work has 
, . I  a 
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then if  we conceive the work done through the space AMI 
(which is in reality done under pressures varying  from AP to 
M,P,,) to he done uniformly under  a pressure, which is  the 
arithmetic mean between A P  and M,P,, it is evident that 
the number of units  in  the work done through that small 
space  will equal  the  number of square  units in  the trapezoid 
APPIMI (see Art. 45.), and similarly with the  other  trape- 
zoids; so that  the number of units  in  the whole  work done 
through the space AB will equal  the number of square  units 
in the whole polygonal area APP,P9P8, &c. CB. 

But since AMl, MIMP, &c. are exceedingly small, this 
polygonal area passes into  thc curvilinear area APCB ; the 
whole  work doue is therefore represented by the number of 
square equal parts  in  this area. 

Now, generally, the  area of any cume is represented by 

the integral ydx, where y represents  the ordinate, and x 

the corresponding abscissa. But  in this case the variable 
pressure P is represented by the ordinate, and the space S 
described under  this variable pressure by the abscissa. If 
therefore U represent the work done between the values 
SI and S ,  of S, WC have 

J' 

Meampremure is  that  under which the same work would 
bc done  over the Same space, provided that p r e e ~ ~ ~ ,  instead 

~ . ~ ~ ~ M ;  the %me : thus, the mean presaure in re- 
of varying throughout  that space, remained 

spect to an  amount of work repreaented by 
the curvilinear area AEFC, is that under 

which an  amoont of work would be done represented by the 
rectilineal area ABDG, the area ABDC being e q d  to thecur- 
vilinear area ABDC; the mean pressure in this Caae is repre- 
sented by AB. Thus, to  determine the mean pressure in any 
w e  of variable pressure, we have only to find a enrvilinear 
area representing the work done under that variable prwme,  
and then  to describe a rectnngulsr parallelogram on the 'm 

.m- i 

E 4  
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bnsc AC, ushich shall have an area equal to  the curvilinear 
area. 

If S represent  thc spncc described unclrr a variable pres- 
sure, U the work done, and p the mean  prcasure, tllcnpS =U, 

l , ,  , 

, l  ". 
l , ,  

thcreforc p = U 
S' 

52. TO eslintats the woyk of a p w s s u r e ,  mhose direction i,s * m i  
that in which i t s  p i n t  of appZica,l%ox is  mude t o  911oce. 

Hitherto  the work of a forcc has been estimated only on 
the  supposition  that  the  point of application 
of that force is m o d  in  the dircction in 

,,,dL2~ wh~ch  the forcc opcrates, or in  the opposite 

pressure, whose point of application Q is  made to move in 
the direction of the  straight  line AB, Suppose  the prcssurc 
P to remain  constant,  and its direction to continuc  parallel to 
itself. It is required to  estimate  the work done,  whilst  the 
point of application has bccn moved from A t o  Q. 

Resolve P into R and S, of which R is  pnrallel  and S per- 
pendicular to AB. Then since  no  motion takes place in the 
direction of SQ, the prcssurc S does no  work, aud the whole 
work is done by R ;  therefore tbe ~~-or l r  =It . AQ. 

NOW R=P . cos. PQlt, therefore  the work =P . KCl cos. 
PQR. From the  point A draw AM perpendicular to Ybl, then 
Aacos .  PQR=QM; therefore  work = P  . m. Therefore 
thcwork of any  pressure as above, not acting  in the direction of 
the  motion of'the  point of application of that pressure, is the 
same as it would have been if the  poiut of application  had 
been made to move in  the  direction of the pressure, provided 
that the  space through which it was so moved had been  the 
projection of the space through which it actually moves. The 
product P . BM may be called the work of P resolvcd i n  
t h e  direction of P. 

The above proposition which has  been proved, whatever 
may  be thc distance throuah whieh the  point of application is 

::,, 

-- 0 direction. Lc t  PQ be the direction of a 

i 
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moved, in that particular case only in  which the  pressure 
rclnains the same in  amount and always parallel to itself, 
is  evidently true for exceedingly small spaces of  motion,  even 
if the pressure be variable both in amount  and direction ; since 
fur such exceedingly small variations in the positions of the 
points of application, the variations of the pressures them- 
selves, both in  amount and direction, arising from these 
variations of position, must be exceedingly small, and there- 
fore the  resulting variations in  the work exceedingly small as 
colnpsred  with the whole  work. 

53. If any number of pressures P,, Pp, PS, be applded to  the 

selses,  whilst the point A is made  to move through the 
same point A, and  remain  constant  and paraJle1 to t h m -  

ttraight line AB, then the whole work done is equal  to 
the sum of the w o r h  of the different  pressures  resolved in  
the directions of those pressures,  each being taken  negatively 
whose point of application i s  made to move in  an  opposite 
direction to the  pressure  upon i t .  

Let al, up, am &c. represent the inclinations of the pressures 
P,, P*, &c. to the line AB, then will the 

* 

..... resolved parts of these pressures in the * p, 
P 3w I \, direction of that line be P, cos. al, P* 

, cos. up, PS cos. u3, &c. and they will be 
equivalent  to  a single pressure in the direc- 

tion of that  line represented by PI cos. u1 + Pp cos. t++ PS 
COS. &c. in which sum all those terms are  to  be  taken 
negatively  which  involve pressures whose direction is &om 
B towards A (since the single pressure from A towards B is 
manifestly equal to the difference between the sum of those 
resolved pressures which act  in that direction, and those in the 
opposite direction). Therefore the whole work is equal to 

P,cus.  U +P*cos.or,+P,cos. U,+ . . . . . ) . AB=P,xB 
COS. a1 + Pg . T B  COS. as+ PSKB COS. US+ . . '=P1 BXI + 
p, . BM%+P3 . BM,+ . . . . . ; in which expression h e  
successive te rms are the works of the different pressures 

- 
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rcsolved in  tllc  sevcral  directions of those  pressures, eWh 
being taken positively or negatively,  according as the direc- 
tion of the eorrcsponding  pressure is tomartls the direction of 
the motion or oppositc to it. 

Thus if U represent the whole work and U, and U, the 
sums of those  done i n  opposite  directions, t h e n  

u=u,-u, . . . . . (41). 

54. If any nunzber of pre.rsure.s applied to a point be in  e@- 
lihriunr, and theirpoint o f  apylicalion be mooed, the whole 
work done by these pressures in the direcfiolk of the motion 
wi l l  equal the whole work doze in the opposite directius. 

For if  the  pressures P,, P,, P ,  &c. (Art. 63.) be in q u i -  
libriurn, then  the sums of their resolved pressures  in opposite 
directions  along AB will be  equal (Art. IO.); thereforc thc 
whole  work U along AB, which by the last proposition is 
equal to thc work of a  pressure  represented by the difdrelzce 
of these sums, will equal  nothing,  therefore O=U,-u,, 
thereforc U, =U,, that is, the whole work done in one direc- 
tion  along AB, by  the pressures P,, P,, &c. is equal to the 
whole work done  in  the opposite  direction. 

55. If a hody be acted upnn by a force whose direction i s  
always towards a certai?bpoint S, callad a centre OffoTCe, 

and be made to describe any given  curve Y A  in a direction 
opposed to the  action of that force, and S p  be measured 0% 

SA e p a l  to SI’, then will the work dune in nrooing the 
body thmlyk  the curce PA be equal to that which 2UOldd  

ba necessary to move i t  i n  a strui,qht line from p to  A. 

For suppose the curve PA to he a polygon of an infinite 
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u m b e r  of sides PP,, PIPg, &c. Through the 
ointv P, P,, P,, &c. describe circular arcs with 

SA in p, pl, p%, &c. Then since PP, is enceed- 
ingly small, the force may be considered to  act '. throughout  this space  always in a direction pard.el 
to SPI ; therefore the work done through PP1 is 

equal to  the work  which must  be done to move the body 
through the distance mPl (Art. 52.), since mP, is the projection 
of PI', upon the direction SP, of the force. But mP~=pp~ ; 
therefore the work done through PP, is equal to that which 
would be required to move the body along the line SA through 
the distance ppl ; and similarly the work done through PIP¶ is 
equal to that which must be done to move the body through 
ppn,  so that  the work through PPg is  equal to  that  through 
ppe and so of all  other  points in  the curve. Therefore the 
work through PA is equal to that through pA.* Therefore, 
&C. [Q.E.D.] 

.L:: 1 _ ~  k p ' f ]  r ,.i:...~.. p the  radii SP, SP,, SP,, &c. and let them  intersect 



60 'TIIE WOIlK OI 

ceeding small. If it bo of considerable  dimensions, then what- 
ever be the height  tbrough which its  centrc of gravity is 
raised  along the curve, the work expeudrd is tho  same 
(Art. 60.) as though  thc  centre of gravity were raised ver- 
tically  to that hcight.* 

57. In the prcceding  propositions the \Tork has been 
cstimatcd 011 the supposition that  the hotly is madc to move 
so as to increase its distance from the  centre S, or  in a d i m -  
tion opposed to that of the forceimpcIIing it towards S. I t  is 
evidtwt nevertheless that  the work ~yon ld  have been precisely 
the same, if instcad of the  body moving from P to A i t  had 
morcd from A to P, providcd only that in this  last case 
there were, applied t u  i t  a t  every point  such a force as would 
prevent  its motion from being sccelerated  by  the  force ~ 1 1 -  

tinually  impelling it towards S ; for it  is cvident  that  to pre- 
vent  this acceleration, there  must  coutinually  be applicd to 
the body a forcc in a direction f rom S equal to that by which 
it is attracted towards it ; and  the work of such a force is 
manifestly the sarnc, provided the path  be the  same, whether 
the body move in  one  direction or the  other along that path, 

same space, but in opposite dircctions. 
being in thc trvo cases the work of the same  force over the 

58. If th,ere he any nnmher of parallel  pressures, P,, P,, P3, 
&c. ruhose points of application  ore transf(r.rred, each through 
ang given  distance jkom one position  to  another,  then is the 
work  which would be necessary to transfer  their  resultant 
through a  space equal  to  that  by which their eelbtre of 
pTessure is displaced i n  this chnnge of positiolz, q u a l  to the 
difference betweelk the  aggregate  work of tJbose pressures 
whose points of ap$ealion h a w  been m v c d  in the direclions 
in which the pressures  applied to them act,  and those whose 

* The only force acting upon the body is in this proposition supposed 
to be that acting towards S .  No account is take,! of friction or any oilw 
Forces which opposc thcmsclves to its motion. 
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points of application have been  moved dn the cpposkte direc- 
tions to their pressures. 

For (Art. 17.), if y,, yp, ya, &c. represent the distances of 
the points of application of these pressures from any given 
plane in  their first position, and h the distance of their centre 
of pressure from that plane, and if Y,, Yp, Ys, &c. and H r& 
present the corresponding distances in the second  position, 
and  if P,,  P,, P3, &c. be taken positively or negatively ac- 
cording as their directions are f r m  or tmuards the given 

plane, h(Pl+P9+P3+ . . . - ) = P l y l + P g 9 + P u a  . . . . 
and HiP,+Pp+Pa+ . . . . )=P,Y,+PeY*+PsY*+ . . .. 
.'.(H-h) {P1+Ps+P3+ * l = p ~ ( Y ~ - y J f P ~ ( Y ~ - y e )  

fPa(Y3-y~) + . . (42); 

in the second member of which equation the several terms 
are  evidently positive or negative, according  as the pressure 
p corresponding to each, and the difference Y--y of its dis- 
tances  &om the plane in  its  two positions, have the same or 
contrary signs. Now by supposition P is positive or negative 
according as it actsfrom or towards the  plane; also Y-y is 
evidelltly positive or negative according as the point of appli- 
cation of P is moved from or towards the plane: each term is 
thercfore positive or negative, according as the corresponding 
point of application is transferred in a direction twardr that 
in  which its applied pressure acts, or in  the oppoaite direction. 

Now the  plane from which the distances of the points of 
application are measured may be any plane whatever. Let 
it be a plane perpendicular to  the directions of the pressures. 

\ 4: and P' represent the two positions of the 
Let Axy represent this plane, and let P 

point of application of the p"ssure P (the 
path described by.it between these two 
positions having been any whatever). Let 
MP and M'P' repreuent the perpendi- 

cular distances of the points P and P' from the plane, 
and draw Pm from P perpendicular to MP'. Then 

* P(Y-y)=P(M'P'-MP)=P . -PI; but, by Art a, 

J'(J -t 

/' I 

- 

I 
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60. The @eccding praposition is lnanifestly true in  respect 
to a system of weights, these being prcssures whose directions 
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arc  always  parallel,  wherever their pointn  of  application  may 
be  moved. Now the   centre  of pressure of a system of 
wcights is its centre of gravity (Art. 19.). Thus then it 
follows, that if the weights  composing  such a system be 
scparately  moved  in  any  directions  whatever, and through 
any  distances  whatever,  then the difference  between the 
aggregate work done upwards in making this change 6f 
relative  position a n d  that done downwards is equal to the 
work  necessary to raise the sum of all the weights through 
a height equal to that through which their centre of gravity 
is raised or depressed.’ Moreover that if such a system 

rcquircrl to determine the m t e  expenditure of work in  raising the 
* This proposition has numerous applications. If for instance i t  he 

direrunt elements of B structure, its stone,  cement, &c. to the merent 
positions  they  occupg in it, we makc this calculation by deternuning 
f l w  work requisite to raise the whole  weight of material at once to 
the height  of the centre of gravity  of the structore. If these  materials 
hnvr been  carried up by labourers, and  we are desirous to include the 
whole of their labour  in the calculation, we ascertain the probable amount 
of each load, and  conceive the weight  of a labourer to be d d e d  to each 
IWd,  nnd then all these at once to be  raised to the height  of the centre of 
gravity. 

Again,  if it be required to determine the expenditure of work  made  in 
raising the material  excavated  from B well, or in pumping the water out of 

rigidity of the cord) this expenditure of work is the SamB 88 thougb tbe 
it. we know that (neglecting the effect of friction,  and the weight and 

a h &  material had  been  raised at one lift from the centre of grsvity of the 
shaft to the surface. Let us take another application of this principle 
which offers 80 many practical mults~  The material ofa railway exam- 
tion of considerable  length is to be removed so 88 to form 911 embmkmeot 
i m s s  a valley at wme distance,  and it is required to determine the ex- 
I’elUliture  of  work  made  in this transfer of the material. Here each load 
of  material  is  made to traverse a ditierent  distance, a resistance h m  the 
friction,  &c. of the road  being continually  opposed to ita  motion. These 
resistances  on the d i n t  toads constitute a system of panllel prwure4 
each of who= points of applimtion ia sepanrtely tmlFd from OIIE 

given  point to another given point, the  dinetions oi tmrakr being h 
m all el. NOW by the propsidon the exparditwe of work in. 
all there separate tmnsfers is tbe a- U it would bwe bem had a pme 
sllre qual to thc sum of all the pmum been at once Vaasfemd tiom 
the centre ofnktsllce of tbe mmrntioll to t h ~  centn of mistmcs of. 
the enlbankment. Now the reaktancea of the pMI of the nmu m: 
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of weights  be supported i n  equilibrium by the resistance of 
any fixed  point or points, and be  put   in  motion, then (since 
the work of the  resistance of each  such  point is nothing) 
the  aggregate  work of those  weights which are n d e  to de- 
scend, is equal to that of tbosc which  are  made to ascend. 

GI. Zf a p l a n e  be takenperpendicular to  the di rec t ims  of any 
number of paralbel  pressures and there be two dz@rent 
positions of the points of app&ation of Cartai?k of these 
pressures in luhich they a r e  at diferent  distances from the 
plarce, cuh,ilst the po in ts  of npplication of the  rest of flaese 
pressures  remain ut the smna distance from that phne ,  
and if in both positions the system be in eyuilibriunk, then 
the centre of pressure of ths first mentioned  pressures will 
be at the  same distance fTom the p lane   i n  butL positions. 

For since in both  positions  the  systcm is in  equilibrium, 
therefore in  both positions P, +P,+P3+ . . . =O,  

Now  l e t  P, bc any one of the pressures  whose  point of appli- 
cation is at the same distar~ce  from  the  given plane in both 
positions, 

1.. (Y1--y,)P,+(Y,--g*)P*+(Y,--Z/J)P,+. . .+P,(Y,--y,)=O. 

:. Y,=-yt,, and Y,--Y,~=O, 
.'. (k'1--y,)P,+(Y*--*)P,+. . .+(Y,4--y,A-,)Pn-L=o, 

l :  

are the frictions of its elements  npon the road, and these frictions aW 
proportional to the weights of the elements; their centre of rcsistanee 
coincides  therefore with the centre of gravity of the mass, and it follows 

been moved at mee from the centre of gravity of the excavation to that Of 
that the expenditure of work is the  same as though all the material had 

times the weight of a cwriagc must be added to the weight of tile materid 
the embankment. To allow for the weight of the carriages, as many 

as there are journeys made. 
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where H,, represents  the distance of the centre of pressure 
of P,, P, . . . P,,, from the given plane in  the 6nt position, 
and h,,-, its distance in  the second  position. Its distance in 
the first  position is therefore the same as in  the second. 
Therefore, &c. 

From this proposition it follows, that if a system of weights 
be supported by the resistances of one or more fixed points, 
and  if there be any two positions whatever  of the weights 
in both of which they  are  in equilibrium with the resistances 
of those points, then  the height of the common centre of 
gravity of the weights is the same in both positions. And that 
if there be a series of positions in all of which the weights 
are in equilibrium about such a resisting point or points, then 
the centre of gravity remains continually at the same height as 
the system  passes through  this series of positions. 

If all these positions of equilibrium be idnitely near to 
one another, then i t  is  only during  an infinitely small motion 
of the points of application that  the centre of gravity ceases 
to ascend or descend ; and, conversely,  if for an infinitely small 
motion of the points pf application the centre of gravity 
ceases to ascend or descend, then in  two or more positions 
of the points of application of the system, infinitely near to 
one another, it is  in equilibrium. 

W O R K  OF PRESSURES APPLIED IN DIFFERENT DIRECTIONS TO 
A BODY MOVEABLE ABOUT A FIXED AXIS. 

6% (rhe wovh of a  pressure  applied to a body mmeabk a h t  U 
$Xed a n i s  is the  same at whatener point in  its propm &reo- 
tion that pressure may be applied. 
For let AB represent  the direction of a pressure applied 

to  a body moveable about a fixed axis 
0 ; the work done by this pressure 

at A 01 B. For conceive the body to 
revolve about 0, through  an exceed- 

ingly small angle AOC, 01 BOD, SO that the  points A and D 
may describe circular m s  AC and BD. Draw Cm, h, md 

perpendiculars to AB, then if P represent the  pres& 

-+p 

q " / =  -7 ! ;:/.,,.' will be  the same whether it he applied 

0 ' 7  

! :;.. ,. , .> .,. , , .., 

F 
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the  work of P = P  . p . 8.  Now let P,, PS, Pa &c. re- 
present those pressures which act  in  the direction of the 
motion, and P,, P‘*, &c. those which act  in  the opposite 
direction, and let pl, pn p3,  &c.  be the perpendiculars on the 
first, and p‘,,~’~,p’~, &c. be the perpendiculars on the second ; 
therefore by the principle of the equality of moments Plpr + 
p,ps+ P3ps+ &C. =P’,p‘,+ P’sp‘%+ P3pta+ &c. ; therefore 
nlultiplying both sides by B, P,p,B + P& + P,F3B=P’p“,B + 
P’*/J’~~ + P’,p$B + kc. ; but P,p,@, P’,p’,$, &c. are  the works 
of the forces P,, P’l, kc. ; therefore  the aggregate work of 
those which tend to move the system in one direction is equal 
t u  the aggregate of those which tend to move it in the opposite 
dircction. 
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the work  done  upon the body beyond that necessary to OVU- 

come the resistances  opposed  to its motion, a principle which 
might almost  indeed be assumed as in  itself  evident. 

65. The  amount of work thus  accumnlated i n  a body moving 
with a givcn velocity, is  evidently the same, whatever may 
have heen  the circumstances under which its velocity has been 
acquired. Whethcr thevclocity of aball bas been communicated 
by projection from a steam  gun, or explosion from a cannon, or 
bybeing allowcd to fall freclyfrom a sufficient height,  it matters 
not to  the  result ; provided the  same velocity be communicated 
to  it  in  all  three cases, and it be of the same weight, the work 
accurr~ulated in it, estirnated by tllc  effect i t  is capable of prw 
ducing, is evidently the same. 

In like manner, thc whole  amonnt of work which it is 
capable of yielding to overcome any resistance is the same, 
whatever  may be  the  nature of that resistancc. 

66. To ZSTIMATE TIIE NUMBER OF UNITS OF WORK ACCU- 

WJLATED IN A BODY MOVING WITH A GIVEN VELOCITY. 

Let tu be  the weight of the body in pounds,  and v its 
velocity in feet. 
NOW suppose the body to be  projected  with  the velocity 0 in  

a direction  opposite  to  gravity, it will  ascend to tile  height h 
from  which it must have  fallen, to acquire that same velocity 0 
(Art. 47.) ; there  must  then at the  instant of projection have 
been  accumulated  in it an  amount of work  sufficient  to raise 
it to this  height h ; but  the  number of units of work  requisite 
to  raise a wcight W to a height b, is  represented by wh ; this 
then is the  number of units of work  accumulated in   the body 
at the  instant of projection. But since h is the  height  through 
which the body must fall to  acquire  the velocity V ,  therefore 

vQ=2gh (Art. 47.); therefore h=&; whence it follows that 
v3 
9 
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if U represent the number of units of work  accumulated, 

U=f--d . . . . . (44). W 

9 
Moreover it appears by the  last article that this expression 

reprcsents the work accumulated in a body  weighing W pounds, 
and  moving  with a velocity of D feet, whatever may  have  been 

lated. 
the  circumstances under which tbat velocity  was  accumu- 

The product v* is called the VIS VIVA of the body, so 

that the accumulated work is represented by  half the vis viva, 
( 3  

called the MASS of the body. 

67. To estimate the work aecamulated in a body, 07 h t  by it, 
as it pwses from one velocity to another. 

In a body  whose weight is W ,  and which  moves with a 
velocity g, there is accumulated a number of units of work 

represented (Art. 66.) by the formula &D%. After it has 

passed  from this velocity to another V, there wil l  be accumu- 

kted in it a number of units of work, represented by &-l? 
so that if its  last velocity  be greater than the first, there will 
have been added to  the work  accumulated in it, a Umber of 

units represented by +?Vs-*-& ; or if the second vebcity 

he less than  the first, there will have been taken f y m  the 
work accumulated in it a number of units represented by 
Z-V2-1- 
l W  W 

zg Vz. So that generally if U represent the work  accu- 

mulated or lost by the hody, in passing from the velocity U 

to the velocity V, then 

W 

9 

9 
W 

W 

9 9 
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If  the body, instead of being accelerated, had been retarded, 
thcn the work lost being that expended in overcoming the 
retarding forces, is evidently that necessary to move the body 
uniformly  in opposition to these retarding forces through 
AB ; so that if this force be represented by U, then, since ~.. 
~ ;-(,*-V%) is in  this case the work  lost, we shall have \V 

4 

W. The  work  acczllndnted in a  body which  has m v e d  thmugh 
m y  space acted upon by any  force, i s  equal to the exces8 
of the work which  has been done span it by those fwcea  
which  tend  to accelerate  its motion abwe that which hop 
been done upon it by those which  tend to retard ita motion. 

For let R be the single force which  would at  my p i n t  
p (see last fig.) be necessary to move the body back B9.i. 
through an exceeding small element of the same path (the 
other forces impressed upon it remaining BS before); then it 
follows by Art. 54. that the work of R over thm element Of 

the path  is  equal to the excess of the work  over that de- 
ment of the forces which are impressed upon the b.+ in 
the direction of its motion above the work of those impressed 
in thc opposite direction. NOW this is trne at  meiy point of 
the path ; therefore the whob work of the force R neces- 
Suy  to move the body back again from B to A is e q d  to 
the excess of the work done  upon it, by the impressed 
forces in the direction of its motion,  above the work done 
Upon it by them in B &.=&on opposed to its motion; w h a m  

F 4  . . .  
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also it follows, by thc  last proposition, that thc necamzllated 
work  is  equal to tllis excess. Therefore, &c. 

*TO. If P represent  the force in  the direction of thc nlotion 
which at a  given distanco S, measured  along the  path, acts to 
accelcrate the motion of the body, this force bcing understood 
not to be counteracted by any  other, or to be the surplus force 
in the direction of the motion over and above any resistance 

opposed to  it, then  wiiIfPdS be the work which must be 

done in an opposite  direction  to overcome this force  through 

the space S, or U$$dS, 

S 

n 

" 
2g.fj;sdS 

W 
:. by equation (4G), V'-w'=f ~-. "~ __ . . . . . . (47). 

71. If the force P tends a t  first text-ards the direction  in 
which the body  moves, so as to accelerate the motion, and 
if  after a  certain space has  been  described it changes its direc- 
tion so as to retard the  motion,  and UI represent  the value 
of U in  respect  to  the former  motion, and VI the velocity 
acquired  when that motion  has terminatcd,  whilst U, is the 
value of U in respect t o  the second or rctarded motion, and 
if v be the initial  and V the  ultimate or actual velocity. then 

As Up increases, the  actual velocity Vof the body c o n t i n d Y  
diminishes; and  when at length U,=U,, that is, when  the 
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wbole  work done (above the resistances) in a direction opposite 
to the motion, comes to equal that done,  before, in  the 
direction of the motion, then V=w, or the velocity of the bcdy 
returns again to  that which it had when the force P began to 
act  upon it.  This is that general case of reciprocating motion 
which is so frequently presented in the combinations of 
machinery, and of which the crank motion is a remarkable 
example. 

'72. If the force  which accelerates the body's motion act 
always towards the same centre S ,  and S6  be taken  equal to 

SB, it has been shown (Art. 55.) that  the work ne- 
eessary to move the body along the curve from B to 

I ~~ A, is equal to  that which would be necessary to move 
it through the straight  line bA. The aceumulatsd 
work is therefore equal to  that necessary to move the 
body through  the difference bA of tbe two distances 
SA and SB (Art. 68.). If these distances be  repre- 

sented  by R, and h, and P represent  the pressure with  which 
the body's motion along bA would be resisted at any distance R 
from the point S ,  thenf&Ft will represent  this work. More- 

over the work accumulated in the body between A and B is 
represented by +wq-wl), if V represent the velocity at 

9 
B and W that at A, 

4 
R, 
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the body from 6 to A. Since then  the work accumulated by 
the body through AB is  equal  to  that which i t  would accumu- 
late if it fell through Ab, it follo~vs  that velocity acquired by 
it  in falling, from rest, through AB is equal to that which  it 
would acquire in falling throngh Ah. For if V represent 
the velocity acquired in  the one case, andV,  that  in the other, 
then  the accumulated  work in the first case is represented by 

I '  

: , / I ,  

i I , ,  

. ,  
i l  

t l '  

! 

, , I  , 
,. 

74. DEFINITION. The ANGULAR VELOCITY of a body which 
rotates  about a fixed axis is the  arc which every particle Of 

the body situated at a  distance unity from the  axis describes 
in a second of time, if the body r e v o h s  U n i f ~ n a h ~  ; or, if the 
body moves with a mzriable motion, it is the arc which it 
would describe in  a second of time  if (from thc: instant when 
its angular velocity is measured) its revolution  were to be- 
come uniform. 

'75. Tm ACCUMULATION OF WORK IN A BODY WHICH 

ROTATES  ABOUT  A FIXED AXIS. 

Propositions 68 and F9. apply  to every case of the 
motion of a heavy body. In  every such case the work 
accumulated or lost by the action of any moving force or 
pressure, whilst the body passes from any  one  position to 
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another, is  equal to the work which must be  done in  an 
opposite direction, to cause it  to pass back  from the second 
position into  the first. Let us suppose U to represent this 
work  in respect to a body of any given  dimensions,  which 
has rotated  about a fixed axis from one given position into 
another, by the action of given forces. 

Le t  c1 be taken to represent the ANGULAR VELOCITY of the 
body after it has passed from one of these positions into 
another. Then since c1 is the actual velocity of a particle a t  
distance unity from the a x i s ,  therefore the velocity of a par- 
ticle at any  other distance pl from the a x i s  is apl. Let p 
represent the weight of each unit of the volume  of the body, 
and m, the volume of any particle whose distance from the 
axis is p], then will the weight of that particle he pml ; also 
its relocity has been shown to be cyl, therefore the  amonnt 
of work accumulated in that particle  is  represented hy 
1 ~ 7 4  o-a pl , or by 4#’mlp?. 
9 9 
Similarly the different amounts of work accumulated in the 

other particles or elements of the body  whose distances from 
the axis are represented by ps,  p3, . . . and their volumes by 

ma %, m4 . . . ., are represented by ?pqem&‘, + a z ~ ~ 3 z , & c ;  

80 that  the whole work accumulated is represented by the 
sum ?#?m,p12 +.$n@wsz +$@w3Z+ . . . . . . ., or hy 

9 9 

9 9 9 
1 P 1IL -tm,pl*+mgp*~+m@~~+ . . . . .l. 

9 
The sum mIpp+mpp2*+m~QZ+ . . . ., or 2.lp taken in 

respect to all the particles or elements which  oompose the 
body, is called its MOMENT OF INERTIA in respect to the 
Particular axis about which the rotation  takes place. h t  it 

be represented by I ; then will 8 . 2  . p) . I, represent the 

whole amount of work =cumulated in  the body whilst it has 
h e n  made to  ac+e the angular velocity II from rest. If 
therefore U r e p k i t  the work which must  he done in an 

9 
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opposite  direction  to cause the body to pass hack from its 
last  position into  its first, 

(50). 

If instead of the body's first  position  being one of rcst, it 
had  in its first position been moving with  an  angular velocity 

which had passed, iu  its second position, into a velocity 
U ;  and if U represent, as before, the work  which  must be 
done  in an opposite  direction, to bring  this body back from 

its second into  its first  position, thenis ;a2 I-;ul 

or d p ( a z - q 2 ) I ,  the  work  accumulated  between  the first and 

second positions ; thercfore 

(,> 2(;>1j 

(,> 

where the sign 31 is to be  taken according as the motion is 
acceleratedor  retarded  between  the first  and  second positions, 
since in  the one case the  angular velocity increases  during 
the motion, so that a2 is greater  than c(,2, whilst in  the  latter 
case it diminishes, so that uz is less than a r 1 2 ,  
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From this  equation it follows that when U,=Ul, or when 
the w-ark Up done by  the forces which tend  to re&d the 
motion at length,  equals that clone  by the forces which tend 
to accelerate the motion, then u = q ,  or the revolving  body 
then returns  again to  thc angular velocity from which it set 
out. Whilst, if U, neuer becomes equal  to U1 in  the course 
of a revolution, then  the angular velocity a does not  return to 
its original value, but is increased at each revolution ; and on 
the other hand, if U, becomes at each revolution greater 
than UI, then  the  angular velocity is a t  each revolution 
diminished. 

The  greater  the momcut of inertia I of the revolving 
mass, and the  greater  the weight p of its unit of  volume (that 
is, the heavier the materia3 of which it is formed), the leas 
is the variation produced in  the angular velocity a by my 
given variation of U or U,-U, at  different periods of the 
Same revolution, or from revolution to revolution; that is, the 
more steady is  the motion produced by any variable action of 
thc impelling force. It is on this principle that  the fly-wheel 
is  used to equalize the motion of machinery under  a variable 
operation of the moving power, or of the resistance. It is 
simply a contrivance for increasing the moment of inertia of 
the revolving  mass, und thereby giving steadiness to  its revo- 
lution, under the operation of variable impelling forces, on the 
principles stated above. This great moment of inertiu is 
given to the fly-wheel,  by collecting the greater purt of it8 
material on the rim, 01 about the circumference of the wheel, 
SO that the distance p of each particle which  composes it, 
from the axis about which it revolves,  may be the greatest 
possible, and thus  the s u m  Xmp*, or I, muy be the greatest 
Possible. At the same time the greatest value is given to the 
quantity p, by constructing the wheel of the heaviest material 
applicable to the purpose. 

What has  here  been said will best be understood in its 
application to  the CRANK. 
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be  overcome, than by the friction of its axis, and the resist- 
ance which the air opposes to  its revolution.* 

78. The rotation of a body  about a&ed ax& when acted upon 
by no other mooing force than its weight. 

Let U represeRt the work  necessary to raise it from its 
second position into the first if it be descending, or from ita 
first into  its second position if it be ascending, and let a, be 
its angular velocity in  the first position, and U in  the Becond ; 
then by equation (51), 

Now it has been shown (Art. 60.), that  the work necessary to 
raise the body from its second position into  the first if it be 
descending, or from its first into  its second if it be ascending 
(its weight being the only force to be overcome), is the same 
as would  be necessary to raise its whole weight collected in 
its ccntre of gravity from the one position into  the  other 
position of its  centre of gravity. Let CA represent the one, 

and CA, the  other position of the body,'and 

! '.,, ?.Js the  centre of gravity, then will the work neces- 

its position CA,, be equal to that which is 
necessary to raise ita  whole  weight W, supposed eolle.cted in 
G, from that pint to G, ; which by Article b6. is  the same 
as that necessary to raise it through  the vertical height GM. 

Let now CG=CG,=h, let CD be a vertical line through 
c, let  G,CD=B, and GCD=B, in  the case in which the body 
descends, and conversely when it ascends ; therefore GM= 
NN,=CN-CN,=hco~.B-hcos.B,whenthebodydescends, 
or = h  cos. $,--h C-. B when it ascends from the position AC 
to AC,, since in this lwt case G C D 4 ,  and G,CD=B. There- 

::&A G and G, the two corresponding positions of 

L >  sary to raise the body  from its position CA to 



. 

. , '  

If M represent  the volume of the revolving body Mp=W, 

: . m* ( (cos. e - cos. 0,) . . . . . (59). 2gh M 

When  the body has descended into  the  vertical position, 
8=0, so that (cos. O - ~ O S . # , ) = ~ - ~ O ~ .  8,=2sin:~~$0,. When 
it has ascended into  that position so that (cos. 8-cos01) 
=-(l +cos. 81)=-:!cos."BS,. 

I n  the first case, therefore, 

I n  the second case, 

a2:u,l-((--LT)CoS.2~01 4ghM . . . . . (55). 

If the body descend from a state of rest, a,=O. 
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Thus the angular velocity acquired from rest is less as the 
moment of inertia I is greater as compared with the volume 
XI, or as the mass of the body is collected farther from its 
axis. 

THE MOMENT OF INERTIA. 

79. Xaning  given the moment of inertia of a body, OT xystem 
of bodies,  about an  axispassing through its centre of gravity, 
toJnlind its nkoment of inertia about an axis,  parallel t o  t h  

jirst, passing through any other point  in the body or system. 

Lct ml be any  element of the body or system, m l A G  a 
plane perpendicular to  the axis, about which 

, ?\ 
,/" ,./ the moments are  to be measued, A the 

L.,,'' point where this plane is  intersected by that -~ , -- 

sected by the  parallel  axis passing through  the  centre of 
axis, and G the point where it is inter- 

gravity of the body. Join AG, Am.,, Gm,, and draw mlMl 
perpendicular to AG. Let Aml=pl, Gml=rl ,   GMI=xl ,  
ACr=h. 
NOW (Euclid,2-12.), A m ~ = ~ G z + ~ m l z + 2 ~ G .  GM,, 

orpl2=h2+rI2+2hx,. 

1111, and both sides of the above equation  be multiplied by it, 
If therefore the volume of the  element  be represented by 

p12ml =Pm, + r12m, + 2hxlml. 
And if %, m3, m,, &c. represent  the volumes of any  other 

elelnenta, and p,, r,, x,; p3, r3, x3, &c. be similarly taken in 
respect to those elements,  then, 

pia% = h2m, + rsam0 + 2hx%%, 
pyam3=h2m3+r~~my+~hx3~ ,  

&c. =&c. 

- 

Adding these equations we have, plzml +pi% +PS'% + . . . 
=~Yml+Sn,+nz,+. . . .)+(r,2ml+r~zmp+r~1ms+ .. ..)+ 
*]@m +.x* + x3ms + . . . ), 

or 2p"m =h%m + W m  f 2 h X m  
0 
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Now Exm is the sum of the momcnts of all the elements of 
the body about  a plane pcrpcndicular to AG, and passing 
through  the centre of gravity G of the body. Therefore 
(Art. 17.) Szm=O, 

:. ~ p * m = h " ~ n ~ + ~ r ' ! m . .  

Also Ep% is the moment of inertia of the body about the 
given axis passing through A, and W m  is  the moment of 
inertia  about  an  axis parallcl to this, passing through the 
centre of gravity of thc body. Let the former moment be 
represented by I,, and the  latter by I ;  and  let  the volume 
of thc body Xm be  rcpresentcd by M, 

:. I,=h2M+I . . . . . (68). 

From which relation the moment of inertia (Il) ahout any 

passing through  the  centre of gravity of the body being 
axis may be found, that (I) about an axis  parallel to it, and 

known. 

the distancc from the axis passing through A, at  which 
80. THE RADIUS OF QYRATION. If we suppose kl to be 

tance, if the whole mass of the body were collected, the 
moment of inertia would remain the same, so that k,'"II, 
then k ,  is called the RADIUS OF GYRATION, in respect to that 
axis. 

If k be  the radius of gyration, similarly taken  in respect to 
the axis passing through G,, so that P M = I ,  then, substitut- 
ing  in  the preceding equation, and dividing by M, 

kiz=ha+ka - . . . . (59) .  

The following are examples of the determination of the 
moments of inertia of bodies of some of the more common 
geometrical forms, about  the axes passing through their 



MOMENT OF INERTIA. 83 

centres of gravity:  they may thence be found about  any 
other axes  parallel to these, by equation (59). 

*81. The moment of inertia of a thin  unifum rod about an 
axis perpendicular  to  its  length and paasing  through it8 
middle paint. 

Let m represent  an  element of the rod contained between 
two plane sections perpendiculsr to its 

-v faces, the  area of each of which is x ,  and 

and  let x and Ap be 60 small that every 
point in this element may be considered to be  at  the same 
distance p from the axis A, about which the rod revolves. 
Then is the volume of the  element  represented  by xAp,  and 
its moment of inertia  about A by xpaAp. So 'that  the whole 
moment of inertia I of the bar is  represented by Zxp*Ap, or, 
since x is  the same throughout  (the  bar  being uniform), hp 
XXp'Ap; or since Ap is infinitely small, it is represented by  the 

definite integral x h f d p ,  where I is the whole length of tbe 

bar, 

LF-paa 
~ - L ~ w  whose distance from one another is Ap, 

l 

- M  

:. I=x{+(41)3-B(-44", 

or I=+&'. . . . . (60). 
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wholc lamina is equal  to  the sum of the  moments of inertia 
of these rods. Now if x be  the  section of any  rod,  and I the 
length of the lamina, then  the  nlonlent of inertia of that rod 
is, by  the last  proposition,  represented by fuxP ; so that if 
the section of each  rod  be the same, and  they  be 11 in number, 
then the whole moment of inertia of the laxnina is &nxZ3. 
Now TAY is  the  area of the transverse  section of the lamina, 
which Inay be represented by K, so that  thc momentum of 
inertia of the  lamina  about  the axis AB is  represented by  the 
formula 

I = - ' ~ K P  l a  . . . . . (GI). 

"83. Tlbe moment of inertia of a, rectc~ngular p , ~ a l l e l o ~ @ e d u n  
ahout an axis, passing through its centre of gravity, and 
parallel t o  either of its edges. 

Let CD be a rectangular  parallclopipcdon,  and AB an 
axis passing through its  centre of gravitg and L 9 parallel an axis to parallel  either  to of tile its first, edges;  passing also let through ab be 

the  centre of gravity of a lamina  contained b Y  
U planes  parallel to  eithcr of the faces of the 

three edges ED, EF, EC;, of the parallelopiped,  then will 
parallelopiped. Lc t  a, h, c, represent the 

the momentun1 of inertia of the  lamina  about  the axis ab be 
represented by &Kb', where K is the transverse  section of 
the lamina  (equation 61). Now let  the  perpendicular dis- 
tance  between  the  two axes AB and ab be  represented bY 
5. Then (by equation 58) the  momentum of inertia of the 
lamina  about  the  axis AB is  represented by the formula 
2% + +EK6D, wherc M represents  the  volume of the lamine. 
Let  the thickness of the lamina  be  represented by A$; 
.'.M=abAx,K=aAx; . ' .m' inaof lam'=abx~A~++,~ab3A~;  
:. whole m'in" of para l le lopiped=ab~x~~x+~~ab3;SAx;  or 

5; D 



MOMENT  OF  INERTIA. a5 

taking A x  infinitely small, and representing the moment of 
inertia of the parnllelopiped by I. 

*&+h. The moment of inertia of an  upright  triangula? prism 
about a vertical  axis  passing  through  its eelatre of grauity. 

be a vertical axis passing through  the  centre of 
gravity of a prism, whose horizontal section is 
an isosceles triangle having the equal sides ED 
and EF. 

Let two planes be drawn parallel to the face 
DF of the prism, and  containing between them a 
thin lamina pp of its volume. Let Cm, the per- 

of gravity of this lamina from the  axis AB, be 
pendicular distance of an axis passing through 

represented by x ;  also let As represent the thickness of the 
lamina. 

Let DF= a, D G = b ,  and let  the perpendicular from the 
vertex E to the base DF of the  triangle DEF be  represented 
by c, 

:. EC;#c,Erra=#c-x; also=--- 
Em 

DF- c ' 



, , .  

l ! ,  

ing  the  inertia of the prism  about All by I, we have 
Performing  the  intcgrations here indicntcd,  and represent- 

I = &hc(~a2 + +c') . . . . . . (63). 

*85. T h e  momenl of inertia of a solid cylirzder about its ais 
of symmetry. 

Lct AH bc  the  axis of such n cylinder, whose  radius ilc 
is represented  by a, and its height  by b. Con- 
celve the  cylinder to  \>e made up Of cylindrical 

having the samc axis ; let hP=p be the 
internal  radius of one of these, and let its thick- 

PQ be  represented by Ay, so that p + hp is 
' the  extcrnnl  radius AQ of the ring.  Then will 

the vohme of the  ring  bc  represented by d ( p  + ~ p ) l - z h p ' ,  or 
by ah[2pAp t (Ap)'] ; or if Ap be taken  exceedingly small, so 
that (Ap)' may vanish as compared with 2pAp, then is the 
volume of the  ring  represented by $ 2 ~ 6 ~ 4 .  

Now this  being  the case, thc ring may be considered as an 
element AM of the volume of the solid, every  part of which 
element  is at  the samc  distance p from the  axis AB, so that 
the whole moment of inertia X:pzAM of the  cylinder =-p $ 1 

(2nbpAp)=2?rb2:p3Ap, 

.e 

:. l=2wb.f$'dp=+=bad . . . . . (GP) .  
0 
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radius AP, and b the height of the cylinder; 

inertia of the cylinder CD, if it were solid,  would 
then  by  the  last proposition the  moment of 

be +ban4 ; also the moment of inertia of the 
cylinder PR, which is taken from this solid to 
form the hollow cylinder, would be + ~ b a ~ ~ .  Now 

lct I represent the moment of inertia of the hollow cylinder 
CP, therefore I + 4~b?rba*~ =+xba14, 
:. I = ~ ? r b ( a , 4 - a ~ ) = ~ n b ( a , ~ - a p 2 ) ( a 1 2 ~ + a p 2 ) = ~ b ( a ~ - a s )  

(a1 +%)(a? + 4 .  
Let the thickness al-a,  of the hollow cylinder be  repre- 

sented by c, and its mean radius &(al+%) by R, therefore 

Substituting  these values in  the preceding equation, we 
a l=R+gc ,  a,=R-$c. 

obtain 

I=%bcR{R* + &c2) . . . . . (65). 

*87. The moment of inertia of a cy&n& about an axkpaJ8- 
ing through its centre of graoity, and peqmdicuhr to its 
a& of symmetry. 

Let AB be such an axis, and  let PQ represent a lamina 
contained between planes perpendicdar to 
this axis, and exceedingly near to each other. 
Let CD, the axis of the cylinder, be repre- 

p &G ..., : 
~ !L j 

~ .~...~..A ,,y sented by b, its radius by a, and let CM=X. 
. < :  Take AS to represent the thickness of the 

lamina, and  let MP=y. NOW this lamia 
may be considered a rectangular parallelopiped traversed 
tllrough its  centre of gravity by the axis AB ; therefore b. 
equation (62) its moment of inertia  about that axis in repre- 
sented by :,(AS)boa(zy)fb'+(2y)')=BBt~~++)A~. Now 
the whole moment of inertia 1 of the cylinder about AB 
is evidently equal to the sum of the momenta of inertia of all 
such lamim ; 

:. I = ~ b r ( s p + P y 3 1 A x = ~ 6 ~ b ~ ~ y + ' ) a z .  4 

0 4  

ti 
. 
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Also, since x and ,y are the co-ordiuates of a puint in a 
circle from its  centre,  thcreforc y = ( ~ ~ - - 1 , ~ $ .  Suhstituting 
this value of y, and  integrating  according  to  thc well known 
rules of the  intcgral calculus, we have 

I=$nba?(u*++b") . . . . . (GG) .  

I. , , 

.:. l=l'oaLa4 . . . . . (67). 
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about which its mament is to be determined. 

;, ,!;‘TT ui6:fc.~~ ... Let PQ be any lamina contained by planes 

Tepresent the thickness of the lamina, and y 
perpendicular to AB ; let CM=x, and let Ax 

its radius ; also let C A = a  ; then since this lamina, being 
exceedingly thin, may be considered a cylinder, its moment 
of inertia  about the axis AB is (equation 64) +ay4Ax; and 
the moment of inertia I of the whole sphere is the sum of 
the moments of all such laminae, 

Lii ” 

.~~ - 

+ D  

-a 

Now by the  equation  to the circle y2=a2-x’, therefore 
?/’ =a4 --2a*P +x+. If this value be  substituted for y4, and 
the integration be completed according to the common  me- 
this, we shall obtain the equation, 

I=&aaS . . . . . (68). 



90 UIOXENI OF lNERT1A. 

follows (equation SS), that  the  moment of the lanlina about 
CD is  represented  by ny2zzAx+  +ny4Az=a(y1x2 + *y')AS. 

Now the  moment I of the whole  cone  about, CD equds 
the sum of the moments of all such elements, 

:. I=aZ(y2zz+$y4)Az. 
Now  if a be the  radius of the base of the cone and b its 
height,  then since BG=@, 

I 
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Now y2=az-x2, therefore yax''+~y4=t{2aax2-W+a4). 
Substituting  this value in the  integral and integrating, we have 

1=$~lr(16as+15a'b+10a2bs--!lb5) . . . . . (70). 

TIIE ACCELERATION OF MOTION BY GIVEN 
MOVING FORCES. 

92. Ir the forces applied to a moving  body in  the direction 
of its motion exceed those applied to it in the opposite 
tion (both  sets of forces being resolved in  the direction Of a 
tangent to  its path), the  qotion of the body be aCc&- 

mted;  if they fall short of those applied in  the opposite 
dircction, the motion will he retarded. In either  the 
excess  of the one set of forces above the  other  is called the 
MOVING FORCE upon  the body : it is measured by that single 
pressure which being applied to  the body in a direction 
ol'posite to  the  greater force, would just balance i t ;  or which, 
had it been applied to  the body (together with the  other forces 
impressed upon it) when in a state of rest, would  have  main- 
tained it  in  that  state ; and which therefore, if applied when 
its motion bad commenced, would have  caused it to p m  fmm 
a state of uariabze to one of anifom motion. Thus  the moving 
furce  upon a body which descends freely by gravity, is mea- 
sured by its we&$, that is, by  the single force  which, being 
applied to the body before its motion had commenced in a 
direction opposite to gravity, would just have supported it, 
and which being  applied to it a t  any  instant of its descent, 
'vould have caused its motion at  that instant t 0 . p  from a 
state of variable t o  a state of uniform motion. If the remse 
awe of the air  upon  ita  descent  be taken into account, then 
the moving force upon the body at  auy inshut is measured 
by that single pressure which, being applied UpwWds, Would, 
together with the reiistanee of the air at  that instant, just . 

the weight of the body. 
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A moving force  being thus  understood  to be measurcd by 
a pressure*, being  in  fact  the wlhnlanced pressure upon the 
moving body, the following relations  between the amount o f a  
moving  force thus measured, and  tbe  dcgree of acceleration 
produced by it mill become  intelligible.  These  are laws of 
motion  whicb haw become known by experiment upon the 
motions of t.he bodies immediately  around  us,  aud by observ- 
ation  upon  those of thc planets. 

93. When the moving force  upon a body rcmains con- 
stantly  the same in  amount (as measured by  the equivalent 
pressure)  throughout  the  motion, or is a u7riform moving 
force, it communicates  to it equal  additions of velocity in 
equal successive intervals of time.  Tlrns thc moving forcc 
upon a  body  desccnding  freely.  by  gravity  (mcasurcd by its 
weight)  being  constantly the same  in  amount  throughout its 
descent (the  resistance of the air being  neglected),  the body 
rcceivcs from it  equal additions of velocity in  equal successive 
intervals of time, viz. fect i n  each successive seeond of 
time (Art. 44.). 

1 ,  i , 

! 
' , , , ,  

94,. The  incremcnts of velocity  communicated to e q d  
bodies by unequal moving  forces  (supposed unllf.vm as above) 
arc  to  one another as the  amounts of those moving forces 
(measured  by their  equivalent ~ressu~ ' .~) .  

Thus let P and PI he  any  two  unequal moving forces upon 
two  equal bodies, and Ict them  act  in  the  directions  in which 
the bodies  respectively move ; let  them  be  thc only forces 
tending  to  communicate  motion to those bodies,  and remain 
constantly the same  in  amount  throughout  the motion. Also 
let .f and fi represent  the  additional velocities which these 
two forces  respectively  communicate to those two equal bodies 
in each successive second of rime ; tllen it is a law of the 
motion of bodies, determined  by  observation  and  experiment, 
that P : P, ::f : f,. 

operation of the same principle of force. 
* Pressure and moving force are indeed but different modes of the 
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If one of the moving  forces,  as  for instance P,, be the 
%eight W of the body  moved. then  the value fi of .the in- 
crement of velocity per second corresponding to  that moving 
force is 32g (Art. 44.) represented by g, 

:. P : W:: f : g, 

:. P=-f . . . . . (71). W 
9 

95. If the  amount or magnitude of the moving force does 
not remain the same throughout  the motion, or if it be a 
Gariable moving force, then the increments of velocity com- 
municated by it in  equal successive intervals of time are  not 
equal ; they increase continually if the moving  force increases, 
and they diminish if it diminishes. 

If two unequal moving  forces, one or both of them, thus 
variable in magnitude, become the moving  forces of two equal 
bodies, the additional velocities  which they would  communi- 
cate in the same interval of time to those bodies,  if at any 
period of the motion from oariable they become un~om. are 
to one another (Art.. 94.) as the respective moving  forces at 
that period of the motion. 

Thus let f and fI  represent the additional velocities which 
(could thus  be communicated to two equal bodies in one 
second  of time,  if at any instant  the pressures P and PI, 
which are at  that instant  the moving  forces of those bodies, 
were  from variable t o  become constant pressures, then 
(Art. g&), 

P : P1 :: f : f]. 
This being true of any two moving  forces, is evidently true, 
if one of them become a  constant force. Let p, repre- 
Sent the weight W of the body, then will fi be  represented 
hY g, 

:. P :  W::f :g. 
Idet  the moving force P he supposed to remain conshut 

hY A t ,  and  let AV be the increment of velocity in t b t h e  
during a numher of seconds or parts of a second, represented 
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A t  on this supposition. Nowf rcpresents  thc increment of 
relocity in  each  second,  and A V  thc  increment of velocitg 
im A t  seconds : moreovcr the  force P is supposrd constant 
during At,  so that  the motiou is nmiforormly accelerated during 
that time (Art.4.4.). 

i i ,  
, ,  

Now this is true (if the supposition,  that P remains constant 
during  the  time At ,  on:which it  is  founded, bc true), however 
small the  time At may'be.  But if this  time be infinitdy 
small, the supposition on which it  is fouudcd  is in all cases 
true, for P may in all cases bc considcred to remain  the same 
during  an infinitely  small  period of time,  ,zlthougI~ i t  does not 
remain  the same during  any  time which i s  not infinitely 

' 
. #  If V increase  as the  time t increases, or if the  motion be 

~ ' l  dv ';l:, ~ , , ,  i i j '  
l ) ,  l , ,  , 

accelerated, then ~~~ - is necessarily  a  positive quantity. If, on 

the contrary, V diminishes as the  time increases, then dV is 

negative ; so that, generally, 

dt 

p = + - -  - _  W d V  
- g dt . . . . . (73). 

~: ' ,  ,, 

! 
i 

The principles stated above constitute  the  fundamental rela- 
tions of pressure and motion. 
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96. The velocity V at any instant of a body  moving with 
a zmrinble motion, being  the space wbich it would describe in 
a second of time, if at  that instant  its motion werc to become 
uniform, it follows, that if we represent by At any  number 
of seconds or parts of a second, beginning from that instant, 
and by A S ,  the space which the body would  describe in  the 
time At ,  if its motion continued uniform from the eommence- 
ment of that time, then, 

AS 
V A t Z A S ,  :.V=-. At 

Now this  is true if the motion remain uniform during the time 

in&iteZy small. But if the time A t  be z'n3niteZy small, the 
At ,  however small that time may  be, and therefore if it be 

motion  does remain uniform during that time, however variable 

maybe the moving force; also when A t  is infinitely smaU,pt = A S  

as 
~~ dt. Therefore, generally, 

v=xi . . . . . (74). 
dS 

:. 



,: 
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It is clear that  the time required for the body's descent 
from A to B is equal to  that necessary for the ascent from B 
to A, so that  the whole time  required to complete the ascent 
and descent is equal to  T, and is  represented by the formula 

T=(. W *  ) ?r . . . . (76). 
C9 

Now this expression does not  contain S:, i.e. the distance 
from which the body falls to B ; the time T is the same 
therefore, whatever that distance may  be. 

THE SIMPLE  PENDULUM. 

98. a heauy particle P be imagined to be w p e n d e d f r m  a 
paint C by a thread without weight, and allowed to  oscihte 
freely, but so as to  deviate but little on either side of the 
vertical, then will its oscillations, so long aa they are thw 
small, be perfomzed in the  same time whatever their ampli- 
tudes may be. 

For let the inclination PCB of CP to  the vertical be repre- 
F sented by l, and let  the weight W ofthe particle PS 

which acts in the direction of the vertical vp, be 
resolved into two others, one of  which in  the 

' direction CP, and the  other perpendicular to .&at 
direction; the former will be wholly countamtad 
by the tension of the thread CP, and the latter will 

be represented by W sin. VPC =W sin. l ; and, acting in the 
direction in which the particle P moves, this will be the W h a k  

impressed moving force upon it (Art. 92.). NOW SO long 
the arc B is small, this  arc does not differ  aensibly from ita 

sine, so that for -8 owillations the impressed  moving force 

uPo:l P is represented by W O ,  or  by so(@ --I or by 7, If 1 w p m  

the length CP of the suepending thread, and S the h& 

,"l, i 
! :  

k - j  

vs 1 

I 

a 

. .  

, :  
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nf the  arc BP. Now in this  expression w and 2 are constant 
throughout the oscillation, the ~noving h r c e  raries therefore 
as S. Hence by the  last proposition, thc small oscillations on 
either sidc of CB are isochronous,  sincc so long as they are 
thus small, the impressed moving force in the direction of the 
motion varies as the  length of the  path BY from the lowat 
point D. Since  in the  last proposition the moving forcc \vas 
assunled equal to CS, and that here  it is  rcpresented 

3 ,  therelbre in this case e = -  . Sobstituting  this value in l 
equation (76), 

?l1 U' 
I 

I ' ,  
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that time. Therefore the proposition is  true genedLy, when, 
as abuve, the moving  forces are supposed to  act on equal 
bodies, or successively on the same  body, through equal  ex- 
ceedingly small intervals of time. 

Moving  forces thus acting  through exceedingly small in- 
tervals of time only, are called IMPULSIVE FORCES. 

THE PARALLELOGRAM OF MOTION. 

100. If two impulsive fwces P,, Pe whose directww W E  AB 
a d  AC, be impressed at the  8ame t b  y)on a 
body at A, which if made to clet upon i t  wpp- 
rate& WO& cause i t  to m e  through AB a d  

AC in tibe same given  time, then will t h  body be mad% by 
the simwltaneow action of these impulsioe forma, to &&be 
in that time the diagonal AD of the paralkhgracn, Of 
which AB and AC are  adjacent sidea. 

For the moving  forces PI and P 2  acting separately upon 
the same  body through  equal infinitely small time4 commuui- 
cate to it velocities which are  (Art. 99.) 88 those forces, 
therefore the spaces AB and AC described with these velo- 
citicn in  any given time are also as those forces. Since 
then AB and AC  are to one another as the pressures Pl~and 
p,, therefore by the principle (Art. 2.) of the p a d b l w m  
of pressures, the resultant R of P, and PS is in the direction 
of the diagonal AD, and  bears the same proportion to P1 and 
p, that AD does to AB and AC. 

p, would communicate to  the body in any exceedingly small 
time is to the velocities which PI and PS would "pqately 
communicate to it in  the same time as AD to AB and AC 
(Art. 99.X and therefore the spaces which the body would de- 
scribe uniformly with  these three velocities in any equal times 
are in the  ratio of these three linea But AB and AC me 
the spaees actually described in  the equal times by mmon of 
the impulses of p, and p* Therefore AD M the epee de- 

- 

Therefore the velocity which the resultant R of P1 

H a  
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scribed in that time by reason of the  impulse of It, that i s  
by reason of the simultaneous impulses of l', and P,. 

THE POLYGON OF MOTION. 

10%. Let any number of impulses be communicated eimul- 



THE PRINCIPLE OF D'ALEMBERT. 101 *(P taneously to  a body at 0, one of  which would 
cause i t  to move  from A to 0 in a given time, 
another from B to 0 in the same time, a 

from D to 0. Complete the parallelogram of 
which A 0  and BO are adjacent sides ;.then  the impulses A 0  
and BO would simultaneously cause the body to move  from 
E to 0 through the diagonal EO in the time spoken of. 
Complete the parallelogram EOCF, and draw its diagonal 
OF, then would the impulses EO and CO, acting simultane- 
ously, cause the body to move through F0 in the given time : 
but the iapulse EO produces the same effect on the body aa 
the impulses A 0  and BO; therefore  the impulses AO, BO, 
and CO, will together cause the body to move through F 0  in 

the impulses AO, BO, CO, and DO, will together cause the 
thc given  time. In   the same manner it may  be shown that 

body to move through GO in a time  equal to that occupied 
by the body's motion through any one of these l ies .  

the polygon OAEFG, whose other sides OA, A E ,  EF, FG, 
It will be observed that GD is the side which  completes 

are respectively equal and parallel  to  the directions OA, OB, 
oc, and OD, of the simultaneous impulses 

Instead of the impulses AO, &c. taking place simulta- 
neously,  if they had been received successively, the body 
]noring first from 0 to A in a given time ; then through AE, 
which is equal and parallel to OB, in an equal time;  then 
through EF, which is equal and p a l l e l  to OC, in that time ; 
and lastly through FG, which M equal and p a l l e l  to OD, in 
that time, i t  would have arrived at  the same point a. to 
which these impulses have brought it simultaneOl&', but 
after a period as many times  greater as there are motions, So 

that the principle of the independence of simultaneous motion8 
obtains,  however great may be  the number o f . s d  motions. 

"' third from C to 0 in  that time, and a  fourth 

THE PRINCIPLE OF D ~ E M B B R T .  

103. Let W,, W, W,, &c. r e p m n t  the weights 0t-q 
E 8  ' 

. .  . . ., . 
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number of bodies in  motion,  and P,, P,,  P,, kc.  the moving 
forces (Art. 92.) upon these  bodics at  any given  instant of 
the motion (i. e. the ~ ~ ~ z b d a n c c d  pressures, or the pressures 
which  are wholly  employed in producing  their motion, and 
pressures equal to which,  applied  in  opposite directions, 
would  brine  thcm to  'rest, or to a state of uniform motion). 

1 ' .  

I " " 
fl, f*.f3, &c. rcpresent  the  additions of velocity which the 
bodies would receive  in  each  second of time,  if the nloving 
forcc  upon  each  were to become, at  the  instant  at which it is 
measured, an unifurm moving forcc. Suppose these bodies, 
whose  weights  are W,, W,, W,, &c. to form a sp tem of 
bodies united  togcther by m y  conceivable  mechanical con- 
nection,  on which  system are impressed, in any way, certin 
forces, whence  result  the  unbalanced  pressures P,, P,, Pe &!c* 
on  the moving points of the systcm.  Now conceive that to 
these moving points of the system there  are  applied pres- 
sures respectively  equal to P,, Pp, P,, &C. but each in a 
direction  opposite  to  that  in which the motion of the corre- 
sponding  point is accelerated or retarded. Then will the 
motion of each particular  point  cvidently pass into a state of 
ungorrn motion,  or of rest (Art. 92.). The whole  system of 
bodies  being  thus  then  in a state of uniforln  motion, or of 
rest,  the forces applied to its different elements  must  be forces 
in  equilibrium. 

Whatever,  therefore,  were  the  forces  originally impressed 
upon  the  system,  and  causing its motion,  they  must, together 
with  the  pressures P,, Pp, Pa, &c. thus applied,  produce  a state 
of equilibrium  in the system ; so that  these forces (originally 
impressed  upon  the system, and  known  in  Dynamics as the 
IMPRESSED FORCES) have to  the forces p,, p*, p3, &c.  when 
applied  in  directions  opposite to the  motions of their several 
points of application, the  relation of forces in  equilibrium. 
The forces PI, P,, Pa, &c. are  known in Dynamics &S the 
EFFECTIVE  FORCES. Thus in any  system of bodies 
connected in any way,  so that  their mtions may mutually 
ininence one another, if forces epual t o  the  efectioe p e e s  
were applied in directions opposite tu their actual  directiom, 
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these would be i n  equilibrium  with  the  impressedforces,  which 
is the principle of d'Alembert. 

104. The work accumulated in a  nmving body through  any 
s p c e  is e g ~ l  to the work which m.ust be done upon it, in 
nn opposite direction,  to ouercome the  efectiue  force  upon it 
lhrough  that space. 
This is evident from Arts. 68 and 69., since the effective 

force is the unbalanced pressure upon  the body. 
If the work of the effective force he said to be done upon 

the hody*, thcn the work of the effective force u p =  it is 
equal to the work or power accumulated in  it, and this work 
of the effective force may be all said to  be actually accumulated 
in the body as in a reservoir. 

MOTION OF TRANSLATION. 

DEFINITION. When a body  moves  forward in space, 
without at  the Same time revolving, so that all its  parts move 
with the same velocity and in parallel directions, it is said to 
lnove with a motion of tramlation only. 

105. In order  that a  body may moue with a motion of tramb- 

have its direction  through  the  centre of gravity of the 6%. 
tion only, t?Ae resu2tant of the forces impressed yon it muat 

or elements of the body, and  letfrepresent  the additional 
For let wI, wP, ws, &c. represent the weights of the p- 

velocity per second,  which any  element receives or would 
receive  if its motion were at any  instant to become uniformly 
accelerated. Since the motion is one of translation only, the 

element. The effective forces P,, P*, Pa, &e. on the different 
value off is evidently  the same jn respect to every other 

elements of the body are therefore represented by -f -5 W1 wp 
9 ' 9  

7% 
g f ,  sic. &c. 



l. , 
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Now since +m,, (*.m, pm,y, &c. are  the weights of the ele- 
ments, andfl, f., &c. the  increments of velocity they receive 

per second, i t  follows that ’*m’$,, &c. are  the 

effective  forces upon them (Art. 103.). Let pl, pp, pa, &c. 
represent the distances of these elements respectively from 
the  axis of revolution, then since their effective  forces are 
iu directions perpendicular to these distances, the moments 

9 9 9 

of these effective forces about  the  axis  are -hp,, -hpn, P? P% 
9 9 

pma 
- &pa, &c. Also P,p,, P9p9, Pyp8, &c. are the moments of 9 

the impressed forces of the system about the axis. Now the 
imprrsscd forces P,, P,, PS, &c. together  with  the resistance 
of the axis, which is indeed one of the impressed  forces, are 
in equilibrium Tith  the effective forces by d’A1embert.s prin- 
ciple. Taking then  the axis as the point from  which the 
moments are measured, the  sum of the moments of P,, P,, &c. 
must equal the sum of the moments of the effective  forces, or 

Now let f represent that value of fi, fn, &C. which cor- 
responds to a distance  unity from the axis. Since the 
system is rigid, and f, fi, h, &c. represent arcs described 
about it in the same time at  the different distances 1, PI, p%, 
&c. i t  follows that these apes are as their distances, and 
therefore thatf, =fpl, f g = f p o ,  fa=fps, &c. Substituting  these 
values in the preceding equation, we have. 

. . f g ~ m , P l = + ’ ” n P * 2 + .  . . .l=P1pl+PQp¶+. . . ., . I *  

or f - z m p a = Z P p .  . . ., P 
9 

. . f=- 9 Zpp . . . . (78), 
P T ’  
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wherc I represents the lnolncnt inertia of thc mass about 
its axis of revolution.* 
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' $ L - ~ - - *  
Take a  point in  the axis for thc point 

x' "yr 
about which the moments are measured, 

1)  ".;\ and let L he the perpendicular distance 
*... '+ from A of the resultant R. Now, as in 

Yj 
: - + .  Art. 106. i t  appears that  the sum of the 

moments of the effective  forces about A is 
II 
9 

represented by f ~-2mp", 

:. RL=f -fmp' . . . . . (80). P 
g 

To determine the value of R let  it he observed that  the 

effective force Flpl on any  particle m,, acting in a diet- 

tion np,, perpendicular  to the distance Aml from the  axis 
A, may he resolved into two others, parallel to  the two rect- 
angular axes Ay and Ax, each of  which is  equal  to the 
product of this effective force,  whose direction is %m19 and 
the cosine of the inclination of %,m, to  the corresponding 
axis.  Now  tine inclination of m,n, to Az is  the Same as 
the inclination of Am, to Ay, since these two last lines are 
perpendicular to  the two former. The cosiue of this inclina- 

tion equals therefore - ANI or YI -, if AN1=yI. Similarly 
Am1 PI 

the cosine of the inclination of nlm, to  Ay equals =or-> 1 
AMI XI .f 

-~M,=x,. The resolved parts  in  the directions of A!/ and 

Ax of the effective force ?,pl me therefore I P ? ~  and 

p XI 
,j&lpl-, or - mly, and - mlxl. 

Pi 

P h  
P1 7 2 

Similarly the resolved parts  in  the directions of AX and 

AY of the effective force upon na, are pwsald$fW*, and 
SO of the rest. 

The sums x and y of the resolved forces in  the directions 
Of Ax and Ay respectively (Art. 11.) are  therefore 

. . . .  =x, 
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NOW let B be the inclination of the resultant R to  the 
axis Ax, 

:. (Art. II.), R cox. O=X, R sin. O=Y, 
Y 
x :. tan. O=- ;  but byequationa (SI), 

:. tau O =  tan. AGG,, :. B= AGG,. 
The inclination of the resultant R to Ax is therefore equal 

to the angle AGG,,  but  the perpendicular to AG is evi- 
dently inclined to   Ax at this same angle. Therefore the 
direction of the  resultant R is perpendicular to the line 
AG, drawn &om the axis to the centre of gravity. More- 
over its magnitude and  the  distance of its point of applica- 
tion from A have been before determined by equations (83) 
and (84). 

THE CENTRE OF PERCUSSION. 

109. It is evident, that if at a  point of the body through 
which the resultant of the effective  forces upon it passes, there 
be opposed an obstacle to  its motion, then  there will be pro- 
duced upon that obstacle the same effect as though the whole 
of the effective  forces were collected in that point, and made 
to  act there upon the obstacle, so that  the whole of these 
forces  will take effect  upon the obstacle, and there will be 

no effect of these forces produced elsewhere, and there- 

that  the point 0 in the resultant, where it cuts the 

&led the CENTRE OF PERCUSSION. Its distance L from 

fore no repercussion upon the a x i s .  It is for this 

line AG drawn &om the axis to  the centre of p v i t y ,  is 

A is determined by the  equation 
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which  is obtained from equation (M) by  writing MK* for I 
(Art. SO.), K being the radius of gyration.  If  at the centre 
of percussion the body receive an impulse  when  at rest, then 
since the resultant of the effective forces  thereby produced 
will have its  direction  through  the  point  where  the impulse 
is  communicated, i t  follows that  the whole inlpulse will tke 
effect in the  production of those  effective forces, and no 
portion bc  expended on the axis. 
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without weight. This point  in the body, at the distance of 
which from the axis a single particle suspended freely, would 
perform its oscillations precisely in  the same time that  the 
body  does, is called the CENTRE OF OSCILLATION. 

Thc centre of oscillation  coincides with the centre of 
percussion. 

11 1. For (by equation 79) the  increment of angular velo- 
city  per second f of a body revolving about an horizontal 
axis, the forces impressed upon it being the weights of 

d where B is the inclination to  the vertical of the line AG, 
drawn  from the axis to its centre of gravity. But (by equa- 

tion 84), L =-, where L is the distance A 0  of the centre 

of percussion  from the axis, 

its  parts only, is represented by the formula y~ sin. 8, 
MG 

I 
MG 

:. fL=gsin.8. 

Now it has been :shown (Art. 98.), that  the impreared 
lnoving force on a  particle whose weight is W, suspended from 
a thread without weight, inclined to  the vertical a t  an angle 
8 ,  is represented by W sin. B ; moreover Xf’ represent the in- 

crement of velocity per second on this particle, thenTf is 
W 

the effective  force upon  it. Therefore by  d‘AIembert’s prin- 
ciple, 

Y 
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of the  centre of percussion,  since it would receive, 

per second that  the centre of percnssion  does, it would 
same distance from the axis, the same increlnents of  vel& 

festly move exactly as that  point does, and perform  its o d  
lations in  thc same time that the body does. Thercfore, h. 

:. (equation 85), L=--=G+- . . . . . (8% G2 + k% 
G 

k" 
G 

.'. GI=G . . . . (88). 
k2 
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meant, when i t  is said that  the centres of oscillation and SW- 
pension arc reciprocal. 

PROJECTILES. 

113. To determine the pa th  of a body prdected  obiiquek 
in  oacuo. 

Suppose the whole time, T seconds, of the flight of the body 

y.,; ,__.? path, to be  divided into equal 
L ./.<.--' !o exceedingly small intervals, 

'Wr cene  the whole  effect  of gr* 
vityupon  theprojectileduring 

each one of these intervals to he  collected into a single im- 
pulse at  the termination of that interval, so that  there may 
be communicated to  it  at once, by that single impulse, all the 
additional velocity  which is in reality communicated to it by 
gravity a t  the different periods of the small time AT. 

Let AB be the space which the projectile would describe, 
with its velocity of projection alone, in the first interval of 
time ; then will it be projected from B at the commencement 
of the second interval of time in  the direction ABT with a 
velocity which would alone carry it through the distance 
]<K= AB in that interval of time ; whilst at the same time it 
receives  from the impulse of gravity a velocity such as would 
alone carry it vertically through a apace in that in tend  of 
time  which may be represented by BF. By reason of these 
two impulses communicated together, the body  will therefore 
describe in the second interval of time the diagonal BC ofthe 
Parallclogr~ of which BK and BF are adjacent sides. At 
the commencement of the  third  interval it will therefore have 
arrived at  C, and will be projected from thence in  the direc- 
tion BCX, with a velocity which would alone q it through 
CX=BC in  the  third  interval; whilst at the same time it 
receives an impulse from gravity communicating to i t  a velo- 
city which  would alone carry it through  a distance represented 

,,./F to  any given point P of its 
, ,-. 

,,,~,~~~~,.-~----.--~ y------- El represented , by AT, andwn- 
,/: 

I 
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by CG=BF in that  interval of time.  Tllcsc  two impulses 
together communicate  therefore t.o it  a velocity which carries 
it through CD in thc third interval, and thus i t  is made to  
describe  all the sides of thc polxgon ADCD . . . P in socces- 
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Nom BF is the spacc  through which it would  he carriedin 
thr time AT by this velocity, 

:. BF=(yAT)AT=g(AT)a, 

:. TP=$gn(n-l)(AT)z. 

AT, and thcrcforc if they be infinitely small, that is, if the 
Now this is true, however small  may  he the intervals of time 

impulses of gravity be supposed to follow one  another at in- 
finitely small intervals, or if  gravity he supposed to act, aa it 
really does, eontilzuoecsh~. 

Rut if the intervals of time AT he infinitely  sma& then 
the number m of these  intervals  which  make up  the whole 
linite time T, must be infinitely  great.  Also  when n is in- 

finitely great, ~~ A. 1 
n 

In the  actual case, therefore, of a projectile continua@ 
deficcted  by  gravity, the vertical  distance TP between the 
tangent to its  path  at  the point of projection, and its position 
P after the flight has  continued T seconds, is  represented 
the formula 

TP=+ggTa . . . . . (89) 

Moreover AT =&B, and AB is the space which the b.dY 
would describe  uniformly  with the velocity of projection is 
the  time AT, SO that nxB is the space which it Would 
describe in  the  time n . AT or T with that velocity. Ifthere- 
fore V equal the velocity of projection, then 

AT-=V, T . . . . (W); 
30 that the position of the body  after  the  time T is the 
same as though it had moved through  that  time with the 
veh i ty  of its projection akne, describing AT, and  had then 
fallen through tbe Same time by the force of gravity a h %  

TP (see AIL 101.). 
l2 



Let  H bc the height through which a body must fill freely 
by  gravity  to acquire the velocity V, or the height due to 

that velocity ; then V2=2gH (Art.4,;.), tllererore 4H=-- i 
'p 

therefore, by  substitution, 
9 
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and X its whole range upon the plane, then, since at  the  ex- 
piration of the time T, y=O and x=X, 

1 lti. To $find the  greatest  horizontal  distance X, to  which a 
projectile  ranges, haoing given  the  elevation a and the 
, d o c i t y  V of its  projection. 

When the projectile attains its greatest  horizontal range, 
its height y above the horizontal  plane 
becomes 0, whilst the abscissa z of the T ,...l 

,.'. ~ 

./' I point P, which it has then reached in its 

/C' ~ I ". ..\ values 0 and X, for q and x in equation 
.,*. path, h o m e s  X. Substituting  these 

\ 
~~~ ;-.I..-+ Xa secp a 

(92),we have 0=X tan. U--- 4H ' 
:. X=4Htan.ucos.~or=4Hsin.acos.a. 

:. X=2Hsin.% . . . . (94). 

If the body be projected at different angular elevations, but 
wit11 the same  velocity, the horizontal range will be the 

greatest when  sin. 2u is the  greatest, or when2a=-, ora=* 
I 

2 
r 
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1 19. To find the range of a projectile upon an inclined piane. 

Idet l< rtprescnt  the  range AP of a projectile  upon an 
,-- n inclined  plane AB, whose inclination is I .  

,<'~,; :...--<-'..., Then H and a being  taken to represent 

bcing the co-ordinates of P to the horizontal axis AC, we 
haye 

.AL-~.~~ ~~~~ ...... ~ ~ ~ ~ . ~ . . ~ ~ ! L  " 
I --~---'-'t the  same quantities as before, and 3c, 

r=AM=AP COS. PAM=R COS. I,  

y=PM=AP sin. PAM=R sin. I. 

Substituting  these  vdues of 3c and y in the general  equa- 
timi (92) to  the projectile, we have 

R sin. I=R cos. I tan. a-  
RP cosa I U 

4H 

1)ividing by R, multiplying by cos. a, and transposing 

I t  ros.' 8 sec. a - 
~ ~~~~ 

4H- 
-cos. 1 sin. a-& t cos. a=sin. (a-&)> 

. (97). 

R=2H { sin. (%-I)-sm. I 

cos." l 
. ] . t . . . (98). 
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If in the preceding  eaprcssion for t,he range we substitute 

~- z-1) for m, the value of the expression mill  bc found 

to remain the same as it  was before ; for sin. ( % - I )  will, by 
this  substitution, become sin. { w - $ 2 ( a - , ) - ~ ) = s i n .  {m-(% 

- I ) ]  =sin. ( % - L ) .  The value uf R rcn~ains therefore the 

sanlc, whether thc anglc of elevation be U or g-(gd'). 
And  the projectile will range  the same distance on the plane, 
whether it be projected at one of these angles of elevation or 
the other. 

Le t  BAC be thc inclination of the plane on which  the 
projectile ranges, and hT t l ~ u  dircc- 

1 ,:! ,,' 
tionofyrojection. Take DASequalto 

j ;, /' /' BAT. Thcn ~AT=TAC-BAC= 

{ ; (  1 

m 

* 
-HAT=, - ( u - I ) .  The range AP is illerefore thc s i l w  

whether TAC or SAC be thc anglr of elevation, an& therefore 
wlwther AT or AS be the direction of prr'jection. 

Draw AE bisecting the angle BAD, then  the angle EAC= 

2 

K A C + B A E = R A C + ~ B A D = , + ~ ( ~ - , ) = ~ + ~ ~ .  a 1  

The  augle EAC is tl~rreforc  that corrcsponding to the 
gmzies t  range, and AE is the direction in wllicll n body slmlld 
be projected to  range the greatest distance on  the i n c l i ~ d  
plane AB. 

It is  evident that the dircctions of projection AS and AT, 
wllicb correspond to  equal  raugcs,  are  equally  inclined  to t ] ~  
direction AE corresponding to the greatest range. 

120. The ztelocify of a projectile at different points of i t s  
path. It has bee11 shown (Art. X.),  that if a body move  ill 
any  curve  acted  upon by gravity,  the work aecunlulated ur 
lost is the same as would be accumulated or lost, provided 
the body, instead of moving in  a curve, had moved in the d i m -  
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tion of gravity through a space equal  to  the vertical  projec- 
tion of its curvilinear path. 

l'hus a projectile  moving  from A to P will  accumulate 01' 
lose a quautity of work,  which is equal  to  that which it would 
accurnulatc or lose, had it moved vertically  from M to P, or 
from P t o  M, PM being  the  projection of its path on the 
dircctiun UC gravity. Now the work thus  accumulated or lost 
equals one half thc difference between the vires viva at the 
connnencement and  termination of the motion. 

Let V equal the velocity at A, and 2) equal  the velocity at 

P, thererwc thc  work =i-V-$-@. Moreover,the work W W 
9 9 

dunc tllrough PM=W . PM, therefore +-Va-%o* = 
W .  PM, therefore Vs--v2=2t/MP. Let  PM=y, 

W W 
g 

. ' . 212 =V2 -2gy . . . . . @g), 

n lkh  detcrminev the velocity a t  any  point of the curve. 
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QR=(I'')' Substituting  this value of QR in  the last 
I'V . 

NOW this is true, however much P& may be diminished. 
h t  it be i,!fiiniteZy diminished, the supposed  constant  amount 
aiid p m l l c l  direction of F will then coincide with the actual 

d h l  of a variable amount and  inclination of that force, the 

ratii, l'' will become a ratio of equality,  and the circle 

PQV will become the circle of curvature at P, and PV 
that chord of the circle of curvature, which being drawn 
h n  P passes through S. Let  this chord of the circle of 
CurWure be represented by C, 

p ... 

€ X  

:. F=9 R- . . . . . (101). W v s  



, , S . .  
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it then  tends to  recede from the centre uf the circle of CUI- 
vature is represented by the ahorr formula, IL b<.ing taken 
to reprcsent  the rad ius  culcnture a t  tile point of its path 
though which i t  is moving. 

If a be  the angular velocity of the bodfs r c d u t i o n  abu t  
the centre of its circlc of curvature, thcu \- =nlL ; 

:. F= n"K . . . . . (10:i). 
tu 

!7 

122. Ily trnnsposition of equation (100) WC obtain 
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Through A draw any two rectangular axes Ax and Ay, 
let W ,  be any element of the lamina whose weight is W , ,  

and Ict AM, and AN,, co-ordinates of ml, be represented by 
s1 and yI. Then by equation (91), if a represent the angular 
velocity of the rcvolntion of the body, the centrifugal force 

011 the elenlent m1 is represented by -w,Am,. Let now this 

force, whose direction is Am, be  resolved into two others, 
wllose directions are Ax and Ay. The former will be repre- 

sentcd by cos. s ~ m l ,  orbS -w13cI, and the  latter by 

d2 
~ ,W,,& cos. y ~ m , ,  or by -WU, ; and  the centrifugal forces a2 
9 9 
on all the other elements of the lamina being similarly re- 
solved, we shall have obtained two sets of forces,  those of the 

One set beiog parallel to Ax, and represented by -WI%, 

U! 
- %xl, ~ ws3c3, &e. and those  of the  other set parallel to AY 

a? 

9 9  
rcprcsentcd by -w1yI, .-wg8, &c. 

?Jaw if X and Y represent the resolved parts pardel  to 
the %reetions of Ax and Ay, of the  resultant of these two 

U2 - 
9 

c 2  aa 

9 9 

a' 

9 

U2 US 2 
9 9 9 

F=-W.  G . . . . . . (loa), .a% 

9 
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where G is taken  to  reprewnt  the  distanct~ AG of the centre 
of gravity  of the lanrilm from tlru asis of rrvolntion. 

Moreovcr the dircetion of this resaltant  ccntrifugal force is 
through A, since tllc  directions of all its components are 
through  that point. 

124. From  the abovc furmula it is apparent,  that if a body 

:.. , !...:c ~.,;;;,? dividcd into  laminz by  plancs perpendicular 
to  the axis, then  thc centrifugal force of each 

, ~$,/ .~ such  lamina is the samc as it would have been 
,~:+::%/' -~ 

if thr whole of its weight  had bccn collected in 

gravity of all the laminas be in thc same plane passillg 
its  centre of gravity; so that if the centres of 

through  the axis, thcn, since the  centrifugal force on each 
lamina  has its  direction from the axis through  the centre of 
gravity of that lamina, it follows that all the centrifugal 
forces of thcse lamina, are  in  the same plane, and  that they 
are PARALLEL forces, so that  their  resultant  is  equal to their 
sum, those  being taken  with a negative sign which corrcspol~d 
to lamina? whose  centres of gravity  are on the opposite side 
of the axis from the rcst, a rd  whose cer,trifuyal forces are 
therefore in  thc opposite  directions  to those of thc rest. Thus 
if F' represent  the whole centrifugal force of such a mass, 

.I. 
G=,, revolviug round a fixcd axis bc cunccivcd to be 

. 
-' ~ ~ ~. 

~, 

i ~ . ~ ~ .  

U;  

612 

9 
thcn F'= -2WG. Now let W' represent  the weight of the 

~ohole  mass, and Ci' the distance of its  ccntre of gravity from 
the axis, therefore Z-WG=W'G'; 

a2 

9 
:. F'=-W'G' . . . . . . (104). 

In the case, thcn, of a revolving body  capable of being 
divided into  laminz perpendicular to the axis of rcvolutio~b 
thc centres of gravity of all of which lamina, are in the same 
plane passing through  the axis, the  centrifugal force is the 
same as it would have been if thc wbole wcight of the hody 
had been collected in its ccntre of gravity, tile S a c  property 
obtaining  in  this case in  respect to the whole body as obtains 
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in respect to each of its individual laminae. Since, more- 
over, thc centrifugal  forces upon the laminae are parallel forces 
wi~en their  centres of gravity are all in  the same  plane  passing 
through the axis of gravity, and since their directions are all 
in tlut planc, it follows (Art. l&), that if we take  any  point 0 
in the axis, and  measure the  moments of these  parallel forces 
limn that point, and call x the  perpendicular distanee OA of c 

any lamina BC from that point, and H the distance of their 
resultant from that point, then 



. .  
i 
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work (f those forces, which act in the directions in which 
their sccreral points of application  ore  made to m v e ,  is equal 
to the aygregate of the work in tlu opposite direction. 

This principle  has  been proved in  the preceding proposi- 
tion, only when the motions  communicated to  the several 
points of application are exceedingly small, so that  the work 
done by each force is done  only throng6  an exceedingly 
small  space. It extends, however, to  the case in which each 
p i n t  of application is made to move, and  the work of each 
force to be done,  through any distance, however great, pro- 
vided only that in a11 the different positions which the  points 
uf application of the forces of the system  are thus made to 
takc up, these forces be in equilibrium  with one another; for 
it is cvident that if there  be a series of such positions im- 
mediately adjacent to one  another,  then  the principle  obtains 
in rcspect to each small  motion from one of this set of posi- 
tions into  the  adjacent one, and  thercfore  in respect to the 
sun of all such  small  nlotions as may take place in  the system 

in respect to  the whole motion of thc system through the 
in its 11;lssage from ang one position into any other, that is, 

intervening series of positions. Therefore, &c. 

. 
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opposed to  the  motion of its  point of application (or, in  other 
words, the difference  betwcen the aggregate work of the 
accelerating forces of the system and  that of the retarding 
forces), is equal to one half the vis  viva accumulated or lost in 
the systcm whilst the work is being done, which is the PRIN- 
CIPLE OF VIS VIVA. 

130. One half the vis  viva of the system measures its ac- 
cumulated work ; the principle of vis viva amounts, therefore, 
to no mure than this, that the entire difference between the 
work done by those forces which tcnd  to accelerate the m- 
tiuns of the  parts of the system to which they are applied, 
and those  which tend to retard then!, is accumulated in  the 
moving parts of the system, no work  whatever being lost, but 
all that  accumulated  which  is  done upon  it by the forces 
which tcnd  to  accelerate its motion, above that which is ex- 
pended upon the  retarding forces. 

This principle has been proved generally of any mechanical 
W c m ;  it is thercforc true of the most complicated machine. 
The entire  amount of work done by  the moving power, what- 
ever it may be, upon  that machine, is yielded partly at its 
working points in overcoming the reiistances opposed there 
to its motion (that is, in doing its useful work), it is PardY 

in overcoming the friction  and  other prejudicial  re- 
sistances  opposed to the motion of the machine between its 
moving and its working points, and  all  the  rest is UCcumUhted 
in the moving parts of the machine, ready  to  be yielded "P 
ulrder any deficiency of the moving power, or  to on 
the machine for a time, should the operation of that Power 
be withdrawn. 
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again t o w d s  the position of eqnilibrium from  which it set 
out, and is STABLE in respect  to that position. 

On the other hand, if the supposed position of equilibrium 
he one in which the vis viva is a minimum, then  the aggre- 
gate work of the forces which tend to accelerate the motion 
must, after the system has passed through that position, ex- 
ceeds that of the forces which tend to retard the motion; 
SO that, adopting the same rotation as before, ZU1 must 
he greater than XU- and  the second member of equation 
essentially  positive. Whatever may have been the original 
impulse, and the communicated vis  viva SmVa, 2.0~0~ must 
therefore continually increase; so that  the whole system can 
never  come to a position of instantaneous repose*; but on 
the contrary, the motions of its  parts must continually increase, 
and it must deviate continually farther from its position of 
equilibrium, in which position it can never rest. The position 
is thus one  of unstable equilibrium. Therefore, &C. 



* M4m. des Sav. Etrang. l'iR1. 

$ M6m. del 'h t i tu t .  1833, 1834, 1838. 
A Practical Treatise on Railmala, 3d etl. chap. 16 

t Phil. Trans. 182% 
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134,. Whilst  there is a rcmarkalLe  uniformity in the re- 
sults thus  obtained in  respect t o  the friction of surfaces, 
bctween  which a perfect  separation  is effected throughout 
their whole extent  by  the  interposition of a continuous stra- 
tum of the  unguent,  therc  is an infinite  variety  in respect 
t o  those states of  unctuosity  which  occur  betwcen the e$- 
trenzes, of which we have spoken, of surfaces  mcrcly unctuous' 
and  the most  perfect state of lubrication  attainable by  the 
interposition of a given unguent. It is from  this variety of 
states of thc uuctuosity  of  rubbing surfaces, that so great a 
discrepancy hax been found in  the  experiments upon frictioll 
with  unguents, a discrepancy which  has not probably resulted 
so much from a difference in  the  quantity of the unguent 
supplied  to  the  rubbing surfaces in different experiments, 
as  in a difference of the  relation of the insistent  pssures 
to the extent O f  rubbing Surface. It is  evident, that for CT'erY 
description of unguent  therc  must correspond  certain pres- 
sure per square  inch, under which  pressure a perfect separa- 
tion of two surfaces is made by the  interposition of a con- 
tinuous  stratum of that  unguent between  them, and which 
pressure per  square  inch  being exceeded, that sepiua- 
tion  cannot be attained,  however  abundant may be  the supply 
of the  unguent. 

The ingenious experiments of Mr. Nicolas Wood,+ con- 

' Or slightly rulhed with the unguent. 
t Treatise on Rail-roads, 3d ed. p. 399. 
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firrncd by those  of Mr. G. Rennie,* have fully established 
these important conditions of the friction of unctuous surfaces. 
It is much  to  be regretted  that we are  in possession  of no ex- 
peria~ents directed specially to  the determination of that par- 
ticular pressure per square inch, which corresponds in respect 
t o  each unguent to  the  state of perfect separation, and to the 
determination of thc co-efficients of frictions in those  different 
statcs  of separation which correspond to pressures higher than 
this. 

It is  evident, that where the  extent of the surface sustain- 
iog a given pressure is SO great as to make the pressure per 
square inch upon that surface less than that which corresponds 
to the st,ate of perfect separation, this  greater  extent of snr- 
face tends to increase the friction by reason of that adhe- 
.&liers of the unguent, dependent upon its  greater or 1eYs 
viscosity,  whose effect is proportional to  the  extent of the 
surfaces between  which it is interposed. The  cxperiments 
of % W o o d +  exhibit  the effects of this adhesiveness in a 
Tenlarkable point of view. 
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obtain, in respect to  that friction  which accompanies motion, 
with a precision and uniformity  never  before assigned to 
thcm ; they have given to  all  our calculations  in  respect to 
the theory of machines (whose moving surfaces have attained 
their proper bearings and  been  worn  to  their  natural polish) 
a new and unlooked-for certainty,  and  may  probably  be 
ranked amongst the most  accurate and valuable of the con- 
Stants of practical science. 

It is, however, to  be observed, that all  these  experiments 
were made under comparatively small insistent  pressures 
compared with  the  extent of the surface pressed  (pressures 
not exceeding from one  to two  kilogrammes per square cen- 
timeter, or from about 1 4 4  to 28.6 Ibs. per  square inch). 
111 adopting the r a u l t s  of M. Morin, it is of importance to 
bear this fact in mind, because the  experiments of Coulomb, 
and particularly the  excellent  experiments of Mr. G. Rennie, 
carried far beyond these  limits of insistent  pressure*,  have 
fully shown the co-efficient of the frictioo of  quiescence to in- 
crease rapidly, from some limit  attained  long before the 
surfaces abrade. In respect  to some surfaces, as, for in- 
stance, wrought iron  upon  wrought iron, the  o-efficient 
nearly tripled itself as  the  pressure advanced to the limits of 
abrasion. It is. greatly  to  be  regretted  that no  experiments 
have yet been directed to a  determination of the precise limit 
about which this change  in  the value of the co-efficient begins 
to take place. I t  appears,  indeed, in the  experiments of Mr. 
Rrnniein respect to some of the soft metals, as, for instance, 
till upon tin,  and tin upon  cast  iron;  but  in respect to  the 
harder  metals, his  experiments passing at once from a pressure 
of32Ibs. per square  inch to a pressure of 1.66 cwt. per   SqWe 
illch and the co-efficient (in the case of wrought  iron for in- 
stance) from about a 1 4 8  to 9 5 ,  the limit which we seek is 
lost in the  intervening chasm. The experiments of Mr. 
Rennie have reference, however, only to the friction of qui- 
csCence. It seems  probable that  the CO-eficient of the fnc- 

.. 
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unctuous  surfaces when merely rubbed with the unguent, or 
137. The same relation obtains, moreovcr,  in respect to 

where the presence of the  unguent has no other influence 
than to increase the smoothness of the surfaces of contact 
without a t  all separating them from one another. 

In unctuous surfacespartially lubricated, or between which 
a stratum of unguent  is  partially interposed, the co-efficient 
of frictioufis dependent for its amount upon the relation of 
the insistent pressure to  the  extent of the surface  pressed, 
or upnu the pressure per square inch of surface. This 
amount, corrcspondiug to each pressure per square inch in 
rcspcct to the different unguents used in machines, has not 
Yet been  made the subject of satisfactory experiments. 

The amount of the resistance F opposed to the sliding bf 
the surfaccs upon one another is,  moreover, as well in  this 
c m  as in that of surfaces perfectly lubricated, influenced by 
the ndhiueness  of the unguent,  and is therefore dependent 
"Po11 the extent of the adhering surface ; so that, if S repre- 
scnt the number of square  units in this surface, and a the 
adilert.nca of each square  unit,  then US represents the whole 
adllerence  opposed to  the sliding of the surfaces, and 

F=fP+nS . . . . . (110); 

whcref  is a function of the pressure per square unit S ,  and 

an exceedingly small factor dependent on the viscosity of 
the unguent. 

P 
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reference, but t u  that ~~-11ich results from the friction of 
surface of bodies on one another, aud especially  to the direc- 
t i o n  of that resistance. 
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the pressure in the dircction PQ be represented  by P, and 
the angle AQP by 8 ,  the perpendicular  pressure  in A& is 
then rcpresented  by P cos. 0 ,  and  therefore  the friction of the 
surfaces of contact by f P cos. 6, f representing  the co-efficient 
of friction (Art. 136.). Moreover, thc resolved pressure in the 
direction R& is represented by P sin. 8 .  The pressure P 
will thercfore  be sustained  by the friction of the surfaces of 
contact or not, according as 

P sin. 8 is less or greater  than fP COS. 8 ; 

or, dividing both  sides of this  inequality  by P cos. 8 ,  accord- 
illg a8 

tan. 8 is less or  greater  thanf. 

Let, uow, the  angle AQB equal  that angle whose tangent  is 
.fl and let it be  represented by p, so that tan. p=f. Substi- 
tuting this value off  in  the last  inequality, it appears that 
the pressure P will be sustained  by  the  friction of the sur- 
faces of contact  or not,  according as 

tan. 8 is less or greater  than tan. p, 
that is, according as 

B is lcss or greater  than p, 
or according as 

AQP is less or greatcr  than AQB. 
Tllercforc, kc. [Q.E.D.] 



l .  , 
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forc equal and opposite. All that has been said above of the 
sinylu pwssure and the  single resistance sustained by two sur- 
farpc of contact, is manifestly true of the rerdtant of any 
1111m1xr of such pressures, and of the resultant of any number 
of such rcsistances. Thus then it  follows, that when  any 
e111i11~er of pressures npplied t o  a body moueable upon another 
1rhiclt is $,zed, arc strstnined by the resistance of the surface of 
I'ontncl of the two bodies, a d  w e  an fhe  state of epuilibn'un 
burdcri~~y ,porn ?JmtiOn., then the direction of the  resultant of 
these pr(;s,snres coincides  with th.e szlrJace of the cone of r e d -  
m c c ,  R S  does that also of the resultant of the resistances of the 
d ~ j ; . r c ~ ~ /  p i n t s  of t.he snrfice nf cotatact*, that is, they are 
but11 inrliued to the prperLdicuLar to  the mtrface of contact (at 
t h  pi111 ("hue ULey illtersect it), at  an angle  equal to the 
h l i n y  m y l e  of resistance. 

hiction of plane surfaces, when tiwy have been snme time in contact. 
TARLE I. 
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- 
Limiting 
Angle of 
Mil- 
a"__ __ 

26O 7' 

55 0 

36 5'2 

39 50 
n 47 
$2 38 

36 sa 

FRICTION. 

Limiting 
Angle. 

560 30' 
S6 52 
S3 5 0  
ss IS 
26 7 

S5 0 
S6 52 
SS 50 
SI 37 
422 47 

$6 50 

__ 

55 5s 
SS 26 

30 7 

1 

37 58 
99 26 
26 7 '  
so 7 
18 16 
9 1 9  
l 8  47 

91 48 - 
.j,.. 

. .  
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ditto 
ditto 

ditto 
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lengtl,- 
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sithaut }/ o.52 
unguent 

sithwater 1 0'59 

ditto 
ditto 
ditto 
ditto 
ditto 
p-ed in 

the usual 
way with 
tallOW, 
hog's lard, 
ail, wit 1 
unguent J 

ditto 

l dilta 

ditto 
ditto 

ditto 

ditto 

ditto 

2' 

1; 

2' 

niting 
lgle Of €aut- 
YlDe - 
70 29' 

B 16 

0 49 

S 45 
S 45' 

0 I 8  
8 S4 
1 19 

9 6  
e 95 

4 1  
4 S5 

8 32 

32 57 

38 50 

ss 4 

20 49 

M S7 

a0 49 

s s  
90 58 

20 49 

16 44 
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TABLE 111. 

Friction ofsurlgeons vr n d c  ends, in motion, u p o ~  their hcnrings. 
(From the experiments of b h i n . )  

Cast-iron d e r  
in cost-irw 
bearings 

Cast-iron axles: 
ditto 

0.14 

i 
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CO-?fficicuts of friction under pressures increased continually up to .the 
TAIILE IV.  

hnits of abrasion. From the experiments of Mr. G. Rennie.' 

Yronght-iron 
upon 

rrougbt-iron. 
-. ~- 

'140 
'250 
'27 I 

'297 
'285 

'312 
'350 
'376 

'395 
'376 

'409 
,403 

Cc-dieients of Friction. 

irroughr-iror 
upon 

Cast-iron. 

'174 
'875 
'292 
'321 
'329 
'333 
%l 
'353 

'366 
'365 

'366 
'5G7 

'367 
'367 

'376 
,434 

Steel upon 
Cartiron. 
__- 

'166 
'300 
'333 
'340 
'344 
'347 
-351 
'353 
'354 
'356 
'357 
'358 

'367 
'359 

a 3  

B- upon 
CW-iroo. 

. .  . . .,.. . . . . .:. 
~~ 
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by which the tension Pg may he considered to be  increased 
by the rigidity, was found  to  vary inversely as the radii of 
thc  arcs ; so that, on the whole, it may be repreaented by 
the formula 

D + E .  P* - R . . . . . ( I l l ) ,  

where R represents the radius of the circular arc over  which 
the rope is bent. Thus i t  appears that  the yielding tension 
P2 m y  be considered to have been increased by the rigidity 
of the  rope,  when in the  state bordering upon motion, SO as 
to become 

*L 7 
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l 8 1 16835606 '3684860 \ 

l l l 

No. 4. Wetted half-worn cards. Rigidity proportional 
to the square root of the cube of the circumference. 

~~~. 1 
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TABLE VI. 
Tarred rope. Rigidity proportional to the number of strands. 

~ Number of Strands. Value of D in l k  
! - __ 
~ 

6 
0 l 7 2 I B  
033390 0009305 

0'021713 
0091.983 

Id 
! m  1.25294 

159 

m intermediate to those of the tables, find the ratio of the given urn-  
TO determine the  constants D and E for ropes whose c i r C U m f p n e e S  

!emcc to that w e s t  to it in the tablea, and seek this ratio or ppmtian 
In the first column of the auxiliary table to the right of the page. The 
Corresponding number in the second column of this a e a r y  table 111 ,a 

the principal tables being multiplied, their valum for the given  circumfer- 
factor by which the values of D and E for the nearest cvuUnfwvmce m 

ence will be determined. 

. .  

* L  8 



160 THE THEORY OF MACHINES. 

P A R T  111. 

T H E   T H E O R Y  OF MACHINES. 

143. THE parts of a machine are divisible  iuto those 
which receive  the  operation of the moving power immediately, 
those which operate  immediately upon the Work to be per- 
formed, and  those  which communicate  between the two, 01 

which conduct the power or work from the moving to the 
working points of the machinc. The  first class may he called 
RECEIVERS, the second OPERATORS, and  the  third COMMU- 
NICATORS of work. 
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o c r ~ r ~ ~ u l a l e d  in  the  various moving  elements of the machine, 
and repruducible. Thirdly,  Into  the useful work, or that 
donc by the operators, whence results immediately the useful 
productij of the machine. 

M 
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of motion ; or if the nature of its motion 6eperwdica1, then 
i s  i / s  modulus the relation between the work done at its 
a1oz.in.y and at  its working points in the in tmal  Of t i m  
zchich i t  occupies in passing from any  given  oebcity to the 
Salne !.clocity again. 

The lnodulus is thus, in  respcct to any machine, the parti- 
cular form applicable  to  that machine of equation 113, and 
11t.ing. rlqxndent for its amount upon  the amount of work 
expended upon the friction and  other prejudicial resistances 
oppused to  the motion of the various elements of the ma- 
chime, i t  measures  in respect to each such machine the loss 
of w r k  due to  these causes, and therefore eonstitntes B true 
standard /or comparing the expenditure of muing power 9%- 

Cessory to the production of the sanae effects by different ma- 
chi?zcs ; i t  is thus a measure of the working qualities of ma- 
chines.* 

Whilst the particular modulus of every differently COP 

stmeted machine is thus  dserent, there is nevertheless a 
general algebraical type or formula to which the moduli of 
machincs are  (for the most part  and with certain modifications) 
r c f e r ~ ~ k .  That form is the following, 

U,=h.Ue+B.S . . . . . (114), 

lvhere U, is the work done at  the moving point of the 
m a d h e  through the space S, U, the work yielded at the 
\vOrking points, and A and B constan@ dependent for their 

upon the  construction of the machine i that is to say, 
“POn the dimensions and the combination of its pa&, their 
’%hts, and the co-efficjentu of friction at their VariOuS 

’ubhing surfaces. 
It \vould not  be diEcnlt  to establish generally thisfow of 

dulus of each particular machine must however, h work. 
be discussed and determined independently, it will be  better 
to the reader to the particular moduli investigated in the 

modulus under  certain assumed conditions. ds the mo- . 
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following pages. H e  will obsene  that  they are for the most 
part cornpriscd undcr the form above assumed; subject to 
certain modifications wIlicI1 arise  out of the discussion of each 
individual case, and wllich are  treated at length. 
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that the accumulated work may return  to  the same amount 
from period to period. Le t  us now suppose this equality to 
eeasc, and the work U, done by  the moving  power to exceed 
that  necessary to overcome the useful and prejudicial resist- 
ances ; and to distinguish the work represented by U, in the 
one case from that  in  the other, let us suppose the former 
(that which is in emess of the resistances) to  be represented 
by U' ; also let U% be the useful work of the machine, done 
through a given space So, and which is supposed the same 
whatever  may he the velocity of the motion of the machine 
whilst that space is  being described ; moreover, let SI be the 
space described by  the moving point, whilst the Space s s  is 
being  described  by the working point. 

Now since Ul is the work which must be  done at the 
moving point just to overcome the resistances opposed to  the 
motion of that  point,  and UL is the work actually done upon 
that point by the power, therefore U'-UI  is  the exCe= of 
the work done by  the power  over that expended on the re- 
sistances, and is  therefore  equal to the work accumulated in 
the machine  (Apt. 130.) ; that is, to one half of the increase 
of the vis  viva through the space S, (Art. 129.); SO that, if 
81 represent the yelocity of any element of the machine 
(whose weight is W) when the work U' began to be done, 
and U? its velocity when that work has been completed, then 
(Art. lm),  

1 
u'-u'--zw(o2-e,~. - 29 

Nom hy equation (114) U,=AU~+BSI,  

.'. U'=A.U,+B.SI+-~w(e~~-Wl~). - * (j16)* 
1 
2g 

c 
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CO-EFFICIENTS OF TlIE MODULUS. 167 

is therefore a  constant  quantity. For different machines it 
i s  different. It is wholly independent of the useful or pre- 
judicial resistances opposed to  the motion of the machine, 
and has its  value  determined  solely by  the weights and dimen- 
sions of the moving masses, and  the  manner  in which they 
are connccted with one  another in  the machine. 

Transforming this  equation  and  reducing, we have 

U'-A.U,-B,.S, . . . . . (118); 

hy which equation  the velocity V, of the moving point of the 
machine is determined,  after a given  amount of w o k  U' h- 
hccn done upon it  by  the moving power, and a given amount 
U, expended on  the useful  resistances ; the velocity of the 
moving point, when this work began to be done being given 
and represented by V,. 

It is cvident that  the motion of the machine is more 
equable as the  quantity  represented  by ZwAa is  greater. This 
quantity, which is the same for the same machine and differ- 
ent for different machines, and which  distinguishes machines 
fronr oue another in respect  to  the steadiness of their motion, 
independently of a]] considerations  arising out of the  nature 
of thc resistances useful  or prejudicial opposed to  it, may 
W i t h  propriety be called the CO-EFFICIENT OF EQUABLE MO- 
TION.* The actual  motion of the machine is more equable 
as this co-efficient and  as  the co-efficienta A and B (sup- 
Posed positive) are greater. 





AXES. l69 
I .  l h e  above equation has been proved  for any value of S,, 

provided the values of PI and P, be constant, and the motion 
ofthc machine uniform ; it evidently obtains, therefore, for an 
exceedingly m a l l  value of S,, when the motion of the machine 
is cnriuble. 

GEXERAL CONDITION OF TJIE STATE BORDERING UPON 

M o w m  IN A BODY ACTED UPON BY PRESSURES IN THE 
SAME PLANE, AND MOVEABLE ABOUT A CYLINDRICAL AXIS. 

153. If any num6er of pressures P,, PS,  PS, #c. applied  in  the 
.sunLe plane to  a body moveable  about a cylindrical axid, be 
i n  the state  bordering  upon motion, then is the direction 
1f ihe resistance of the axis  inclined to its radius,  at the 
poi111 where i t  intersects the circumference,  at  an  angle  equal 
to the limiting  angle of resistance. 

!L For l c t  R represent  the  resultant of P,, PS, &c. 
Then, since these forces are supposed to be upon 
the point of causing the axis of the body to turn 
upon its bearings, their  resultant would, if made 
to replace them, be also on the point of causing the 

$ axis to  turn on its bearings. Hence it follows 
that  the direction of this  resultant R cannot be 

thrOf(gh the  centre C of the  axis ; for if it were, then  the 
Would be pressed by it in  the direction of a radius, that 

Y"pendieuZarZy upon its bearings, and could not be  made 
to t w l  upon them by that pressure, or to be  upon the  point 
Of turning upon them. The directiou of R must then be on 
One side of C, SO as to  press the axis  upon its bearings in a 
direction RL, inclined to  the perpendicular CL (at the point 
I,: \&re it intersects the circuluference of the axis) at a cer- 

angle RLC. Moreover, it is evident (Art. 141.), that 
sl''CC this  force R pressing the ais upon its bearings at  L is 
"Po. the  point of causing it to dip upon them, this in- 
''Illation RLC of R to the p.pen&cdar CL, is equal to the 



. .  
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of rielding, or Pp had been in  the act of preponderating, then 
R ~ v u u l d  have fallen on the  other side of C, and we should 
have obtained the relation P, . CA=Py . CB-R cm; 
so that, generally, P, . C-A=P9 . CU+R . G ; the sign A 
being taken according as PI is  in  the superior or inferior S t a t e  

bordering upon motion. 
Now Ch=nl ,  CB=%,, G & = c L  sin. CLR=psin. p, andR 

weight TV of the wheel and axle  acts  in  the same direction 
=P, +P,% W, the sign being taken according as the 

with tllc pressures P, and P,, or  in  the opposite direction ; 
that is, according as the pressures P, and Pn act v e r t i d y  
dolonzcards (as shown in  the figure) or upwards; 

- .- 

:. Pl~,=PYa,+(PI+Ps+W)pBin.~, 
:. Pl(n,-psin.~)=PP(~+psin.p)FWpsin.p. 

Now the effect (A& 142.) of the rigidity of the cord BPS 
is the samc as though i t  increased the tension upon that cord 

from P, t o  (pp+ D + E  '") : allowing, therefore, for the 

of the cord, we have finally 
UP 
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$65. The modulus of uniform motion in the wheel and azb. 

I t  is  evident from equation (l%), that,  in  the case of the 
wheel and axle,  the relation assumed in equation (1 14)obtains, 

Now observing that @l(") represents  the value of @ I  when 
thc prejudicial resistances vanish (or when p = o  and E='), 

we have @l(o)= a, ~. 
al 
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drculy accumulated there will continually expend itself un- 
til the whole is exhausted, and the machine is brought to 
rest. The general expression for the modulus in this rrtate 
of variable  motion is (equation 116) 

U'=AUP+BS1+~~~:"(~d)-~f). 1 

Now in this case of the wheel and axle, if V, and V. re- 

r 

k l 

1 

- 
present the velocities of P, at the 

'c- commencement and completion, of 
I the space SI, and a the angular ve- l 
i locity of the revolutionof the.whee1 
i rd and axle; if, roomwer, the p- 
j sures PI and P* be supposed to be 

supplied by weights suspended from 
the cords ; then, since the velocity of 

Pn is represented by %, we have 

l 

. . .  

. . .. . .  
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THE PULLEY. 

15s. If the radius of the axle be  taken equal to that of the 
wheel, the wheel and axle becomes a pulley. 

we obtain for the relation of the moving 
Assuming then in equation 122, al=%=o, 

pressures PI and Pp, in the state bordering 
upon motion in  the pulley, when the strings 
are parallel, 

and by equation 124 for the value of the modulus, 



in which two  last equations the values of A aud U are those 
of the modulus of equable motion (equation 165). 
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Addin: n'l' to both sides of the second of the above equa- 
h s ,  and u~ultiplying both sides by a, WC have 

~ . ( l + a ) T = a * ( T + ~ ) + a b ~ z . u * ( P ~ + W ) + a b ~  
Also multiplyiug the first equation by (1 +a) ,  

( ~ + ~ ) P ~ = ~ ( l + a ) T + b ( l + a ) = a ' ( P y + ~ + a b ~ + b ( l + ~ ) ~  

Xorn if there were no friction or rigidity, a would evidently 

become 1 (see equation 131), end -- - would become - 2 1 

the eo-efficicnts of the modulus (Art. 152.) are therefore 
I + a  2 '  

which is the nlodulus of uniform motion to the single  move- 
able puIIry. * 

If this system of two pulleys had been m- 

1 '  each, instead of with a single string aa shown in 
,J the preceding figure, then, representing by f the 
ri-4 tension upon the second part of the string to 

'.:.p which P, is attached, and by T that ups the 
~~ first part of the string  to which Pp is atha&&, 

ranged thw,  with a dierent  string passing  over 

13 ' 

, -  

I 

, ~~= -9 *<-~~::F?? we have 

P,=at+b,  T=aPp+b, Pl+t+W=T. 
the last of these equations by Q, and it 

toth~first ,aehaveP,( l+u)+Wa=Ta+b=a'Pn.C(~+~)~;  
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:. TI=uT,+p. 
Sinlilnrly, T2=aT3+p, 'r:3=uT4+p, T4=aT:,+p, &c.=&c., 
T,-1=zT,,+t3, T.=uPq+P. 

Nultipl~irlg tllese equations successively,  beginning  from 
tIw second, by U ,  a?, d ,  &c . I  a*-l, adding them  together,  and 
strikiug out terms cuuunon to  both sides of the resulting 
equation, WC have 

'r ,-a"Pp+p+CIp+tl')p+ - . . . . +u*-lp; 

or silmming the Seometrical progression in the second  member, 

161. If each cord, instead of having one of ils 
extremities attached to a k e d  obstacle, had been 
connected by one extremity to a moveable bar 
carrying the weight P, to be raised  (an arrange- 
ment which is shown in  the second figure), then, 
adopting the same notation as before, we have 
T,=at l+b ,  at,+b=T,, Tp=Tl+t,+W. . .  

Adding  these  equations together, striking out 
terms common to both sides, and solving in re- 
spect to TI, we have 

N 8  
. - .  . 

. .  
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Substituting this value of tt, in equation (144), 



A TACKLE OF ANY N~JMBER OF SIIEAVES. 
1 E. If any number of pulleys (called in  this case sheaves)he 

made to turn on as many different  centresiu the same block A, 

many others, the diameter of each of the last being 
and if in another block B there be similarly  placed as 

one half that of a corresponding pulley or sheave in 
the first; and if  the same  cord attached to the 
first block be made to pass in succession  over all 
the sheaves in the two blocks, as shown in the 
figurc, it is evident that  the parts of this cod 1, R, 
3, &c. passing between the two b l w b  and as 

d l c l  to each other,  and will  divide between them 
many in  number as  there are sheaves, will be p& 

the pressnre of a weight P, suspended from the 

' this  pressure bet.ween them eqsally were it not 
lower block : moreover, that they would divide 

N 3  
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of thc corresponding sheaf in the  other obliquely, SO that 
the yurts of the cords  bctween  the blocks are  not  truly 
parnllcl to one another,  and  the sum of their tensions is not 
truly e t p 1  to the weight P,' to be raised, but somewhat 
greatcr than it. So long, however, as  the blocks are  not very 
near t u  onc another,  this deflection of the cord  is inconsider- 
able, and the error resulting from it in the calculation may 
bc neglected. Supposing the different parts of the cord be- 
tween the blocks then to be  parallel, and the  diameters of au 
the sheaves and their  axes  to be equal, also neglecting the 
influence of the weight of each  sheaf in increasing the friction 
of its axis, since  these  weights are in this case comparatively 
snlall, thc co-efficients al, a*, U, will manifestly all be equal; W 
also bl, b,,  b,; 

.'. Pt=aT,+b,  Tl=aT2+b,  Ta=aT3+b, 
&c.=&c., T,,raT,+b }. . . . . (147); 

also P,=Tl+Ta+Tg+. a . . . +Tc 

Afultiplying equations (147) successively (beginning from 
h second) by a, a.2, and av-1; then adding them toge- 
ther, striking out the  terms common to  both sides, and 
summing the geometric  series in the second member  (as in 
Wation 140), we have 

a"- 
P,=anT,+ b - 7 .  

1 
a- 

:. P,=--.~ a"(a-l) nban b 
a"- 1 P , + m - a  . . . . . (148). 



- 

i , ,  
i 
l 
I 



\vhicll is the MODULUS of the tackle. 



Let 



AXES. 167 

u ( ~ ) = u , ( O ) . ~ , ( O )  .... a,"), we have -~ = ( l + r ~ + . . . . + % } i  

:. U = { l + c r , + ~ + r , +  .... +m,,)U,+b.S . . . 1 (154), 

a 
a@) 

which i s  the  modulus of a compound  machine of n elements, 
U representing the work  done at  the mooing point, v. 
that  at  the working point, S the space  described by the 
moring point, and b a constant  determined  by  equation 
(M?). 
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167. The  conditions of the equilibrium of two pressures PI and 
l', app2icd to a body moveable about a cylindrical axis, 
taking into account the weight of the body and stqposing it 
to be syn~metrical about its ais. 

The, body being  symmetrical  about  its axis, its centre of 
gravity is in the  centre of its axis,  and its weight produces 
thc Same effect as tbongh it acted  continually through  the 
centre of its axis. In equation (161.) let  then Pa be taken  to 
represent the  weight W of the  body, and I~ theincliia- 
tions of the  pressures P, and P. to  the vertical. Then 

Also by the  equation (162) we find for  the modulus 

And in  the case in which Pp is  considerable as compared with 
W, by equations (163, 164.) 



! 
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The machine is worked  then  with  the  greatest economy 
of power to yield a given amount of work, U, when this 
function is a minimum. Substituting for L* its value 

~ ~ 2 + O a l a p c o s . ~ l , + ~ a , a n d f o r M i t s ~ a l u e a l ( a ~ c o a . ~ ~ ~ S .  

a, cos. I=) (see Art. 166.), also for S ,  " its value Sp) it be- 
comes 

(,> 
psi".$ 
-a,;;{ ~ , ~ a , . + ~ o , n , r o s . ~ , ~ + o ~ ) + e ~ ~ ~ , ~ ~ , ( a ~ c o s . ~ , ~ + o , c o s .  b)+~:~:s*}'-. ~169.) 

Now let us suppose that  the perpendicular  distance O, from 
the ccutre of tbe axis at which the  work is done, and the 
inclination of its direction to  the vertical, are both giffc?t8, 
as also the space S% through which i t  is done, so that  the 
work is given in every respect;  let also the perpendicular dis- 
tance a, at wbich the power is applied,  and,  therefore, the 
space S, through which it is done, be ginen; and let it be 
required to  determine that inclination of the power 
the work which will under  these circumstances give to the 
above function  its minimum value, and which is  therefore 
cunsistent with  the most economical  working of the machine. 

Collecting all the terms in the function (169.) which con- 
tail1 (on the above  suppositions)  only c m t ~ n 6  quantities, 
and representing their sum by C, it becomes 

p sin. p t 

. ... . . . .. . . .  . ..*- ,. .. . . ,. 
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THE A S I S  OF THE MACHINE ON WHICH THE RESISTANCE 18 

OYI:XCO\IE, OR THE WURK DONE. It is a further eontiition 
of the yreatest  economy of power in  such n machine, that the 
direction i n  which the mooing pressure is applied should be 
inclined to the oertical a t  ast angle lis, whose tangent-M 
determined by epuation (170.). 

When 1% =O, or  when  the  work is done in a oerticaldirection. 
tao. ?=D; therefore +=x, whence it follows that  the moving 
power also must  in  this case be applied in a vertical  direction, 

and on thc same side of the axis as the work. When IS=> 

or when the work  is  done  horizontally, tan. v=- . PS 
h ' 

I 
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of S, to be constant  and substituting in the function (169.) 
for Slap its value Spa,, we shall  obtain by reduction l 
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where L represents  the chord A B  of the arc embraced by 

ing the iuclinations of PI and Po to the vertical: which in- 
the string, and M=a'(cos. I , ~ + c o s . I ~ ) ,  t i 8  and represeat- 

clinations are  measured by the angles PiEPs and PnFPs, 
or their supplements, according as the corresponding pres- 
sures P, and P4 act downwards, as shown in  the figure, or 
upwards (see note to Article 165.); so that if both these 
p s s u r c s  act upwards, then  the cosines of both  the angles 
heome negative, and  the value of  M becomes negative; 
whilst if onc only  acts upwards, then  one  term only of the 
value of M becomes negative. 

Substituting this value for M, observing that L=Zaco8.1, 
where 21 represents  the inclination of  the two parts of the cord 
to unc another (so that ~ L = L ~ ~ - + ( ~ ) ,  andomitting  termswhich 
illvolve products of two of the exceedingly s m d  quantities 
D E :  p 
a ' a '  a and - sin. p, we have - _  



Both these  conditions  are  satisficd by the  value 
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cos. I in  each of the above equations vanishes. It is, how- 
ever, to be observed, that  the weight bearing upon the axis 
of the pulley is in this case the weight of the pulley in- 
creased by the weight of cord which i t  is made to support. 
So that if the  length of cord supported by the pulley be 
represented  by S, and  the weight of each foot of cord by p ,  
then is the weight sustained by the  axis of the pulley repre- 
sented hy W + p. Substituting  this value for W in equation 
(176.), and assuming COS. 1=0, we have 

u l = ( ~ + % ) U * + ~ { D + ( W + ~ ) ) P s i a 9 } S I . .  . . (178.) 

The pulley of least resistance is in this case determined, BS in 
Art. 170., by assuming W=caa, and differentiating in respect 

to a. The value  of a which satisfies the conditions -;i;; =o 
and a- >0, is thus found to be 

a 
CUI 



! a  , ! ,  , " 

" = p  . . . . . (1111.) 
c 



The radius of the pulley of least resistance is in this -e 
(equation 114.) determined by the equation 

176. The modulus of a system of any number of pulleyr, mer  
one of which the rope parses oerticdk, and mer tire ?Ut 
horizontally. 

I 

Let Ut repre- 
sent  the work 
done  upon the 
rope through 
the space S, be- 
fore it passes h* 

'the first pulley 
rieontnlly over 
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178. THE FRICTION OF A PIVOT. 

When an axis rests upon ita bearings, not 
by its convex circumference, but by ita 
extremity, as shown in  the accompanying 
figure, it .is called a pivot. Let W repre 
sent  the pressure borne by such B pivot SUP 
posed to act  in a direction perpendicular M 

its surface, and to press  equally upon every part Of it  ; duo 
let pl rcpresent the radius of the pivot ; then will *p: repre- 

sent the area of the pivot, and --j the pressure sustained by 
each unit of that area. And iffrepresent the eo-effiuient of 

frictiun (Art. 133.), Wf -, will represent the force wbichmust 

W 
=P1 

v 1  a be applied parallel to  the surface of the pivot to 

let the dotted lines in  the accompanying figure represent 
overcome the friction of each such unit. NOW 

an exceedingly narrow ring of the area of the pivot, and 
let p and p + A? represent the extreme radii of this ring; 
then will its  area be represented by ~(p+Ap)~- i rp ' ,  or by 
"l2p(Ap)+(Ap)P), or, since Ap is exceedingly small 88 COm- 

unit of this area is represented by Wf ; therefore the W h o k  

friction upon the ring is represented by 3. a+pr or bY 

colnpared with p, by NOW the friction upon each 

=P 1 

!Yf 
I L  

p p  P'% and the moment of that friction abaut the centre of 
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2Wf 
-~ 4-+pl3, or by $ W ~ c l  . . . . . . . (188.); 

PI  

whence i t  appears that llrefriction of the pirot produces the 
same  effect to oppose the  reoolution of the mass which regh 
upon it, as though the whole pressure  which it sustains were 
collected over U point distant by two-thirds of i ts  radiusfrom 
its centre. 

If B represent the angle  through which the pivot is made 
to revolve, theu & e  will rcprescnt  the space described by 
the  point  last spoken of; so that  the murk expended upon the 
resistance Wfacting there,  would  be represented by gWP,fe, 
which therefore represents  the work expended upon the 
friction of thc piwt, whilst it revolves through  the angle 8 ;  
so that the work expended  on  each  complete revolution of 
the pivot is represcnted by 

";plfW . . . . . . . (189). 
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r=k(pl +p,) ; and let I represent one half the breadth of the 
ring, i. e .  let I=;(?, -pg) ; therefore p, =r+ I and p p - 8 .  
These values of p, aud p% being substituted  in the  ahwe for- 
mula, it  becomes 

2.f.{ l+:(;)*}W. . . . . . .  (191.) 



Let  now P, be  assumed a constant  quantity ; 
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neglecting powers of (" +") -'above the first, since in all 
cases its value is less than unity. Integrating this  quantity 
betwren the  limits 0 and 2s the second term disappears, so 
that 

a? al 

Ul=TJ2( l +  (;;;.+Q) 1 1 4 .  Psm.$ 

1x1. If the  pressure P, he  supplied by the tension of a 
rope winding upon a drum whose radius is ap (as in the cap- 
stan), thcn  is  the  effect of the rigidity of the  rope (Art. 142.) 
the Same as though Pp were  increased  by it so as to become 



I 0 
e 
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ml~ose modulus is k.* The value of this function is given 
represents the complete elliptic function of the second order, 

for all d u e s  of k in a table which will be  found at the end 
of this work. 

Substituting in equation (190), 

THE CAPSTAN. 

183. The capstan, as used on shipboard, is represented in 
the accompanying figure. It 
consists of a solid timber CC, 
pierced through the greatei  part 
of its length by an aperture AD, 
which  receives the upper por- 
tion of a solid shaft AB of great 
strength, whose  lower extremity 
is prolonged, and strongly fixed 
into  the timber framing of the 

'lii1). Thc piece CC, into  the upper  portion of which m e  
fitted  the moveable amm of the @ W a s  --&d&(,, t?~ms upon the shaft AB, resting its 

weig h t  upon the crown of the Eh& coil- 
ing the cable round its  central portion cc, 
a i d  sustaining  the tension of the a b l e  by 
the lateral resistance of the shaft. Thus 
the capstan combines the r e s i s k m ~  Of 

resistance to  its motion is to the sum of the redistances 

'i ._ 

4p , 

B the pivot and  the axis, so that tiie whole 



.-. 

, .  

! h ,  
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resultant, and in which  these two  resultants  are cqud, act 
in opposite directions, on opposite sides of the centre, per- 
pendicular to the same straight  line passing through the 
centre, and at  equal distances from it.* 

Suppose that  they may thus  be compounded into the equd 
prmsurcs R, and h, and  let  them  be replaced by these. 
Thc capstan will then be acted upon by  four  pressures, - 
the tension P, of the cable, the resistance R of the  shaft or 
axis, and the  pressures RI and Rp. Now  these  pressures are 
in equilibrium. If moved, therefore,  parallel to  their  present 
dirrctions, so as to be applied to a single  point, they would 
he in  equilibrium about  that  point (Art. 8.)- But when 8 0  

rrmoved, R, and R, will act  in  the surne stmight line and in 
opposite directions. Moreover, they  arc  equal to  one  an- 
0 t h ;  It, and R, will therefore separately be  in  equilibrium 
with one another  when  applied  to that  point;  and therefore 
p, alld It will sepuTak4y be in equilibrium ; whence it fOl- 

l o i ~  that R is equal to P, or the whole pressure upon the 
:ixiS, equal in this  case to  the whole tensioq Pp upon  the 
cable. So that  the friction of the  axis is represented  in every 
position of the capstan by P, tan. (tan. 0 being  equal to  the 
CV-cfiicicnt  of friction (Art. l%)), and  the W O T ~  expended on 
the frictiun of the  axis, whilst the capstan revolves through 

'h allgle B by P,pBtan. Q, or by P,u&(&) tan. +, or by 

cs(:j tan. 4 ; SO that,  on  thc whole, introducing the cor- 

rcction fur rigidity and for the friction of the pivot, the mo- 
d d u s  (equation 196) becomes in  this case 





.AXES. 215 

as P,, and l',, in  the  opposite  direction ; also let R represent 
the resultant of P* and PS, and r the perpendicular distance 
CA of its direction from C. Suppose  the pressures P, and 
P, to bc replaced by R ;  the conditions of the equilibrium 
Of P, tl~rongl~out  its revolution, and therefore the work of 
PI niil remain unaltered by this  change, and the system 
n.ill uow bc a system of two pressures PI and R instead of 
t h e ;  of which pressures R is given in direction. The mo- 
dulus of this system is  therefore  represented (equation 1%) 
by the fornlula 



! ' $ 9  

I '  , 
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for a complctc revolution making 8=%, w e  have 

reducing, 

which is the  modulus of the system. 

P,toP,(l+E)+D. Q, ' 
~ 

or (multiplying  both sides of this inequality b y  us, and in- 
tegrating in respect to e,) as though i t  increased 
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Thus the effect of the  rigidity of the  rope  to which PS is ap- 
plied upon the work U, of that force is to increase it to 

(1 t -)U,+ %D, Substituting  this value for U3 in equa- 

tion (%X), and  neglecting  terms which involve products of 
E ?&.p psin. p 

the crceedingly small quantities -, -, - 
a8 aa 

and D, 
a1 

W have 

E 
a,y 
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of the  drum to the other, the cord  is made  to pass round a 
moveable pullcy which snstains the pressure  to  be  overcom 

represent  the mork done  upon thc t.wo parts of the cord 
To determine the modulus of this  machine,  let U* a d  213 

respectively,  whilst the work U ,  is  done at  the moving point 
of the machine, and U, yielded at its wurking point. 

Then, since in  this c a e  we have a body mo~eablc  about a 
cylindrical &F, and ackd ~ p o n  by thrrc pressures, tw  of 
which are parallel  and  constant,  viz. the tensions ol' the 

parts of the card ; and  the  point of application of the 
third is made tu rerolve about the  axis,  relnaining d n a y  
at the Same perpendicular  distancc from i t ;   i t  foIIoms (by 
equation %X), that, for n revolutions of t h r ?  axis, 

U,=A~a- lh~p  t 27mD . . . . . (204) ; 
where 





-: 

tinually  in  the act of winding off the  drum of the capstan " it 
rernlves; whilst  the  other,  fmtu wlrose extremity is sWended  
the ascending (loaded)  bucket,  continually  wiuds on the drum' 
Tllc pressure exerted by the 11orses is t11at llccessary to 
come the friction of the different bearings, and thc Other 

prejudicial resistauces,  and to balnl~ce  thc difference 
the  weight of the asceuditry load, bucket, and  rope,  and that 
uf the dcscendiug bucket and rope. The rope, in Passing 
from the  capstan to the shaft,  traverses  (sometimes f c n  a con- 
siderable distance) a series of sheayas or pu&ys, such as those 
shown in the  accompanying figure. 

rope is made to mind, awl n the nurnher of revolutions which 
Let now a, represent  the  radius of the &UIII on which 

i t  nust make to wind up the whole cord ; also let p represent 
the  weight of each foot of cord, and 8 the  which  the 
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space described by the 
representing by Sp the 

load, and by U, the use- 
ful work done upon it, 
during n revolutions of 
the capstan. .- 
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represent the tension  upon the cord  after it has passed over 
the vth or last point Z .  

Now, any point B of the cord is held at rest by the ten- 
sions T, and T9 upon it at  that  point,  in  the directions BC 
and BA, and  by  the resistance R of the surface of the c y h -  
der therr.; and, if we conceive the cord to be  there  in  the 
state bordering upon  motion, then  (Art. 138.) the direction 
of this rrsistance R is inclined to the perpendicular bB to 
the surface of the  cylinder  at  an  angle R H  to the 
limiting  angle of resistance p, 

fore (Art. 14.) 
Kow, T,, T,, and R are pressures in equilibrium; there- 

TI sin. TpBR 
%=sin. T ~ B R  ' 

but T , R R = A B ~ - R R B ~ = ~ ( * - A Q B ) - R R B ~ = * - ~  -+, S A8 

x A8 
l;nlt=CBb+RBb=~(?r-BbC)+RBb=4-$++; 





THE FBICTION OF COROS. 227 

Multiplying these equations together, and striking nut 
factors conunon to  both sides of their product, we  have 

PI =P, (1 + itan. p)” ; 
B 



, 8 .  
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whose hyerbolic logarithm  is 207345. This  number is 
7 . M ;  so that each additional coil increases the friction nearly 
eight times, Had  the  rope been dry, this proportion would 
h a w  been much greater. If an  additional halJ coil had  been 
suppused continually to he put upon  the rope  instead of a 
d m l e  coil, the friction would have been found in  the Same 
\vag to increase in  geometrical progression, hut  the common 
ratio mould in  this case have been E"""J instead of P-,'. 
In thc above example the value of this  ratio would for each 
~~n!fcoil have been 2.82. 

The enormous increase of friction which results from 
each additional turn of the cord upon a capstan or drum, 
nlay from these results be understood. 

two forces P and R, it 
haa  been  shown that P 

. .  





. .  
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to control, P, will represent  that value R of the friction upon 
the break which must  he produced  by  the intervention of the 
i e w  to control the action of the pressure W upon the ma- 
chine ; so that  taking R to represent  the same  quantity as in 
equation (21 2), we  have 

R=aW+b. 
Eliminating R between this  equation  and  equation (21?2), and 
solving in respect  to P, 

P=-(aW+ b)' a, --BY".* 

a1 
. . . . . (213). 



. I  
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presents the increase of tension on the one  side,  and T-Ta 
the diminution of tension on the other, T,-T=T-T*; 

:. Tl+T,=2T . . . . . (214). 

It is a great principle of the economy of power in the use of 
the band to adjust this  initial tension T, so that it may just 

sufficient to prevent the hand from slipping upon the 
h n l  under any pressure which it is required to transmit. 
Thr means of making this  adjustment will be explained hem- 
after. 



, , :' 
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(216), we obtain, in  the case in which the negative sign of R, 
is to be taken, or in which 2T is less than P, + W, the  axis 

fif. 2.3 
C, resting upon the haer surface of its cdllar as shown in 

P,a, - Ppap=(Pl ?. PS + 2W)p sin. @ ; 

2nd in the case in which the positive sign of RI is to be 
taken, OT being greater  than P, +W, and  the axis C1 pressing 
against the upper surface of its collar, as shown in jg .  l., 

P,a;-PP,aS=(4T-P,7Pp)psin.+. 
Transposing and reducing, we obtain  for the relation 
between the driving and driven pressures in these two  cases 
respectively, 

. .. . . . (218), 

and thcrefore (by equation lei), for the moduli in  ‘the two 
uses, 
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7- tion of the  drum to  be represented by a pres- 

action of the  machine, be opposed to the mo- 

, l sure P applied at a given distance a from its 

I centre CS. Suppose, moreover, that the band 
1'' has  rcceived such an initial tension T as s b d  

the motion of thc drum is subjected to this 
just cause it to be on the  point of slippingwhen 

tensions upon the two parts of the band when i t  is thus just 
maximum rcsistance;  and  let 1; and t9 be the 

in the act of slipping and of overcoming the resistance P. 
Now, the two parts of the band being  parallel, it embraces one 
half of the circumference of each drum ; the relati011 between 
h and t ,  is there.fore expressed (equation 210) by the equation 
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196. % modulus of the band under its mort general fm. 
The accompanying figure represents an elastic hand passing 

joining whose centres C, and C, is in- 
clined at any angle to the vertical, and 

! round drums of unequal radii, the line 

4 _S 

~, ,# /7 , ./' , which are acted upon by any given 
;"7.,' /; pressures P, and PS, P, being sup- 

~ s'% '; 
, , i x, ,, posed to be upon the point of giving 

motion to the system. 
Let T, and T, represent the ten- 



l ! ,  , 





f., 

If this equation be compared with equation (219X it - d l  
be found to  agree with it, ntvtatis mutandis, except  that the 
coefficient 1.92 is  in tbat equation 2. This difference maoi- 
festly results from the approsi.make character of the theorern 
of Poncelet. 

Substituting  the  latter co-efficient for  the former, multiPIY 

ing  both sides of the equatioll by (l -~ F161 -c sln. . p), neglecting 

terms of more than two dimensions in pi f2 and sin. a, and 

reducing, 

"i 

a]' a: 
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of that of the precedig article, that the greateat economy of 
parer is obtained by applying the moving and the wwking 
pressures on the same side of the line CICp joining the axes 
of the drums. This is in fact but a particular case  of the 
general principle established in Art. 168. 
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P(a-pp,~,sin.~)+WOpzydsin. p ?  . . . . . (930). 

198. The modulua of the band, when the two par t s  of i t ,  which 
interuene between the dTums, are made to cross one  another. 

If the directions of the two parts of the  band bc made 
~,~ to cross, as shown in  the accompanying 

figure, the moving pressure T I  upon the 
second drum  is  applied to it on the side 
opposite to that on  which it is applied 
when the bands do not cross ; so that in 
this case,  in order that the greatest em-  

168.), the working  pressure or resistance 
P, should he applied to it on the side  opposite to that in 
which it was applicd in  the other case, 2 n d  therefore on the 
side of the line C,Cp, opposite to that on w.hicl1 the moving 
pressure PI upon the first drum is applied. This disposition 
of the moving and working pressures being supposed, and 
this case being investigated by the Same steps as tho pre- 
ceding, we shall arrive at precisely the Same expressions 
(equations 2528 and 229) fin the relation of the moving and 
the working pressures, and for the modulus. 

I n  estimating  the value of' the initial tension T (equation 
230) it will, however, he found, that  the  angle B ,  subtended at 
the centre CO of the second drum by  the KML, which 
is embraced by the hand, is no longer in this case repre- 
sented  by r - e  but by S+=. This will be  evident if v e  
consider that  the four angles of the  quadrilateral figwe 
c&IL being  equal  to  four right angles, and  its angles at K 
and being  right angles, the remaining  angles KIL an d 
XGL are  equal to  two right angles, so that KCeL=n-ai 
but the angle subtended  by KML equals aS-KC,L; it 

k& 

-@ nomy of power may be attained (Art. 
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mutual contact, as that  the wheels  shall  be made to turn hy 
the intcmcntion of their  teeth precisely as they would  by the 
friction OF their  circumferences 



,.I".. 
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INVOLUTE TEETH. 

. .  . . .. 
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EPICYCLOIIMI. AXD HYPOCYCLOIDAL TEETH. B 5  

The point of contact T of the  teeth mover a h g  the 
straight line AB, which is drawn  touching the generating 
circles BH and AG of the  involutes;  this  line is what is 
died the locur of the  different  points  ofcontact. Moreover, 
this property obtains, whatever  may be the number of teeth 
in coutact at once, so that all the points of contact of the 
teeth, if there be more  thau  one  tooth  in  contact at One, lie 
always in this line; which is a characteristic, and R most 





........ 
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thefore, whose edges are of the forms P& and PR satisfy 
the condition that  the line AP drawn from the pint Of 
contact of the  pitch circles  to any  point of contact of the 
teeth is a normal to  the surfaces of both  at  that point, which 
condition has been  shown  (Art.201.)  to  be  that necessary 
and sufficient to  the  correct  working of the teeth.* 

Thus then it appears, that if an epicyelaid be described On 
the plane of one of the wheels with any  generating Circle, 
and uith the pitch  circle of that wheel for its base; and if 
a hypocycloid be described on the plane of the other wheel 
rrith the pitch circle of that wheel for its base ; and if the 

faces or acting  surfaces of the  teeth on the two wheels be 
cut so as to coincide with this epicycloid and this hpCJT.lo$ 



. ,  
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respectively, then will the  wheels be driven correctly by the 
intervention of these teeth. parts of two  wheels having epi- 
cycloidd  teeth  arc  represeuted  in the preceding figure. 
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All the  teeth of a wheel arc  tberefore  set  out by the work- 
man from the same pattern or model,  and  it is in determining 
the form and dirnemions of this  single  pattern or modelof 
one or morc  teeth in reference to  the  mechanical effech which 
the wheel is to produce, when  all  its  tecth  are  cut out upon 
i t   and  i t  receives its  proper  place in thc mechanical com- 
bination of which i t  is to form a part, that  consists  the art of 
the description of thc  tecth of wheels. 

The mechanical function usually assigned to  toothed  deels 
is  the transmission of work under iucreascd or diminislied 
velocity. If CD, DE, &c. represent  arcs of thc pitch circle 
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then will O w l  and 2~r, represent  the circumferences of their 
pitch circles; and  if nl and m represent  the numbers of 

teeth cut on them respectively, then CD= --and cd= -B 
%UTl %* 
nl Rn 

. . - . . . . . (233). . rl mg 
re m1 

. . . . . (234). 

S 3  
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natnr of the first member of the equation which results from 
their multiplication, we obtain 

mE - vk-n3 . n5 . . . . 
,m n , . n , . n s . . . .  *P 
- %P-'. . . . (2.335). 

The factors in  the  numerator of this fraction  represent  the 
numhcrs of teeth in all  the driving wheels of this  train, 
and t h e  in the  denominator  the  numbers of teeth  in  the 
driven wheels, or f o b w e r s  as they are more commonly 
called. 

If the uumbers of teeth  in  the former be all  equal  and 
rqmsentctl by nl ,  and  the  numbers of teeth  in  the  latter 
also equal and  represented by v+, then 

(236). 



1.. P= ~ ~ .... ... ( 237). U 
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The number of units of work transmitted  by any machine 
per minute is usually represented  in horses’potuer, one  horse’s 
power being estimated at 33,000 units, so that the  number 
of horses’ powcr transmitted  by  the machine means the num- 
ber of times 33,000 units of work are transmitted  by it every 
minul,e, or the  number of times 33,000 must be taken to 
equal the number of units of work  transmitted  by it every 
minute. If therefore H represent  the  number of horses’ 
power transmitted by  the wheel, then U=33,000H. Substi- 
tuting tlis value in  the  preceding equation, and representing 
the coltstant 33,000~~ by C3, we have 

T = C,@ . . . . . . (239). 
mn 

The values of the  constant C for teeth of different materials 
are given in  the  Appendix. 
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coincide with the  circular  arc MN. With  the same cirenlar 
plate D pressed upon the concave edge of EF, and made @ 

roll up011 it, cause the  point  in its circumference to describe 
in like manner, upon  the surface of the board from which 
the pattern is to he cut, a hypocycloidal'arc BH parsing 
through the point B, and  another AI passing through the 
point A. HE1 will then  represent  the form of a tooth, which 
will work correctly (Art. 204.) with  the  teeth rimilarly 
upon any other wheel ; provided that the  pitch of the  teeth 
SO c u t  upon the  other wheel  be  equal to  the pitch of the 
teeth upon this, aud provided  that  the same generating C k c k  

he used lo  strike  the cumes upon the two wheels. 
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..,, 

comes into  the  line of centres,  it  is  clear  that the tooth L 
must  have  been driven by K from the  time  when their con- 
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tooth ; and  if a circle be  struck from the centre of the pitch 
circle passing through  that point, all that portion of the 
tooth which lies beyond this circle may be cut off.' 

The length of the  tooth on the wheel  intended  to act with 
this, may be determined in like manner. 

212. In the  preceding  article we have supposed the same 
generating circle to be used in striking,  the entire surfaces of 
the teeth on both wheels. It is not however necessary to 
the correct working of the  teeth,  that the same circle should 
thus be used in  striking  the entire surfaces of two teeth 
which act together, but only that  the generating circle of 

contact should be the same. Thus thej&Hlk of the driving 
every two portions of the two teeth which come into a c t 4  

tooth and the face of the driven  tooth  being  in contact at 



! ., 
l '  



. 
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and C ,  each touching the  straight  line EF. These circles are to 
be taken as the bases from  which the involute faces of the teeth 
are to be struck. It is evident (by the similar thuglea ACF 
and AER) that  their  radii C F  and BE will be to one another 
as the radii CA and BA of the  pitch circles, so that  the Con- 
dition necessary (Art. 203.) to the correct  action of the teeth of 
the wheels will be satisfied, provided their faces be involutes to 

. .. 
L, . : . i i i  

.. . _'. . 
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that wearing of their brasses or collars,  which 
soon results from a continued and a consider- 

will readily be admitted, if we  conceive AG 
able strain. The existence of this property 

and B H  to represent  the generating  circles 
or bases of the  teeth, and these to  be placed 
with their centres C,  and C* any distance 
asunder, a band AB @. g%., note) passing 
round both, and a point T in tbia bandgene- 
rating a cnrve mn, m'n' on the plane  of  each 

of the circles as they are made to revolve  under it. It has been 
shown that these  curves mn and m'n' will represent the faces 
of two teeth which  will  work truly with one another; more- 
over, that these curves are respectively involutes of the two 
circles AG and BH, and are therefore wholly  independent in 
respect to their forms of the distances of the centres of the 
circles from one another, depending only on the dimensions 
Of the circles. Since then  the circles  would  drive at mY 
distance  correctly  by  means of the band ; since,  moreover, at 
ererY such  distance they would  be  driven  by the ~ I V ~  mn 
and m'n' precisely as by  the  band; and since  these Curves 
would in every such position be  the same  curves, viz. h- 

of the two  circles, it follows that  the m e  involute 
mn and m'n' would drive the circles conecdy at What- 

:"er distances their  centres were placed; and,  therefore, that 
involute teeth would drive these wheels com?CdY at What-  

ever distances the axes of those wheels  were  placed. 



, ., 
l ;  
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termined by drawing  through the point 0 a tangent to the 
circle AC, from which the involute  teeth of the pinion ate 
struck. If the circle AC from which the involute teeth of 
the pinion are struck coincide with ita pitch circle, the line 
AB becomes parallel to the face of the rack, and  the edges 
of the teeth of the  rack  perpendicular to its face ($g. 2.). 

Now, the involute  teeth of the  one  wheel have remained 
unaltered, and the  truth of their action with teeth of the 
other wheel has not been  influenced hy that chsnge in the 
dimensions of the pitch circle of the last, whiih has con& 
it into a rack, and ita curved into straight teeth. Thus, 
then, it follows, that  straight  teeth upon a rack, work t d y  
with involute teeth  upon a pinion. Indeed it ia evident, 

0 . )  



- 
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. .  
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217. THE TEETH OF A WHEEL WORKIXG WITH A LANTERN 

OR TRUNDLE. 

In  Some descriptions of  mill work the ordinary form of the 
toothed wheel is replaced by a  contrivance called a lantern OT 
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Describe a circle ae, having its centre in m, passing 
through a, and having its diameter equal to that of the 
stave, and  divide each of the pitches Au and Ab into the 
*&me number of equal parts (say three). From the pinta of 
division A, a, ,3 in the pitch Au, measure the shortest dis- 
tances  to the circle W, and with these shortest distances, 
respectively, describe from the  points of division n . 8  of the 
pitch Ab, circular arcs intersecting one another; a n ~ r e  ab 
touching  all these circular arcs will give the trm $ee of the 
tooth (Art. 202.). The opposite face of the tooth must be 
struck from similar centres, and  the baae of the tooth must 
be cut so far within the pitch circle as toadmit one half of 
the stave ae when that stave passes the line of centres. 

. .  

. .  
: . :.> 

.~ ... 
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. .  
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Dividing numerator aud denominator of the fraction in the 
second member of that equation by sin. (0 + $), and throwin:: 
out  the factors 7 ,  and T ~ ,  we have 



T-- 
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i 

l .....( W); 
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Now (Art. 1G6.) --=m, COS. I , ~ + G ,  COS. I%?, where repre- 

sents the inclination W,FP, of P, to the vertical, and 8% the 
inclination RrF of R to the vertical.* 

Let  the inclination W,BD of the  perpendicular upon p, to 
the vertical be  represented by U,, that angle  being so measured 
that  the pressure P, may tend to increase it ; let .,represent, 
in like manner, the inclination ECG of CE to  the vertidi 
and let @ represcnt the inclination ABT of the line of centres 
to  the vertical, 

M! 
a, 

R .'. I ~ ~ = W , F P ~ = W , B ~ - B D F = U , - ~ ,  

lp)=RrF=BOR-OBr=B+p-/3; 

M . ~_ !_  
a1 

. .  -m, sin. CL, + a, cos. (0 + p+). 

M, 
Similarly =mI cos. P,GH + cos. R~w,.? N O W  

Q, 

PtGH=ECG+GEC=u,+2; 1 and R ~ W , = ~ - R T F ,  and 

RrF was before shown to be equd  to (0 +p-@), 

. .  . M, 
a2 
- - m e  sin.n,-ap COS. (0 +Q-@). 



1- 
. .. ~ . .  

PRESSURES UPON W'AEELS. a85 
M, 

nr, 
sin. (Q+$) sin. a,+X sin. a, sin. $ t u ,  cog. (@+$-p) 

- =-r,sin.(8+~)sin.o,+Xsin.~,sin.~--..cos.(8+q-p) 4 

... (%I). 

Let it be supposed that  the distances DM and EN, repre- 
sented by Ll and L, are of finite dimensions, the directions 
of neither of the pressures PI and P, approaching to coin- 
cidence with the direction of R,-a supposition which has 
been virtually made in deducing  equation (163) from equation 

on the former of which  equations,  equations ( a a )  
depend. And  let it be observed that  the terms involving sin. p 
in the above expressions  (equations 251) will be of twa 
dilnensions in pI, p*, and 9, when substitutedin equation@so), 
and "lay therefore be negkctsd. Moreover, that ip 
the direction of RP is so nea ly  perpendicular to the line 
Of centres BC, that in those  terms of equation (250), which 
are multiplied by sin. p, and sin. qz, the angle d + or Bo% 

be assumed zZ ; any  emor which that supposition  in- 

exceedingly amall in itself,  being  rendered exceed- 
ingly less by that multiplication.  Equations (251) will then 

?I 

become .. . 
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equation (250), WC have 
Substituting Nr1r2 for the factor, w h i c h  i t  represents in 



l- . .  .~ ... 
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OF TWO TOOTHED WHEELS. 299 

1 remain constant, whilst any two  given  teeth are in action, 
P,Q,+ reprcscnts the work Up yielded by that pressure whilst 
those teeth are  in contact: also m& represents the space S, 
described by the circumference of the pitch circle of either 
whcel whilst this angle is described. Now let d, be 
ronceived to  represent  the angle  subtended by the pitch 

supposed to act  only behind the  line of centres, then G=- 2% 
%' 

712 representing the  number of teeth on the driven wheel, 

j ofone of the teeth of the driven wheel, these  teeth being 

. 
. "  .. 



from whicb equation we obtain by the  same  steps as in 
Art. 221, observing that 1 is  constant, 

which is the modulus of n system of two mheels having ang 
givcn numbers of involute teeth. 



. . . I . . . l 

i 

i 
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the radius. If, therefore, the function ?L admit of a m b h m m  
value, the second factor of the above  equation vanishes when 
it attains that value ; and the corresponding value of 1 is 
determined by thc equation, 

Bsin.(1-p)-Asin."==O , . . . . (261). 

or substituting the values of  A and B, 



7' 
. . 

THE NEST DlVl8lON OF THE ANGLE OP CONTACT.~ 2391 

This condition bcing satisfied, the value of I ,  determined ! by equation (a62), corresponds to a minimum, and determines 
the INVOLUTE TOOTH OF LEAST RESIBTANCE.. 
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line of centres, and then  between  the  limits 0 and (1 -x) 
2r 

to determine  the work uq done  after  the  point of contact ha3 

passed the line of centres;  observing, moreover, tha t  in the 
former case -9  is to be substituted ill sec. (v-$) f o r ?  
(Art. 019.), w e  have 
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#U 
d3C9-2a(sec.(?+g) tsec.(?-q)}Up: 

. .  

Whence i t  appears that  the second condition is always satis- 
fied, and that the first  condition  is satisfied by that value of 
z, d i i c h  is determined  by the  equation 

x=2 
. l  { 1-(1+:)tan.q tan.?}. 

so that the  condition of the  greatest economy of power is 
satisfied in respect to involute  teeth, when the  teeth  first 
m e  into contact  before  tile  line of centres a t  a point whose 
arlgular distance from it is less than one half the angle sub- 
tended hy the  pitch  by  that fractional  part of the last-men- 

t i o l l d  angle, which i s  represented  by the formula ;(l +:) 
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HAVING EPICYCLOIDAL TEETH. 3 0 1  

of the pitch circle of the driven wheel to the radius of the gene- ' 

mt iq  circle. Now the chord A P S B  sin. 4 ADP; 

therefore ~ = 2 r s i n .  e+=:* sin. e+. Substituting  this' value 

of A i n  cquation (255); observing, moreover, that  the w j e  

i PhD represented by B in that equation is equal to 2') 

ADP, or to  Q-&, and  that  the whole angle -4 through which 

the driven wheel is  made  to revolve by  the contaet  of'each of 

its teeth is represented 6y -9 we have 

e 

, r 

T 

2T 
I"0 

P" 





"I' 

H A V I N Q  EPICYCLOIDAL TEETH. 3 x 3 :  

2er 
=log.< cos.-+~og., 

2ea 
tan. -tan. +- + tan.2 - . tan.'p + &e. Substituting thL 

nl 
expression in  the preceding  equation,  and neglecting terms 
abuve the first .&mension in tan. p and sin. p, 

l 
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neglected as compared with its first power, and if we  neglect 

powers of tan. - above the second, Q 
2 

which expression becomes ~~ ~ 9 we suppose  the two a m  

which enter  into  it  to be so small as to  equal their re- 
spective tangents. 

2ea , 
% 

Again, log.s  cos. =-g 2es 
n3 (2:)' very nearly.' 

Substituting these values in equation (267), ancl performing 

actual  multiplication by the  factor -~ ~ we  have n, 
2er' 

,. . 
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there is, therefore, a given  relation of the radius of the 
generating circle of the driving, to  that of the driven wheel, 
which relation being observed in striking  the epicycloidal 
faccs and the  hypocycloidal5anks of the teeth of two  wheels 
destined to work with one  another, those wheels will .work 
with a greater economy of power than  they would under any 
other epicycloidal forms of their teeth. This value of e may 
be determined by  assuming the differential co-efficient of the 
co-efficicnt of U, in equation (266) equal to zero, and solving 
‘he resulting transcendental  equation hy the method of a p  
proximation. 

X 

. . ... , . .. ... 

.. , . .,. 

... . . ~’. ,, 
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teeth of auy  dimensions ( s e e j g .  1. p. O X . ) ,  
2. For the  modulus of a rack  and pinion, with involute 





, p '  
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1 of the lines DE and DF about AE and AF respectively; 
wpposc conical surfaces to be generated by the revolution 

. ~. 
. .: . :. i . . .:? 

. ,  
.. . . ., .. . 
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infinity of conical surfaces parallel u1d similar to DM and DX; 
Now conceive the faces of the  teeth  to he intersected by an 

precively in  the same way it may be  shown  that those pnr- 
tions of the  teeth which lie in  each of this infinite number 
of conical surfaces work truly  with  onc  another ; whence it 
follows that  the whole surfaces of the tceth, constructed as 
abovc, work truly  together. 
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tributcd to each will  then  be represented  by  AX PI on the 

onr &eel, and - ~ ~ A z  011 the other. Let p l  and p* represent 

the two pressures thus  applied  to  the  extreme lamina3 AH 
alid AI( of the wheels, and  let  them be in  equilibrium when 
tbus applied to  those  sections  separately and independently 
of the rest ; then if R represent  the pressure  sustained along 
that narrow portion of the surface of contact of the  teeth of 
the wheels which is included  within these lamine,  andif R, 
and R, represent the resolved parts of the pressure R in the 
directions of the planes AH and AK of these  lamine,  the 
pressures pl and R, applied to the circle AH BIP: pressures 
in equilibrium, as also the pressures pp and happ l i ed  to 
the circle AK. If, therefore,we  represent as before (Art.218.) 
b’ 9% and %, the  perpendiculars from B and (3 upon the 
directions  of R, and RP, and  by L, and L, the distances be- 

the  feet of the perpendiculars a,, 1111 and Qq, % we 
have (equation 241, 242.), neglecting the weights of the 
\vheels, 

PP 
b 

. .  



_p 
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Substituting thesc values in equations (272) and dividing 
those equations by one  another so as to eliminate R, 

rl + A  sin. p cos. :I + ( y ) sin. pI P I L I  

PI -3 
i o ~  a~ 
- . ~ 

P 
; 

r2-A sin. p cos. I*-.( ~ -) sin. q* 
a9 
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Now Ll representing the valuc of L d l c l l  .t=O, and 1 re- 
maining  constant, 
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Substituting  in  the preccding relation,  between U, and U,, 

which is the modulus of the conical or bevil wheel, neglecting 
the influence of the weight of the wheel. 

p. 320.), we shall obtain by  reduction 
If for c0s.1, and COS. 'io we substitute  their ralues (see 



r . .  
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fectire only on the extremity of the axis,  where it is borne as - 
by a pivot, so that  the work expended by  reason of it may he 
determined  by Art. 177., and will he found to present  itself 
under tlle form of Ne. S, where N, is a constant and S the 
space described  by the pitch circle of the wheel,  whilst 
the work U, is done. The resolved  weight in  the plane 
of the wheel must be  substituted for the weight of the 
wheel in equation (452), which determines the value of N. 
Assuming the value of N, this substitution being made, to 
be represented  by NI, the whole  of the second term of the 
modulus will thus  present itself under the form (NI +NP)S. 
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of engineers, to whom it is well known that bevil wheels pun 
Zighter than  spur wheels, 
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sure from the  centre of the driving wheel oaniah, and.the 
term which involves the value of L representing that line 
disappears from the modulns, whilst the perpendicular upon 
the driving pressure  from  the  centre of the driving wheel 
becon~es r3. Let i t  also be observed, that  the work  of the 
fourth wheel is  done at  the  point of contact C Of the fifth and 
sist11 wheels, so that  the perpendicular  upon the direction O f  

that  work front the a x i s  of the driven wheel is 18- We 5hall 
thus obtain for the  modulus of the  third  and  fourth wheels, . 
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is the  same with that described at the same distance from 

its centre  by the second wheel, 80 that s s .  ?=L; m like 

manncr that  the spaces  described at distances unity from 
tllcir centres by the  fourth and fifth wheels are  the m e ,  so 

that .~=--9; and similarly, that .- S4 =-, .S, &c.=&c.; and 

78 79 

S, S 
t 4  77 r6 

f i n a l l y , S P  =Se!.  
Multiplying the two first of these  equations together, then 

Tap-l r -4  

the Ihra  first, the four first, &C., and transposing, we have * 

Y 4  



328 THE MODULUS OF A TRAIN O F  WHEELS. 

If in likc  manner we neglect in  equation (283) terms of 
more t l r m  one dimension in pL1,  p9, ps, &c. we have 

U1=(l+~,+tL2+p3+ ...+ I*plU*+N.S. 

Substituting  these values of p,, p,, &C. in the preceding 
equation, 
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as the work done. Whilst  the third term represents the ex- 
penditure of work due to  the weights of the wheels  of the 
train, and is wholly independent of the work done, but only 
upon the space S, through which that work is done at the 
point where the driving pressure is applied to the train. 

638. The expenditure of worh due to the f k t M %  of ths tee th  

The work expended upon the friction of the teeth is.repre- 
m c d  by the formula 

1 1 1  . . .(287), 



i I, 

i : 
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the work lost  by the friction of the axes are represented 
by the expression 

from which expression it is manifest, that  in every ease the 
expenditure of work due  to the friction of the  axes in leas as the 
radii of the  axes are less when compared w i d  d e  radii of 
the wheels; being  wholly  independent of actual dimensions of 
these radii, but only  upon  the  ratio or proportion of the 
radius of each axis to  that of its corresponding wheel: mort? 
O w ,  that  this  expenditure of work is the least when tb 
wheels of the train we so arranged, that the projection of the 
point of contact of any  pair upon the  plane of the nett 
fohviug pair  shall  lie in  the line of centres of this P&, 
between their point of contact  and  the  axisofthe  &vingvh=l 

jectiou falls in  that  line  hut  on  the other aide of the 
ofthe  pair; whilst the  expenditure is greatest when tu PrO- 

The difference of the expenditures of work on the friction of 
the axes under  these  two different arrangemellts Of the train 
isrepresented by  the formula 
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U, be supposed to be done upon the first wheel of the hain 
at a point situated in reqmt to 
the point of contact a of that 
wheel with its pinion p&Iy 88 

that point of contect is in respect 
to the point of contact b of the 
next pair of wheels of the train; 

and if a similar supposition be made in respect to the point 
at which the dn'oen work U, is done upon the last pinion 
of the train, then, evidently, L,=L=LJ=. . .=I+,, and 
(see equation 252) N,=Na=. . .=NP. 

The modulus (equation 285) wil l  become,  these subti- 
tutions being  made in  it,  the axes being,  moreover, supposed 

lubricated, and i t  being observed that  the drivers and the 
all to  be of the same  dimensions and material, and equally 

followers are each p in number, 
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pairs of wheels in thc tmin, so that the work UI ex- 
pended through a gioelz space S, in driving it, may be a 
minimum. 

Since  the  number of revolutions  made by the  last wheel of 
the  train is required to be a given Juultiple  or part of the 
number of revolutions  made by  the first whccl, rvllich md- 
tiple or part is  represented  by m, therefore  (equation 236h 
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If we suppose ,+I = O  and N1=O, or in other words, if we 
ueglect the intluenee of the friction of the  WES and of the 
weights of the wheels of the train upon the conditions of the 
question, we shall obtain 
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T A E  INCLINED PI.*NE. 

THE INCLINED PLANE. 
043. Let AB represent the surface of an  imlined plane on 

which is supported a body whose centre of gravity is C, and 
its meigllt W, by means of a  pressure  acting in any direc- 
tion, aud which may be supposed  to be supplied by the ten- 
sion of a cord passing over a pulley  and carrying at its 
extremity a weight. 

Let OR represent the direction of the  resuitant of p and 
W. If the direction of this  line be inclined to-the perpen- 
d h h r  S T  to  the surface of the plane, at an angle OSI' 
W d l  to the  limiting  angle OF resistance, on that side of ST 
\%h is farthest  from tire summit B of the  plane.@  in 
fi,!?. l.), the body will be  upon  the point of slipping "?Mar&; 
and if i t  be inclined tn the perpendicular at RU angle OST, 

('.l (2.) 



:. 

+, 
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If B=O, P = W .  tan. p, as it  ought (see Art. 198.). 
If the angle PQB or B (fig. 1.) be iucreased so as to he- 

come r--8, PQ will assume the direction s h o m ' i n  fig.&, 
and the relation (equation 294) between P and W will  be- 
come 

p=  sin. ( I  + p) 
cos. (e +p) . . . . . (297). 

in order that  the body may dip  up the plane, be opposite to 
The negative sign showing that  the direction of P must, 

that assumed in fig. 1. ; or that  it must be a pushingpressure 
in the direction PO instead of a pulling pressure in  the di- 
rection Op. 

If, however, the body be  upon the point of slipping down 
the plane, so that Q must be taken negatively; and if, more- 
over, 9 be greater than 1, then sin. ( I  + +), will become sin. 
(1-p) =-sin. (p-,), SO that P will in this W e  aaSume'the 
?ositive value 
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in equation (294) its  greatest value, or 
which m a l m  9--: = O  or O=q. The di- 
rection of P is  tllcrehrv  that of least trac- 
tion when the  angle PQB is equal to the 
limiting angle, a d a t i o n  which obtains in 

the  preceding  article. 
H '  respect  to  each of the cases discussedin 

i 
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But the four  angles of the quadrilateral figure BEOF 
being equal to four right angles (Euc. 1.32.), EOF=%- 

EBF-OEB-OFB; but EBF=r, OEB=3++1, OFB= 

it?,. . . .EOF=W-I-+~-+~ .  

T 

r 

Siulilarly, DOE32r-  ADO-AEO-DAE ; but ADO 

hEO= -p,, B A C = 2 - ~ :  :. D O E = 2 + ~ + B ~ -  
7i 1 1 

2 
1 

Since, moreover, DO is parallel to BC, both bekg per- 

peudicular to AC, ... I)OF=r-OFC; but OFC=2-@:. 
K 

r 
, . DOF= ~ ~ + F 3 .  2 
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the furms 
Equations 301 aud 302 may he  placed  respectively under 
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MOVEABLE INCLlNPD PLANES a43 
equilibrium, the relation between RI and Pp in expressed 

(Art. 14.) hy the relation - -sm.R,Qx R, sin. PsQR, 
P*- ' 

Now &Q is - 
inclined to  a perpendicular to  the hack of the plane B, at an 
allgle equal to the limiting angle of resistance  between the 
surface of that plane and the obstacle D on  which it in upon 

then is the inclination of to the back  of the plane 01 E'& 
the point of sliding. Let this angle be represented by 08, 

represented  by2-p8 ; so that PgQ&=3-p3. 
And if &Q be produced so as to meet the surfsee of the 

Plane A in V, and VS be drawn horizontally, R&%= 
& V R , t V R , Q = R , V S + S V A + V R l Q = ~ ~ + ~ + ~ + Q I , '  

where I represents the inclination of the superior surface of 
the plane A or the inferior surface of the plane B to the 
horizon. Substituting  these d u e s  of P&& and RI&% We 
obtain 

. -  

1 I 

,# 

P -  
I --P%os.(r + $.] + p3)cos. 9% 

sin.(~+$.l+q*)cos.p~ 
I_ . . . . . . (334). 
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' :.&GOR=,-(I+~). 1 .  
. .. . . .  
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346 . 'THE WEDGE D R I V E S  BY PRESSURE. 

. I .  Pl=2Kl sin. ( I  +p) . . . . . (307). 
Whcnce it follows (equation 121) tha t  the modulus of the 
wedge is 
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So long as I is  greater  than q, or the angle C of the wedge 
greater than  twice the  limiting  angle of resistance, P1 is psi- 
tive ; whence it follows that a certain  pressure acting in the 
direction in  which the wedge is driven, and represented in 
amount by the above formula, is, in this case, necessary to 
keep the wedge from  receding from any position into which 
it has been driven. So that if, in  this case, the pressure PI 
be wholly removed, or if its value become less than that re- 
presented by the above  formula, then the wedge will recede 
from any position into which it has  been driven, or it will be 
started. If 6 be less than q, or the angle c of the wedge 
less than twice the limiting  angle of resistance, PI sill be- 
COLnc negative ; so that,  in  this case, a pressure, Opposite in 
direction ti that  by which the wedge has been driven, will 
have become necessary to cause it to recede from the p d t i o n  
into Khich it has  been  driven; whence it follows, that if 
the pressure P be now wholly removed, the wedge will 
remain fixed in that position ; and moreover that it will S t i n  

remain fixed, although a certain  pressure  be applied to =use 
it to rccede, provided that pressure do not exceed the nega- 
tive value  of P,, determined by the formula. 

I t  is this  property of remaining k e d  in an). position into 
which it is driven when th'e force which drives it is remmed, 
that characterises the wedge, and renders it superior to 

It is evidently, therefore, a principle in  the fOmdon  Of a 
"'Edgc to be thus used, that its angle should be less than 
tivice the  limiting mg1e of resistance between the material 
which forms its surface, and  that of the mas into which it b. 
to be driven. 

other  implement driven  by impact. 

.. . .  

.I 
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cumulated in this body, when it strikes  the wedge, will then be 

represented (.4rt. fiG.) by ',"V.. NOW the whole of this 

work is done by it upon  the  wedge, and by the  wedge upon the 
resistances of the  surfxcs  opposed to its motion ; if the 
bodies  are supposcd to  conx to rest aftcr the impact, and if 
t h e  i ~ ~ f u e n c e  of the  elasticity  and  mutual  compression o f t h  
surfiiccs of the striking body and of the wedge are neglected, 
aud if 1 1 0  permatlent  comnression of their surfaces follows the 

- 9  

1 WV' inlpact. * :. U - ~ ~. '-2 0 
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THE COMPOUND WEDGE. S49 

might W with a given velocity V is determined; or the 
weight W necessary to  yield  a given amount of  work when 
movhg with a given  velocity; or, lastly, the velocity V with 
which :L body of given  weight must impinge to yield B given 
auiuunt of work. 

If the wedge, instead of being isosceles, be of the form of 
II a right angled triangle, a shown 

in the accompanying figure, the 
relation  between  the work U1 
done upon its back, and  that 
yielded upon the resistances op- 
posed to its motion at either of 

tions SO1 and 302. Supposing therefore this wedge, like the 
its faces, is represented by equa- 

forlner, to  be  driven by impact,  substituting BS 'before for 

its ralue - V*, and solving in respect to uh, we have in 
the case in  which the face AB of the wedge is ita driving 
surface 

I W  
2 9  





THE SCREW. 951 

impact of the hammer as of its impact applied through the 
wedge, that it is sufficient to cause any finite resistance o p  
posed to it to yield tbrough a certain finite space,  however 
grcat that  resistance  may be. The difference lies in this, that 
the surface yielding through  this exceedingly small hut finite 

itself after the blow if thc limits of elasticity be not passed; 
space under the blow, of the hammer, immediately recovers 

ahercas the space which the wedge is, by such an impact 
made to traverse, in  the direction of its length, becomes a 
Permanent separation. 
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conditions of the equilibrium of the pressures P, and P, in 
the  state  bordering upon motion, aud the modulus of the 
-system, will be  the same in  the one case as  in  the  other ; with . 
this  single exception, that  the resistance It, of the m a s  on 
which the  plane A rests (see fig. p. M2.) is not, in the caae 
of the scrcw, applied only to  the thin  edge of the base of the 
lamina A, but  to the whole extremity of the solid  cylinder on 
which it is fixed, or to a circular  projection from that  ex- 
tremity serving it as a pivot. Now if, in equation 304, 
we assume po=O, we shall  obtain that  relation of the 
pressures P, and P% in  thcir state borderiug  upon  motion, 
which would obtain  if  there were no  friction of the  extremity 

that  the pressure P, is precisely tlrat by which the pivot at 
of the cylinder  on the mass  on which i t  rests ; and observing 

the  extremity of the cylinder is pressed upon  this mass, and 
therefore the moment (see Art. 177, equation 188) of the 
resistance to  the rotation of the cylinder  produced  by the 

friction of this pivot by $,p tan. p*, where p represents  the 

radius of the pivot ; observing, moreover, that  the pressure 
which must be applied at  the circumference of the cylinder 
to  overcome this resistance, above that which would be rc- 
qnired to give motion to  the screw if there were no such 

friction, is  represented by 2 P  P ~ tan,pn, r being  taken  to re- 

present  the radius of the cylinder, we obtain  for  the  entire 
value of the pressure P, in the  state  borderinE  upon motion, 

2 

3 % 



7-'--*------ . .. . 
.. .. . . . . .. . .  
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p, in the preceding  equation, and that equatiou solved in 
r y e c l  to P,, we obtain 6 u d y  for the relation between PI 

P, in their  state bordering upon motion, 

If' in like manner we assume' in the modulus (eqnation 305) 
F,=O, and thus  determine a relation between the work done 
.It t l ~ c  driving point  and  that yielded a t  the working pint,  
011 tlw supposition that  no work is expended on the friction 
uf tlw pivot ; and if to the valuc of U, thus obtained we add 
the w r k  expended  upon the resistance of the pivot which is 
shown (cquation 189) to be  represented at each revolution 

b g~pI ' ,  tan. pI, and  therefore during m remhtims 
4 
p f P , ,  we shall  obtain the following general expression for 

the modulus; the whole expenditure of  work due to the 
Prejudicial resistances being  taken into account. 

4, 

A A  
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. 
VARIABLE INCLINATION OF THE THREAD. 859 

THE THEORY OF THE SCREW WITH A SQUARE THEE~D 
IN REFERENCE TO THE VARIABLE INCLINATION OF THE 

THREAD AT DIFFERENT DISTANCES FROM THE;AXIS. 

2.37. In  the preceding investigation, the inclined plane 
lyhich, being wound  upon the cylinder, generates the thread 
of the  screw, has  been imagined to be an exceedingly thk 
sheet, on which hypothesis every point in the thread may be 
collceived to  he situated at  the same distance from the axis Of 
the screw; and it is on this supposition that the relation 
between the driving and working  pressnre in the WEW and 
its modulus have been determined. 

c * 



! '  I 

tan.r=-- -~ . . . . . . (318). R tan. I 
r 



INCLINATION OF TAE THREAD. s6l 

every square unit of it, is represented by w y  Let Ar 

represent the exceedingly small thickness of such a ring 
whose radius is r, and which  may therefore be  mnceivd to 
represent the termination of the exceedingly thin cylindrical 
surface passing through the point p ; the area of this ring is 
lllcrl represented by ~ Z T A T ,  and therefore the pressure U p 8  

it  by ---, qlPRT or by Now this is evidently the 
P,. 2mAr PsTA? 
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362 THE MODULUS OF THE SCREW. 

318), it becomes 
Substituting  in this  expression for tan. I its value (equation 

Integrating and reducing, 

whence we obtain (by equation 121) for the modulus, 

whence it fodlows that  the best  inclination of the thread, in 
respect to  the economy of power in the  use of the W a T e  
screw, is that which satisfies the  equation 
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THE BEAM OF THE STEAM ENGINE. 866s 

l THE BEAM OF THE STEAM ENGINE. 

~ 959. Let P,, P* Pa, P., represent the pressurea  applied by 

~ 

the piston rod, the crank rod, the air pump rod, and the cold 

: 

. .  . .  

. .  
. .  

: .. . . . . . . .. 





THE BEAM OF THE STEAM ENGINE. 366 

Its form will be grcatly simplified if  we  assume cos. k 1 ,  
since B is small*, suppose the coefficient offriction  at'each  axis 
to be the same, so that q=pl=q2=p3=pb and divide by the 
coefficient of Ul, omitting  terms  aboveithe first dimension in 
Pi . 

~ sln. p, &c. ; whence we obtain  by reduction 
Q 1  

260. The best position of the axis of the beam. 

Lct a be  taken to represent  the  length of the heam, and X 

the distance aC of the centre of its axis from the  extremity 
to which the driving  pressure is applied, 



3% THE BEAM OF THE STEAM ENGINE. 

The best position of the axis is determined by that value 
of 3: which renders  this  function 8 minimum ; which value of 
5 is represented by  the equation 



THB CRANK, 
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370 THE CRANK. 

Sdmc inclination, so as to revolve under  the action of the 
driving pressure  through the  angle a-%@. 

acting  enginc, u,=O. The  work  expended by reason of the 
In the double-acting engine, u,-u,=O ; in the single- 

friction of the crank is  therefore less in  the  latter engine than 
in  the  former, when thc resistance P, is applicd, as shorn 
ill the figure, on the  side of the ascending arc. 

If the arm sustain the action of the driving pressure cm- 
s l a d y ,  @ =O, and thc modulus becomes, for the double-dinll 
eugine, 

or, dividing by the coefficicnt of U,, and neglecting d i m  
sions above the first in sin. pl,  sin. p$, 
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axis greater than the  length of crank arm, and so much 

greater, that P, (1 -:) may exceed W. These conditions 

commonly obtain in the practical application of the crank. 



a 

372 TIlE DOUBLE CR*NK. 

THE DEAD POINTS IX THE CRANK. 
%X. If equation (329) he solved in  respect to P, it be- 

comes 

In that position of tlle arm, therefore, in which 

sin.o= p- nsin.p,+p,sin.p, ~~~ . . . . . (3351, n 
the driving pressure PI necessary to overcome any given re- 
sistance P, opposed to  the revolution of the crank, assumer 
an infinite value. This  position,  from which no finite pres- 
sure  acting in the direction of the  length of the connecting 
rod is sufficient to movc the arnl, when it is at rest in that 
position, is called its dead point. 

(%S), two in  the descending and two in  the ascending semi- 
Since there are four vdlues  of 8 ,  which satisfy equation 

revolution of the arm, there  are, on the whole, four dead 
points of the crank.* The value of p, being, however, in 
cases exceedingly great  between the two highest and the two 
lowest of these positions, every position between the two 
former and the two latter,  and for some distance on either 
side of these limits, is practically a dead point. 

i 

l 
l 
i 

I 

l 
i 
! 

L 
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:. a , = $ a ( s i n . 4 + ~ 0 ~ . 4 j - p , s i n . ~ ~ ;  



THE DOUBLE CRANK. 37.5 

upon motion remain the same as before; that i@, the same 
as though the pressure PI weie 

c applied to an imaginarJT ann, 

whose length is c, and whose 

position  wincideswithCF. NDW, 
. referring to equation (3aS), it is 
‘\ apparent that thin condition will -\ be satisfied if, in that equation, 

the ambiguous sign of (Pp+ W) 
he suppressed, and the value of 
Pl in the -d member,  which 
is multiplied  by p1 sin. pu -be 

U 

J2 . 



576 THE DOUBLE CRANK- 



. . .. . .~ 

THE CRANK GUIDE. 377 

crank be neglected, and W be  therefore assumed=O, then 
does the ahove equation  represent  the modulns of: the 
doublc crank, whatever may be  the direction’ of the driving 
pressure, provided that the directiun of the resietasce be 
parallel to it. Dividing by the coefficient of U,, and ne- 
glecting terms of more  than  one dimension in sin.?, and 
sin. pI, 
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or of the motion of the piston rod, at  an angle  equal to the 
limiting  angle of resistance (Art. 141.) of the surfaces of con- ', 

tact of the guides. 
Since, moreover, P,, P*, R are pressures in equilibrium, i 

! 

. 
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&=U, l +  l 2.-(;-l)log.,(;p), l . . . . (M), 

.?tan. p 

which is the mdulus of the crank guide. . .  
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THE FLY-WHEEL. 381 

to be constructed of such dimensions as sufficiently to quai- 
ise the motion, even if no work accumulated at  the. w e  
time in other  portions of the machinery (see Art. IS.), or if 
the weights of the  other moving elements, or their veIociti% 
were comparatively so small as to cause the work accumulated 
in thcm to be exceedingly  small as compared with the Work 

accumulated during the Same period in  the fly-wheel. NOW, 
if I represent the  moment of inertia of the fly-wheel, p the 
weight of a cubic foot of its material, a, its mguh dociq 
whcn the crank a m  was in the position CA, and II its uguh 
d x i t y  when the  crank  arm has passed into the positi&i 

CH;  then will frJ/1(a2-al') represent the work wcntnntated 

in it (Art. 75.) between these two positions of the crank arm, 
so that 

9 
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steady or uniform  motion, the  aggregate  work done by the 
power being  equal to  that  expended  upon the resistances, 
then will the angular velocity of the By-wheel return to  the 
same  value whenever the wheel returns  to  the same position; 
so that  the value of a1 in  equation (344) is a conatant, ad 
the value of U a function of 6 : a assumes,  therefore, its mini- 
mum  and  maximum values with  this  function of B ,  or it is a 

minimum when --0, and .- 0, and a maximum when 
act2 

dB - dtl  ' d ' Z  



r---- . . . . ~ . .  

THE FLY-WHEEL. 383 

arm, and a3 its greatest a n y l a r  velocity,  corresponding to 

the position CE ; then does -(ag2-aPa) represent the work 

accumulated in the fly-wheel  between  these  position^, which 
accumulated work is equal  to the excess of that done  by the 
power over that expended upon the resistances whilst the 
crank arm revolves &om the one position into the other, and 
is therefore represented by the difference of the 4 . u ~  given 
to thc formula (343) when the two  values "-1 and I, deter- 
mined by equation (345), are substituted in it for d. N& 
this difference is represented by the formula 

PI 
29 

. .  
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w=86426[icos.q-  2 Ha . . . .@m). 
If the influence of the work accumulated in  the ana4 of 

beyond the prescribed limits, that accumulated in  the heavy 
the  wheel be given in, for an increase of the equalising power 

rim or ring which forms  its  periphery being alone taken  into 
the account * ; then  (Art. 86.) Mk2=I=2dcR (R*+ tc2 ) ,  
nhcre 6 represents the thickness, c the depth, and R the 
mean radius of the rim. But by Guldinus's first property 
(Art. 38.), 2xbcRzM ; therefore E2 =(R2 + *c"). Substi- 
tuting  in equation (348) 

If the depth c of the rim be (as it usually is)  small com- 

lected  as compared with Ea, the above equation then be- 
Pared with the mean radius of the wheel, &cz may be neg- 

comes 

. .  . . .  
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by the  engine  per  minute, so that an cngine making twice 
as many  strokcs  as  another of equal  horse power, would re- 
wire  an cqual steadiness of motion from a fly-wheel of one 
eighth  the  weight;  the mean radii  of  the wheels being the 
same. 

If in equation (347) we substitute for 1 its value 2abcR3, 
or 2sKFS (representing  by K the  section be of the rim), and 
if we suppose the  wheel  to bc formed of cast  iron of mean 
quality, the weight of each cubic  foot of which may be &y- 

sumed  to be 4501b., we shall  obtain  by  reduction 
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%p%' tan. p ; and  if N represent  the number of strokes 

marlc by the  engine per minute,  and therefore 3 the number 

of revolutions made by the fly-wheel per minute, then will 
thc number of units of work  expended per minute, upon the 
friction of the axis be represented  by N?rpW tan. p; and the 
llumher of horses' power, or  the fractional part of a horse's 
powcr thus  expended, by 

N 

NWnp tan. p 
3 3 0 0 r  

_ _ ~  . . . . . (355). 
If in  this  equation we substitute for W the weight in Ib6. 

of the fly-wheel necessary  to establish a given degree ofsteadi- 
l ' ~ S S  in the engine, as determined by equations (352),  (3~5.3)~ 
and (354), we shall  obtain  for  the horse power lost by friction 
of the fly-wheel, in  the silagk-acting engine, the double-acting 

and  the double crank  engine, respectively, the  formuk 



THE GOVERNOR. 



--,---- 

THE GOVERNOR. 89t 

of each of the rods BD and CE, ABzQ, A D A ,  DP=o, 
FAB=b, APD=B,. Now  upon either of these rods as 
BD, the following pressures are applied: the weight of 

centrifugal  force of the ball and the centrifugal  force of the 
the ball and the weight of the rod  acting  vertically, the 

rod acting horizontally, the strain Q of the rod DP, and 
the resiitance of the axis A. If U represent the an+ 
velocity  of the spindle, - 2 . m, or -U% sin. 6, will re- 
Present the centrifugal force  upon the hall (equation IW), 

and -U%* sin. B cos. b its moment about the point A ;  also 
the centrifugal  force of the rod BD produces the same effect 

(Art. 124.), whose distance GomA is represented by &(Q-% 

though its weight  were  collected iu its centre of pviv 

so that the centrifugal force of the rod is represented  by 

* g ~  (12-6) sin. 6, and its moment about the point A by 

4 e (~-6)~ sin.8  cos.8. On  the whole,  thereforc, the s u m  of 9 
moments of the centrifugal forces of the rod and ball are 

'Wesentedby -{waz+tw(a-b)2) sin. B cos. B. Now if p 

W W 
9 9 

w 
9 

1- 1 
70 

2 -  2 
111 

a* 
9 

the weight of each unit in the length Of tbe 
"=F(a+b);  therefore W ~ ~ + t u f ( . - a ) a = w 5 ~ + ~ ~ ~ ~ ~ a )  
(Q-a). Let this  quantity be represented by 



. 
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The values of b and c are  determined  by the position on 

the spindle, to which it is proposed to make the collar de- 
scend, at  the given  inclination of the arms or value of 8. If 
the distance AP, of this position of the collar from A, be 
represented by h, we have h Ybcos. 8 + c  ws. l,, 

:. h = b c ~ s . B + a ( l - ~ s ~ . ~ l ) ~  ba . . . . . (361); 

from which equation  and  the preceding, the value of OW 

of the quantities b or c may be  determined, according to the 
propused conditions, the value of the  other being assumed to 
be any whatever. 

If N represent the number of revolutions, or parts of 8 

revolution, made per second by the fly-wheel, and yN the 
number of revolutions  made in  the same time by the spindle 
of the governor, then will %yN represent the space  de- 
scribed per second by a point,  situated at dis tance  unity from 
the axis of the spindle. Substituting  this value for in 
equation (360), and assuming b=c, we obtain 

2 1  1 - Wlaacos. B =Pb +W,a . . . . (362) : 
9 
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BY which equation  there is estahlislled that relation between 
the  quantities W,, a, P, m which must  obtain,  in order that a 
variation of the nunher of revolutions, ever so little greater 
than  the :th part, may cause the valvc to move,  Neglect 
ing as small when compared with n, 

n=2+ +-p-) W , a  ; 





. .  p=w - ~~ ~ 

sin. ( L + v +  a) 
COS. (1 + a - h )  

. . . . , (366); 

A (369). 
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weight of the load, or the dimensions of the wheel.* The 
colistant A may  therefore be taken  as a measnre of the re- 
sisting quality of the road, and may be called the modi& of 
its resistance. 

The mean value of this modulus  being determined in re- 
spect to a road, whose surface is of any given  quality, the 
d u e  of 1 will be  known from equation (369), and the relation 
between tbe  traction  and  the load upon that road, under all 
circumstances ; it being observed, that, since the arc A is'the 
Same on a horizontal road, whatever be the load, if the tmc- 
tion be parallel, it is also the same under the'same & m m -  
stances upon a sloping road;  the effect of the slope being 
equivalent to a variation of the load. The same substitUtiOn 
W therefore be  made for tan. (1 +a) in equation (36% as 
was made in  equation (368), 



a 

" I 

~ , l ;  

. . ~ .  
radii, p, p% the radii of their axles, and q ,  the limiting 
angles of resistance. Suppose the direction of the traction p 
parallel to the road, then, since  this  traction equals the sums 
of the tractions  upon the  fore  and  hind wheels respectively, 
we have by equation (371)' 

, ' I!, : 1  

jl, , ,  ' 

~ . l !  



THE  ACCELERATION OF A MACHINE. 899 

u=gM(l+g)v* 9 . . . . (374). 

The accumulated work is therefore the same as though th$ 
wheel had moved with a motion of translation only, but 6th 
agreatervelocity,represented by theexpression (1 +E:) v.. K &  

... . .. . .  ...... 



whercf(Art. 95.) represents the additional velocity actually 
acquired per sccond by the  drivinx  point of thc machine, if 
PI and P, be constant  quantities, or, if not, the additional 
velocity which would bc xquircd il l  any given second, if 
these pressures retained, throughout that second, the v d ~ n  
which they l ~ a d  at its c o m m e ~ l ~ c m e ~ ~ t .  

6162.. . 
alag.. . a, "ASl; 

so that  the angular velocity of the pth element will he repre- 
sented  by 

and the space described by a particle  situated  at distanceP 
from the ax is  of that  element by 
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and the ratio A of this space to that described by the &hg 
point of the machine  will  be represented by 

' . b+ R,, 

The sum %LC,% will therefore be represented in  respect to tyi 
one dement by 

A =  . . . . - ($78). hlbPhs . . . . b. 
alapaS. . . . R,, 
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that  element, so that   i t  is reprcscnted  hy pII,, whilst A ia 

i n  this case rcpresentcd  by  we  havc,  neglecting frictiun, 61 

a,' 

Substituting  the  ralue o f f  from  equation (376), and solving 
in  respcct toyl, 

mhcre  the  value of A is determined by equation (3?8), and 
that of %ox2 by  equation (877). Proccoding similarly in 
respect to the sccond element,  and  observing  that the im- 
pressed pressures upon that element arepl  andpn, we 11aT-e 
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P A R T  IV* 

THE THEORY OF THE STABILITY OF 
STRUCTURES. 

GEXERAL CONDITIONS OF TlIC  STABILITY OF A STRUCTUBE 

OF UNCEMENTED STONES.* 
A STLLUCTURE may yield, under the pressures to which it is 
YulJjected, either by the slipping of eertain of ita  surfaces of 
contact upon  one another, or by their turning over  upon the 
edges of one another ; and these two  conditious  involve the 
Wbk question of its stability. 



- 
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turp of these  two lines- the line of resistance, and the line 

tprnlining the point of applieation of the resultant of the 
rlfpressure: one of these lines, the line of rea;Stanc% de- 

pressures upon each of the surfaces of contact of the 8 F m . i  
and the other, the  line of pressure, the dir.4ctiun of that 

The determination of boa, under their most  gene& forms, 
lies within the resources of analysis; and  general  eqmti- 
for their determination in  that case, in which dl the 8d-8 
ufcontact, or joints, are planes--the  only ~ 8 9 e  which OfEetr 
itself as a pact ical  case - have  been  given by the author of 
this work in  the  sixth volume of the Cambridge l’bilO* 

Sulhical  TransJctions.” 

rcsultmt. 
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raised, when  thc body is brought  into 3 position i n  which it 
will fall over of its ow11 accord, is greater or less. 

If the basc of the body be  a  plane,  and if thc vertical hright 
of its  centre of gravity  when it  rests upon a horizontal plane 
he  represented by h, and  the  distance of the point or the 
edge, upon which it is to be ovcrthruwn,  from  thc point where 
its base is intersected by the  vertical  through  its centre of 
gravity, by k ;  then i s  the height tllrough which its centrc of 
gravity is raised, wben the body is 1,rought into a position ill 
which i t  will fall over, evic~ently reprcscntul by (h” + k’); - h ;  
so that if W represent its  weight, and U the work necessary 
to overthrow it,  then 

U is a true  n~casurc of tllc stability of the body. 



THE WALL OK PIER. 60s 
place under the influcnce of the press- to which it is ordi- 
narily  subjected.. 
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THE WALL OR PIER. 41 l 

But QM=y,  OM=CM-CO=x--k cot. a, R L = B  
sin. RNL=P sin. a, OL=ON+NL=ON+RT;i cos.RNL 
=paw+ P cos. a : 

. .  y -  P sin. a 
x-kcot.a-pm+Pme.a' 

:. y=P . xsin.a-kc0s.a 
pux+Peos.a ..... (888); 

which  is the general equation to  the  line of reejstanee of 
pier or wall. 
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This is  the equation to a rectangular hyperbola,  whme 
asymtote is TX. The line of redst 

; ,S‘ aoce  continually  approaches TX them 
p fore, but never meeta it; whence it 

; i  , , ’p  follows, that if TX lie (as shown in 
, .~. the figure) within the surface of the 

T ,  

c 

P sin. a 
P 

mass, or if CH< CB 07 < 
or 2P sin. a< p&, then the line of re- 
sistance will no  where cut the extra- 
dos,  and the structure will retain ita 
stability under the insistent pressure 
p, however  high it may be biilt; 
which  agrees  with the result obtainea 
in the preceding article. 
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(385). 
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point  where the lie of resistance intersects the bare of 
the wall, Cz=m, CF=6, FECeB; and let tbe 
notation be  taken in other respects 88 in the pmcedii  
articles. Then, since z is a point in the dhction of the 
resultant of the resistances by  which the base of the wlwm 
is sustained, the sum of the moments about that point of the 
pressure P and half the weight of the shore, supposed to be 
placed at E *, is equal to the s u m  of the moments of the 
thrust Q, and the weight puh of the column ; or drawiq 
x31 and zN perpendiculars upon the directions of P and Q 

P . x M + w . Z = Q . i Z + p u h . ~  

NOW zM=G sin.zsM=(HK-Ht) sin.a=(h-()fp+.t) 
eOt.OL)sin.~L=hsin.a--(k+~a--pn)cos.n,zN=(~+m)MS.B, 

.‘. P ( - B s i n . a - ( k + f a - - m ) c o s . o ) + ~ = Q ( b + ~ n ) ~ . p + ~ ( ~ - ~ ) .  

Solving this equation in respect to Q, and & U ~ W  we. 
obtain 



416 A WALL SUPPORTED H T  SHOIlES. 

the  stability of the wall is manifestly that which it sustains 
when the wall simply rests upon it,  the  shore  not being drioen 
SO as to increase the  thrust  sustained by it beyond that just 
necessary to  support  the wall. * 

This least thrust is represented by the formula 
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If S be taken  io  like  manner to represent  the  point where 
the line of resistance  intersects  the base of the wall, and 

tile prop ef by Ql and  its weight hy 2ml ; then  the sum of the 
C-=nz,, C E - b , ,  C e = b ,  Cfe=PI, CD=h,, the  thrust upon 

l1101ncnts about  the  point i: of QQ,, and the weight pah, o f  
thc wall, equals  the s u ~ n  of the moments of P, W, and wl; or 

Q l ( b p + m , ) c o s . ~ , + Q ( b , + m l ) c u s . P + p a h l ( ~ a - - m , )  
= P ( h , s i n . a - ( k + ~ a - - l ~ ~ I ) c o s . a i + ( ~ ~ + w l ) m ~ .  . . . (387). 

Substituting  the value of Q in this  equation, from equation 
(386), and solving in respect  to QI, the  thrust upon the  prop 
Pf will he determined, so that  the stability of the wau, upon 
its section f g  and  upon  its base CB, may be m and m, respec- 
tivcly. 

equally stable. 
If rn,=m, the portions of the wall above and below f g  are 

is just necessary to  support  the wall, or which is produced 
If rn,=nz=o, the  thrust  upon each  shore is only that which 

Lg i t s  actual  tendency to olTerturn. I n  this ease we have 
(Psin. ~ - ~ p ~ a ~ ) ( h ~ b - h b ~ ) + P ( b ~ . - b ) ( k + ~ a ) c o s . ~  Q,= - ~~~ bb,cos. PI , 

the value of 61 being  dcternlined by equation (385). 

The stability of a structure havingparallel woolls, one of 
which is supported by means of struts resting on the summit 
*S the other. 

Let  AB and CD be  taken to represent 
the walls, and EF one of tlle struts; 
the thrust Q upon t l ~ e  strut may be 
determincd precisely as in Art 297. SO 
that  the line of resistance may intersect 
the base of the wall AB at a given &S- 
tance m from the extrados (see note, 
p. 415.). 

Let ml represent  the distance DX from 
the  extrados at  which the line of resist- 
ance  intersects  the base of the wall 

-. CD; then  taking  the moments of the 

B E  





THE WALL OF A DWELLINB. lf9 

11ave by &iny buttresses, which spring from the snmmita of' 
the walls of the aisles. The influence of the buttresses ahiili 
support the walls of the aislesupon  the cmditjons of the 
stability of the  structure forms the subject of a subsequent 
article. 



! 
l 
! 4%) TME WALL OF A DWELLING, 
! 

is j u t  necessary to preserve the  stability of the wall, or d 4 c h  
it products by its tendency to overturn, then n~=0.  In this 
case, therefore, 
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A WALL SUPPORTED BY BUTTRE88F& M1 

301. The stability of a wall supported by pima 01 bnttresrcr 
of unifoma thickness. 

Let the piers be imagined to  extend along the whole length 
of the wall, as explained  in Art. 290. ; and let 
ABCD represent a section of the compound  wall 
thus produced. Let  the weight of each cubic 
foot of the material of theportion ABFE he re- 
presented by pl, and  that of each cubic foot of 
GFCD hy h EA=a,, G D = a ,  BC=a, AB= 
h,,  CD=&, distance  fromCD, produced, of the 
pointwherePintersectsAE=l,etheintersectioa 
of the line of resistance with CB, Ce=m. By 
the principle of the equality of moments, the 
moment of P about  the point e is equd to the 
sum of the moments of the weights of GC and 8 

A F  about  that point. . But (Art. 297.) mo- 
B ment of P=rP(hl sin. u-(d-m)cos. a) ; d s ~ ,  

moment of weight of AF=(a--nz+frq)hlw i 
m c m n t  of weight of GC!=(&ap-m)h+,+,. 
.'. P(haio. o - ( ~ - - ~ ) c o ~ .  . )= (q - l ) l +~d l~ ,~p ,+ (~ - l ) l ~ .  . (39% 

If the material of the pier be the same with that 'of tha 
; then,  taking b to represent the breadth of each pier, and 

c the Common distance of the piers from centre C&re 

(Art. W.), c*= b%pl, therefore cyl=bpl. %p&en% g 
% eliminating the value of fcs between this  equatim . d  

0 ,  '. 

eWation (392), writing p for p,,, and reducing, . .  . .. 

p ( ; ~ s i . ~ , - i m s . . ) = l r ( ~ , ~ * , + s . , ~ , + ~ ~ * ~ ~ ) - ~ { P m a . o + ~ ( . h + ~ ~ ) . }  ... ( . W 1  

by which equation a relation is determined be:?- ~& 
dinlensions  of a wall supported by piers, bvirbd ' 8 .  given 
stability m, and its insistent p. Solving it in . .  

resPeet to %, the thickness of the pier neepl.sary to &e W 
required  stability to the wall will, k~dopermin~. (se A* 

f f4  be &.urn&d to represent &t:hdth of the pieibg 

. .  
: ,  - - .  

. .  . .  . .  

PENDIX.) 

. .  . .. . 
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sure P without  being  overthrown ; then  taking m=O, and 
solving in  respect  to up, 
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RAFTERS OF A ROOF. pa5 

If the inclination I of the roof he made to vary, the  span 
remaining the samc, P will attain a minimum value when 

h .  c=-;a. or when 
1 

r=3S0 16' . . . . . (400). 

It is  thercfore at   this inclination of the roof of a given 
spa]], whose trusses are of the simple form shown in  the 
figure, that  the  least  pressure  will  he produced  upon the  feet 
Of the  rafters. If p represent  the  limiting  mgle of resistance 
between the  feet of the  rafters  and  the surface of the tie, the 
feet of the  rafters  would  not  slip even if  there were no mortice 
Or Ilotch,provided that a were  not  greater  than q (Art. 141.), 
Or i cot. 1 not  greater  than  tan. p, or 

1 not  greater  than cot. -1 (2 tan. p)* . . . . . (MI). 





THE THRUST OF A ROOF. rlQ7 

being  of a given span L it may be supported with a given 
degree of stability  by walls of a given height h and thick- 
uess a ;  then  the same  substitutions being made as before, the 
resulting equation must be solved in respect to I instead of a. 

The value of a admits of a minimum  in  respect to the 
variable I .  The value of I ,  which determines such a minimum 
value of a, is that inclination of the rafters which is con- 
sistent with the  greatest economy in  the material of.tbe 
wall, its stability  being given. 
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SUPPORTING A SHED ROOF. m 
cot. a =tan. $ + 2  tan. I . . . . . (446) ; 

D I f  the rafter, instead of resting at A 
against the face of the wall, be received 
into  an  aperture, as shown in the figure, 
so that the resistance of the wall may be ap- 
plied upon its inferior surface instead of at 
its  extremity : then drawing AE perpen- 
dicular to the surface of the rafter, the 
direction AR of the resistance is evi- 
dently inclined to  that line at the given 
limiting angle 0. Its inclination to the 

limizon is  therefore  represented  by 2-1+p. Substitut- 

ing this  angle for p in equations (4Q6) and (4Q7). 

1 

cot.a=cot.(t-$)+2tan.1 . . . . . (W). 







R H  -c < tan.  p. . . . . . (1,lG). 



THE  SLOPING BUTTRESS. 493 

and also the values of Psin.a,  Pcos. a, from equations (414) 
and (410), we have 

z-(a+ca) H 

(i)a.z+HL 

a h i c l ~  is the equation  to  the line of resistance of the pier, 

i h e  the  springing A of the arch, L the length of the 
representing its thickness, b the  height of its summit 

arch, p the weight ofa  cubic foot of the material uf the arch 
W abutment (supposed the same). 

The conditions of the  stability may be determined from 
this equation as in the preceding articles. If the arch be 
ullifOrmly loaded, the value ofp, given  by equation (415) 
'"ut he substituted for p]. 

. ' d  y=LL2-- . . . . (417) ; 
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THE SLOPING BUTTHESS. PS5 

~ 

"I=~)SCSI=tQAV(A~+LM)+RNeos.RNI=~~x(lLa+r(tan.o,--tan.o~)}+Pcos.I; 

Transposing and  reducing, 

y=-- ~~1(2a+x(tan.a~-tan.~~)~+P(1sin.1--kcos.1) 
+x{j?a+ x (tan. .,-tan. ds)} + P  cos. I 

but substituting I for c in  equation (419), and multiplying 
both sides  of that  equation by the denominator of the fraction 
in thc second member,  and  by the factor $W, we  have 

W Z n + s ( t a n .  ah- tan. .,))=~~~(tan.~~-.ran.~~)+~r7ntan.a,+~; 
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this work, Art. 38. p. m .  
* Treatise on " Hydrostatics and H~.Jrodynnmir.s," by the author Of 



T 

PRESSURE OF A FLUID. M7 

which is  the  equation  to  the line of resistance in a W d l  of 
uniform thickness, sustaining the pressure of a fluid. 

316. TO determine the thickness a of the wall, 80 that ita 
h being given, the line of resistance may intersect ihfound- 
&n at  a  given  distance m within the extrcsdos. 

Substituting,  in  equation h for x, and k0-m for 9, 
and solving the  resulting equation in respect tu Q, we obtain 





PRESSURE OF A FLUID. M9 

Let -=U ; then, if the fluid be water, U represents the 

specific gravity of the material of the  wall; and if not, it  
represents the  ratio of the specific gravities of the fluid and 
rvail. 

P 
PI 
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THE PRESSURE OF EARTH. 4.41 

tu be mashed down by the rain),  and the surface retains per- 
manently its natural slope. 

The limiting angle of resistance p is thus determined hy 

earth. 
observing what is the natural slope of each  description of 

The following table contains the results of some such ob- 
servations * : - 

321. THE PRESSURE OF EARTH- 
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,. 1his n~axi tnun~ value is that which  satistics the conditions 

i t  follows, by suhstitution, tllnt for every value of I by which 
the first condition of a maxinium is  satisfied,  the second dif- 
ferential cof-fficient  becomes 

’=4,-2 . . . . (4.30). “ 0  



REVETEMENTS. 44.5 

which expression represents  the  actual pressure of the earth 
011 a surface AX of the wall, whose wid6h is one foot and its 
depth e. 





REVETEMEHTY. Pp7 
r ,  Jhen if W be taken to represent  the weight of the mass 
AXY, it may be shown, BS in Art. 321., equation (@g), that 
l'=Wcot.(l + p). 

:. P=;pc,P. ~~ __ cot. ( I  + 9) 
cot. I + cot. p . . . . (437). 





W.4LLS HACKED RY EARTH. 4'4.9 

Xi. The stability nf a ulall of unifnrnr thickness which a 
Yiuen pressure P tends to oaerlhrow, and  which  sustained 
1ly the resistance of pnrth. 

Let y be  the  point  in mhicll any section X 2  of the wall 
would be intersected by the re- 
sultant of the pressures upon 
the wall above that section, if 
the whole resistance Q, which 
the  earth  in contact  with AX 
is capable of supplying, were 
called into action. Let BX 
=.E, Xy=y, BA=e, BE=% 
Bp=k,  weight of cubic feet of 
material of wall= p, inclination 
of p to vertical = B. Taking the 

nments  about the  pointy of the pressures applied to BXZE, 
W by the principle of the equality of moments, observ- 
ing that ~Q=;(.E-.), and  that  the  pcrpendicdar from Y 
"POI1 p is represented  by  ssin.0-(k-y)cos. 1, 

P~osin.B-((k--y)cos.8}=:(3:-e)&+(~a-g)C(.3:; 

Or substituting for Q its (equation 442), and solving in 
respect to y, 
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REVETEMENTS. 461 

the other elements of the question, and  the aame construction 
made. Draw P61 perpendicular to BD; 

irection PS of the resistr 
ance of the wall upon the m m  of earth, 
evidently inclined to QP at an angle 

the limiting angle of re- 
the  state bordering upon 
overthrow of the wall * 

Draw Pa horizontally and X a  verti- 
ce TS and RS to meet it 

in m and n, and  let OXY = I ,  



or  substituting for p its value c(% + p + p,, 
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prwjded that the  wejght of each cubic foot of that fluid had 
a d u e  represented by  the  coe5cient of !pz in  the above 
equation; so that the conditions of the stability of such a 
rer-ctement wall are  identical  (this value being supposed) with 
the conditions of the  stability of a wall sustaining.the pres- 
sure of a fluid, except  that  the pressure of the earth is not 
rserted upon the wail in a  direction perpendicular to its  sur- 
face, as that of a fluid is, but in  a direction inclined to the 

llerpendicular a t  a given angle, namely, the limiting angle of 
resistance. 



4,5& REVETEMENTS. 

:. P = ~ l r l ( ~ Y t a n . ~ - - c ' c o t . e ) ~ o t . ( ~ + e )  . . . . (419). 
Expanding cot. (6 + p ) ,  

(x'tnn. 6 - ip cot. F) (1 -tan. I tan. p) 
tan. 6 + tan. p 

p=+lrlp-.p-~~p~p- ~ __ 

To facilitate  the  differentiation of this function,  let tan.& t 
tan. q l ~ e  represented by z,  and  let  it be observed that what- 
ever  conditions drtetnlinc the ~naxilnum value of P in respect 
to z detcrminc also its nlaxirnum  value in scspect to L *  
Then txn.b=r:-ttnn.$; therefore  l-tan.rtan.~=l--tan.B 

(S~tilll.:+C2CUt.F). 
+tan.'~=--ztan.e+see.'p. Also ,S tan . , - -*cot .~=~*a-  

Substituting  thcse values in  the  preceding expression for 
P, and  reducing, 

.. . 
d~ is also negativc. 



REVETEMENTS. 4'55 

Now the second condition of a m x i m u n  is evidently 
satisfied by  any  positive  value of a,  and therefore by  the 
positive root of th is  equation.  Taking, therefore, the positive 
sign, substituting for2 its value, and transposing, 

tan.(=  (sec.2p+lcosec.*q) C2 t --tan.? . . . . (45% i 
nhich equation  determines  the  tangent of the inclination 
AXY to  the vertical, of the base XY of that wedge-like 
mass of earth HXYF, whose pressure is borne hy the surface 
BX of the wall. To determiue the actual  pressure upon the 
1Val1, this value of tan. 6 must  be  substituted  in  the expression 
fur P (equation 4'50). NOW the two first terms of h e  ex- 
llfession within the  brackets  in  the second member Of that 
Vation may  be  placed  uuder the form 



ns P 
wcl&t of BZ * ' tan. p, > os > - ' or 
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:. W h = ~ ~ ( Z - ~ ) ( ~ ( Z - ~ ) a t a n . 2 ~ + a ( a - ~ ) t a n . a + a a ) .  

I t  remains, therefore, only to  detcrmine  the value of the 
tern P.  X. Now it is evident (Art. 16.) that the product 
P .  X is equal  to the sum of the moments of the pres- 
sures upon the  elementary surfaces which  compose the 
whole surface BX. Rut  the pressure upon any such ele- 
mentary surface, whose distance  from A is 2, is evidently 

represented by -A* *; its  moment is thereforerepresented 

by d;xAx, and  the sum of the moments of all such ekmentqy 

pressures byX ~  AS, or, when AZ is in6niteIy small, by 

dP 
dx 

dP 

ap 
dX 

' dP 
Z X d z  ; therefore l'. X=/' &x&. 

' dP 
b b 

But  diaerentiating  equation (453), 



P. x=p 

4.58 'rnl; AI:CII. 

(;sec.!?+tan.~~)(,a-b~)-:scr.pcot.!g{(s?tan.2~,+(.!)~-(b?tan.L~+c~)i] 
+ ( . ~ s L ~ c . ~ c o ~ ; ~ ~ { ( c :  t a n ~ ~ + c ) : - ( b ? t ; m . i i , + c ' ) 3 }  4 ,(GI, 

the values of WA, W, P, from  equations (453) and (456), 
This value of P . X being suhstitutcd  in  cquation (4,55), and 

the linc of rcsistancc to the  revetement  wall will be dcter- 
mined,  and  thence all the corlditions of its  stsbility may  bc 
found as before.* 



THE PRINCIPLE OF LEAST RESISTANCE. m 
and thence  of the conditions of stability,  in  that large class 
of structures which repose on a single  resisting surface, fails 
in the case of the arch. 





THE ARCH. 461 

gible to some readers than  the preceding. It is  independent 
uf the more general  demonstration of the principle of least 
resistance. * 

The pressure which an opposite semi-arch would produce 
upun the side AD of the key-stone, is equal  to  the tendency 
of that semi-arch to revolve forwards upon the inferior edges 
of one or more of its voussoirs. Now this tendency to motion 
is evidently equal to  the least force which would support  the 
ofqJ08ite semi-arch. I f  the arches be equal and equally loaded, 
it is therefore equal  to  the leaxt force which would support 
the semi-arch ABED. 





THE Awn.  

The direction  and point of application of P in AC have 
h e  been supposed to be given ; but by varying this direction 
and point of application, the  contact of the line of resistance 
wi th  the  intrados of the arch  may be made to take place in 
m inbi te  variety of different  points,  and each such variation 
Supplies a new value of P. Among these, therefore, it re- 
111ains to seek the absolute maximum and minimum value~ of 
that pressure. 

In respect to the  direction of the pressure P, or its in- 
clination to AC, i t  is at once apparent  that  the lwt value of 
tha t  pressure is  obtained, whatever be its point of application. 
dlen it is horizontal. 

There remain, then, two conditions to which P is to be 
subjected, and which illvolve its condition of a minimum. The 
first is, that i ts  alnount shall be mclr m dl giue to the line of 
%&ance a point of contact  with the intradas ; the second, 
that  its point of application in the ky-rtons AC ahail be SUCIJ 
48 to give i t  the le& ualae which it can receiue, subject 10 the 
$?st condition. 





H H  





IN THE ARCH. 467' 

. p =  ~~ - 
(M+Y)sin.B+.(P-X)cos.B . . . . . (458), . .  M h t Y x - X y i P p  





IS THE ARCII.  m 











. .  



TENDING T O  BLOW UY THE ARCH. 4?5 

Now by nutc, page 4.68., ; differentiating equa- 

tions (PSO) and (&SI), therefore, and reducing, we have 

* tan.2-hcot.q --rers.*+AA=O ..... (482); P 1 .  
nhich equation  applies to both the cases of the pressure of a 
h i d  upon an arch with equal voussoirs; that in which its 
P~cssurc is borne by the extrados,  and that  in which it is 
borne by tbe intrados; the constant A representing in the 





VOUSSOIRS IS GEOMETRICALLY ACCURATE. 417 

rariation of h or of p ,  let it be observed that A does not enter 
into equation (MI); let  that equation, therefore, be dif- 

ferentiated in respect to P and q, and  let ~ be assumed =O, 

and Y constant, we shall  thence  obtain  the  equation 

dp #l* 

sec.%*-- -GP 
347 i- 2) . . . . . . (M).  

7 + a*(2(1+ 3) 

W C  obtain by  elimination in equation (%l) 

sin. 2+-29= ------z@. . . . . (4L37), 4Y 
a(a +a)* 



478 APPLICATIOKS or  TIII: 

tions in which  this adhesio~t might be  ncccssary  to  its stability. 
That  old principle, then,  vhicl1 tnriglls to  it  such proportiuns 
as would  cause  it  to  stand fimmly d i d  n o  such adhesion exist, 
will almays retain  its  authority  with  tllc  judicious engineer. 



. . .  . .. 





THEORY OF THE ARCH. PSI 

Then assigning onc half of the load upon the crown to 
tach semi-arch, and calling .z the horizontal distance of thc 
cerltre Of gravity of the load upon either semi-arch from C, it. 

"'9' cavily be  calculated that -=~sin.P.i,=~5303901. Hence 

it Wears  from equation (468) that no loadiug can  cause the 
aude  of rupture t.o exceed FP. Assume i t  to equal 60" ; 

mount of the load neccssary to produce this angle of 
when  distributed as above, will then be determined 

'l?. assuming in equation (4365), *=GO", andsubstituting a for 

'2 for U, and .5303301 for ;. We thus obtain p =.0138. 

Sllbstituting this  value of -, and also the given  values of R 

'"MI 9 in  equation (M,2), a d  observing that  in this equation ; P 

Is to be taken = 1 + c( and @=o, we End --*I 1832. Sub- 

s t i t uhg  thisvalue of ~ in  the equation (469), we have for 

"le  final equation to  thc line of resistance  beneath the point B 

X 

7 

X Y 

Y 
? 

P 
Y- 

P 
7.9 

.242Gvers.B+.1493 
0138iiiCB+.li83cos. B+%2sin.B' p=r. ~~ 

~ - - 

If the  arc of the arch be a com- 
x pletc semicircle, the value of p in this 

I 
~ equation corresponding to e=, will 

determine the point Q, where the  line 
of resistance intersects  the  abutment; 
this value is p=I-fWr. 

If the arc of the arch be the . th i i  
of a circle, the value ofp at the 

merit is that correspondq $0 a=%; 
this will be found to be +. it m&- 
festly ought t o  be, since the points 
of rupture are in this m e  at the . .  

spririgillg. 
I 1  



483 APPLlChTIOl43 OF T H E  

In the  lirst case the v o l u ~ t ~ e  of the semi-arch and load is 
rrprcscnrd by the formula 

and in the second case, 







I t  3 





1 1  4 



.'. /'EK. . . . . (490). PL 



THE WORK EXPENDED ON ELONGATIOS. 489 

319. TojFnd the numbe~ of units of work  expended span the 
elongation by a given quantity (1) of a bar whose  section i s  
K an,d its length L. 

If x represent  any  elongation of the  bar (x being a part 
of I), then is the  strain P corresponding to  that elongation 

qresentcd (equation 490) by ~-c x ; therefore the work 

done in elongating the bar through the small additional space 

11, is rcpresented by -=Ax (considering the atrain to 

rmain  the same through  the small space Az); and the 
I d d e  work U done is, on this supposition, represented by 
KE 
-rXzAx, or (supposing AX to be infinitely small) bY 

KE 

KE 
L 

-j;-,/xdx or by I P. 
KE ! KE 

Z L  
Q 

:. U='--- KEZ' 
Z L  . . , . . . (491). 





RESILIENCE AND FRAGILITY. 4 5 1  



A x  and  passing t u  the limit, we obtaiu 



TIIE O R C ~ L L A T ~ O N S  OF A LOADED BAR. 493 

Integrating  between the  limits 0 and L, and representing 
by L, the length of the elongated rod, 

L , = ( I + ~ ) L + ~ L ~ *  P W ....( 497). 

If the strain be converted into a thrust, P must be made 
to  assume the  negative sign; and if this thrust equal one 
h l f  the weight of the bar, there will be no elongation at dl., 



second  oscillation is  theref& 2 ( e + WL) KE * 



A LOADliD BAR. 495 

Let the weight W be conceived to be removed  when the 
lowest point D, of the second oscillation is attained, a third 
series  of oscillations will then  be commenced, the position of 
mhose centre  being  determined by equation (M),  is identical 
with that of thc  centre C ,  about which the first oscillation 

performed. In  its third oscillation the extremity of the 
rad will tllerefore ascend to a point 4, as far above the poht 
C as D, is below i t ;  so that  the amplitude of this  third d- 
lation is represented  by 2cD1, or by 2ClDI+CC;, 01 by 

2 c +  . When  the highest  point c& of this third  OS^- 

hion is  attained,  lct  the  veight W be again added;  a fourth 
oscillation will then be commenced, the position of w h e  
centre will bc  determined by equation 500, and will there- 
h e  be identical  with the centre Cl, about which the second 
oscillation was performed ; so that the greatest distance c,& 
beneath that  point  attained  in this fourth oscillation will be 
C W d  to C&, or to CC, + CDI ; and its amplitude will be 

represented by 2 C+ . And if the weight W be thus 

Conceived to be  added  continually, when the highest point Of 

each oscillation is  attained,  and taken off at the lowest point, 
it is evident that  the a2uplitudes of these Odat iOW W% 

continually  increase  in an arithmetical series; 80 that the 
anlplitude k, of tile 9 p  oscillation will be represented by 
the formula 

( ?:> 

( 2:) 

c"-c+ __  - (W + 9m)L - KE , . . . * (50%. . . . :v 





THE NEUTRAL SURFACE. 
* 407 . 



498 TI1E NEUTRA?, SIJRFACE 

section PT of the lamina. Now P T  and QV being normals 
to SR, the point 0 in  which they meet,  when produced, is 
thc ccntrc of curvature to the  neutral  line  in 11. Let the 

or 1 +,p,= 1 + -- ; therefore, p -~ ' -. Substituting this 
8X Fr 
A .?: R - AZ 



IN A IlECTANGULAR BEAM. m. 
tin distancc of the  point R from its centre of gravity, then 
(,\rt. 18.) 



500 THE K A D I U S  OF CIiRVATIJRF, 

line; so that h is cxccedingly small, and t l ~ c  ncutral line 
of the  lamina passes wry  ncarly, o r  ;Iccu?ntely, through the 
centre of gravity of its section PT. 

360. THE RADIUS OF CERVATUIW nF T H E  SEUTRAI. SERFICE 

or A BEAM. 

Sincc  the pressures applicd to the  portion RPTD of the 



TO T l I E  NEUTRAL SUiWACE. 501 

WC have, by thc  principle of the equality of moments, 
E1 
1t='Pp ; 

:. R = x . .  . . . (505). 
1 ZPp 



366. For a Lean1 or column  with a circular sec- 
tion, whose radius  is c (rquatiou GG), 



CROSS SECTION OF A BEAM. 509 

:K?'. To determinc  the moment of inertia I in respect 
to  a beam whose  transverse section is 

H of the form represented in  the accom- 
panying figure, about an axis 06 p m -  
ing through its centre of gravity; let 
the breadth of the rectangle AB he r e  

1 

presented  by b, and its depth by dl, 

F and let b, and d, be similarly taken 









DEFLEXION  OF A BEAM. 507 

~~(qendicular to  the surface of the beam at the point of 
:ipplication of l’, by D3, we shall obtain 

D, = . . . . (515). 
( U I “ ) T 3 *  

YEIa 
if the pressure P 3  be applied at the centre of the beam 
[11=a9’9=&a, 

:. D, - . . . (516). 3-48EI . 
U”P, 

Eliminating P ,  betwcell  cquations (51 1) and (514), and PS 
ljctwcen equations (512) and (515), we obtain 

. . _.:,= . .  



508 THE LQU.4TIlJN TO ‘SIIE 

ordinatcs of any point in ac, and by R the radius of curva- 
ture of that  point, w e  have * 

Llz: - 
dl!/ -~ P,(a,  -z) 

EI . . . . . (51 8) ; 

* Hall’s DiK Cal., Art. 136. 



NEUTRAL LINE. m 

y = E - ~ ( ~ a ~ ~ - ~ s 3 ~ - x t a ~ l . p  . . . . (522). p, 

If D, and D, be taken to represent the deflexions a t ,  the 
Poirlts a and b, and ea and eb be assumed respectively equal 
to cd and ee, 

by  equation  (520), D, =-r~r+a~ tan. B, 

by equation (S%), D 9 = ~ E ~ - u ~ t a n .  8. 

Plat 

P ¶ d  

If the  pressures P, and Pp be supplied by the re&mces 
of k e d  surfaces, then D, =D,. Subtracting the above eqw- 
tion we obtain, on this supposition, 





NEUTRAL LINE. 511 

.:. s=a+-i-- -, . . . . (526). 60EzI- 
P2a5 

Eliminating P between  this  equation and equation (516), and 
rqmsenting the deflexion by D, 

I 

. .  .. . .I 



BIB TIIE  DEFLEXICN Or A I I E A I .  

and observing that  the prvssures applied  to AP, and in equi- 
librium,  are the luad p(a-+) and thc clastic forces developed 
upon  tllc transverse section at  P, we have by the principle of 
the equality of moments,  taking P as the point from wlricll 
the moments are mcasured, aud observing that since the load 
p is uniformly distributcd over AP i t  produces  the same 
cffcct as though i t  wcre collccted over the  centre of that line, 
or at distance $(n-x) from 1’; obscming, Inorcover, that 
the sum of the moments of thc clastic forces upon tlie 
section at P, about tlret point,  is  represcntcd (Art. 3GO.) by 

E or by E1 dx2 (Art.371.) ; 
E1 d*y 

= = X E I ~  
Pa4 . . . . (530). 



LOADED UNIFORMLY. 513 

874. A BEAM SUPPORTED AT ITS EXTREMITIES, AND  SUSTAIN- 

ING A LOAD UNIFORMLY  DISTRIBUTED OYER ITS LENOTH. 

Let the  length of thc beam  be  represented by Zu, the load 
upon each unit of length by p ; take 
x and y as the co-ordinates of "9 
point P of the neutral line, from the 
origin A; and  let  it  be observed that 
the forces applied  to AP, and in equi- 

.. ~. librium, are  the load p upon that 
~~ portion of the beam,  which m y  be 

-. 

Supposed collected over its middle point, the resistance  upon 
the point A, which is represented  by pu, and the elastic  forces 
developed upon the section at P ; then by Art. 56% 





LOADED UNIFORMLY. 615, 

Since, moreover, thc forces impressed upon any portion C61 
of the beam, terminating.  between A and E, are the elastic 
forces developed upon  the transverse section at Q, the  re- 
sistance pa of the  support at A, and the load upon CQ., 
whose moment about Q is represented by +pc-, we have 
(e(1uation 806), representing CQ by 3, 

 el^^^ - dly 
d ~ ~ ~ ~ p x ~ - p u ( x - u l )  . . . . (538). 

Rrpresenting the  inclination  to  the horizon of the tangent to 
h lleutral Line at A by p, dividing equation (537) by p, inte- 
grating it between the limits x and al, and observing that at 

the latter limit ~~ tan.@, we have, in respect to the por- dx - 
tion CA of the beam, 

dY - 

E1 dy 
&;-tan,p) =+3-gu1a . . . , (539). 





LOADED UNIFORMLY. 517 

pressure upon that point be 

pressure upon B by P* ; also 
the load upon each unit of 
the  length of the beam  by p. 

If P be any point in  the 
neutral line to the portion AB 

of the beam, whose co-ordinates are x and y, the p r e s w  
applied to AP, and  in  equilibrium,  are  the pressure P1 at A, 

load pz supported by AP, and producing the same effect 
ax though it were  collected over the centre of that portion of 
the beam, and the elastic forces developed upon the trans- 
' w e  section of tbc beam at P ; whence it follows(Art. 362.) 
hY the principle of thc  equality of moments, taking P as the 
POht from which thc moments  are measured, that 

- 3 ~ L - c ~  -.-.-~,-- --+ represented by P,, and the 

E1-Y - I PIZ . . . . (548). d 2  

r%?'ating this  equation  between  the limits UI and 2, and 
'Wsenting  the  inclination  to  the horizon of the tangent 

the lleutral  line at B by p4, 



1 

t a  

olrscrving that  at the former  linrit the value of d; 1s repre- 

sented by tan.&, we have 

dy . 



LOADED UNIFORMLY. 519 

Ilepresenting the  greatest deflexions of the portions AB 
aud BC of the beam, respectively, by D, and PR and by ZI 
the distance from A at which the deflexion D, is attained, 

have, by equations (519) and (550), 

Q=-.~.. . . - -- -- pa$ ns- 2nQ - 8n + G . . . . . (m). 48EI e (3-2n)(l -S)* 



The distance S, of the  point of greatest deflexion of eitller 
portion of the beam Srulu its  extrcrnitics A or D, alld thc 
amonut Dl of that  greatest dcflexiou, are detern~ined from 
equations (560). Making tm. pp=() in those equ~~tions, 
substituting  for P, its value, solring the former iu  respect 
to tl, and the  latter in  respect  to D,, WC obtain 



LOADED UNIFORMLY. 621 

sonry, as shown in tho accompanying figure; whenceit follows 
that the dcflcxion in  the middle of the beam is the same in 
the two eases. Taking,  therefore,  the negative sign in equation 
W ) ,  and substituting  for 11 its value Q(4- J6) or .6202044 
in equation (562), and observing that, in that equation, 2a, 
represents the distance BC in the accompanying *re,  we 
obtain 

D ~ 

*-24EI . . . . . (567). 





A N Y  NUMBER OF POINTS. 523 

Eliminating tan.7 between this equation and  equation (572) 
and reducing, 

E I ~ = - - P l ( a l ~ - ~ ~ ~ j + E E I t a n . ~ + Q P p a l Q  d!J . . . . (574). 

Integrating again between the  limits2 and 2, and elimi- 

nating thc value of Dl from equation (S%), 

a l 
E I S I - - ~ P , ( n i ~ - ~ s ) + ( E I t B n . P + ~ P P ~ ) r ~ P P , s  . . . . . (576). 

jn respect to the portion CE of the beam,  will  be determined 
Now i t  is evident that the equation to the neutral line 

by writing in  the above equation P S  and P4 for P1 and Pi 
respectively. 

Making this substitution in equation (575), and writing 
-tan.@ for + tan. p in  the  resulting equation ; then assuming 
z=al in equation (575), and r = ~  in the equation thus de- 
rived &om it, and observing that y the-  becomes zero in 
both,  we obtain 

O=--jPla,3+~~Psa,3+EIaltan.B, 
O= -:P~~'+g$P4ap3-EIaptan.P. 

Also, by the  general conditions of the equilibrium of patallel 
pressures (Art. 15. j, 

Plal+:P4a%=Psas+;P@l, 
P*+Ps+Ps=P,+P,. 

Eliminating between these equations and t!? preceding, 88- 

suming a, +%=a, and reducing, we obtsin 

By equation (~ 



Uy equation (572) ,  



ANY NUMBER OF POINTS, 625 

383. CURVATURE OF A RECTANGULAR BEAM, THE DIRECTION 

OF THE DEFLECTINDPRESSURE  AND  THE AMOUNT OF THE 

DEFLEXION BEING ANY WHATEVER. 

The  moment of inertia I (Art. 360.) is to be taken, about 
an axis perpendicular to the plane of deflexion, and passing 
through the  neutral line, the distance h of which neutral  line 
from the centre of gravity of the section is determined. bp 
equation (504). 

~~ 

w e  90°, and the edgcs were oiled previous to the experiments.  The 
weights were suspended at points D and E intermediate between the 





PERPENDICULAR TO ITS SURFACIL. Ba? 

384. Case in rchich the defixion of the b e  is # d l .  
If the deflexion be small, and  the inclination PI, of the die 

tioll of PI to the norlnal at its point of application, be not 

P a t e r  than ; then ysin.(9, +pl) is exceedingly smau, and 
may be neglected as compared with .TCOS.(~I +@I); in thii 
CW, moreover, B is, for all positions of R, very nearly qual 
t o  91. Neglecting, therefore, p1 as exceedinglym&w@ have 

1 





INCLINED A T  ANY ANGLE TO ITS SURFACE. 5%9 

a -  - I  B ,  =S,=$, and $=O. Substituting these vdnes 
in the preceding equations,  and reducing, 

U,= P32(a3+ (a"-gc~tm.'s):) 
1 6Ebc3 

. . . . (593). 

586. THE LINEAR DEFLEXION OF A BECTANQULAR BEAM. 

D, being taken  as before (Art. 370.) to represent the de- 
flprion of the extremity A measured in a direction  perpen- 
hJar  to the surface of the beam, we  have (Ark 52.) 

But  by equation (591), 

M Y  





389. A RECTAXGULAR BEAM IS SUPPORTED AT ITS  EXTR& 

hllTlES BY TWO F I X E D  SURFACES,  AND LOADED IN  THE 

W I D L E  : IT 18 KEQUlRED TO DETERMINE THE DEFLEXION, 

TllE FRICTION OF T ~ I E  SURFACES ON WHICH THE EXTBE- 

MITIES REST  RElKG  TAKEN  INTO ACCOUNT. 

It is evident that the work which produces the de- 
flexion of the beam is done upon it partly by the defleetiw 



jg2 

the  elastic  forces opposcd to thc deHcxion of thc beam  its 
value  from  equation (5!13), and obserritlg that   the  directions 
of the  resistances a t  A and B are inclined to the normals at 
those points  at angles  equal to  the  limiting  angle of resistance, 
we have 

THE SOLID 01' THC S T K O N G E S T  FORM, 



OR THE QREATEST ECONOMY OF MATERIAL. 538 

ture,  and added at  tbe second point, so as to take it wt of 
the state bordering upon rupture  at that  point; and thus the 
solid being no longer in the s t a t e  bordering upon rupture at 
any point, may be made to bear a strain greater than that 
which  was before upon the point of breaking it, and will have 
been rendered stronger  than it was  before. The 6rat form 
was not therefore the strongest form of which it could  have 
been constructed with the given quantity of material; nor  is 
any form the  strongest which  does  not  satis@ the condition 
of an equal liabi2iiJ to  vuptuve at e v e y  point. 

The  solid, constructed of the strongest form,  with a given 
quantity of a given material, so as to he of a given strength 
under a given strain, is evidently that which a n  he con- 
structed,  of the  same strength, with the leut  material i 80 

that the strongestfom is also the form of tlaegreotedt e c m y  
of materia,?. 



554 T H E  I<L!PTVI;I< OF n 13.il i  

tenacity of a fascile of n such bars placed side by side, or of 
a single bar n square  inches i n  section, would be equal t o n  
such  units, or to  f k  times the tenacity of' one h r .  

TO find, therefore, the tenacitv of a bar of any material in 
pounds,  multiply  the  number of square  inches in its section 
by its  tenacity per square inch, as shown by the table. 

(GOO). 



SUSPENDED VERTICALLY. 535 

394. Secondly. Let the section of the rod be variable; and 
let this variation of the section be such that i$ strength, at 
eucry point, may be that which  would  cause it to hear, 
without breaking, m times  as great a strain as that which it 
actually bears there. Let K represent thii section at a point 
whose distance from the extremity which  carries the weight 
W is x; then will the weight of the rod beneath that point 

he represented by pKdz, or, supposing the specific graviq 

of the material to be every  where the same,  by p@h: dna 

the resistance of this section to rupture is KT. 

,f ' 

. A .  m(W+pfKdx)=& 

Differentiating this expression in respect to x, observing that 
K is a function of E, and dividing  hy KT, we obtain 



536 THE SUSPENSIOX BRIDGE. 

whose weight W, is determined by equation ((iOI), the value of 
m being taken  the samc in  both cases. Thc saving of mate- 
rial  effected  by  giving t o  the cord or chain a scction varying 
according to the law  dctermined  by  equation (603) is  repre- 
sented by W,- W,, or by the  formula 



THE CATENARY. 537 

the  vertical line Ea,  and the polygon  (resolving itself into a 
triangle) is completed b1 the lines aP and EP drawn parallel 
to thc tensions upon B and E. Each line contains, there- 
fore, as many equal parts  (Art. 9.) as there are  units in  the 
corresponding  tension. Also, the pressures  applied to the 
portion EC of thc curve, being the weights whose aggregate 
is represented by Eb, and the tensions  upon E and C, of 
which the former is represented in direction and amount by 
EP, it follows (Art. g.) that  the  latter is represented also 
in direction and amount by the line Pb, whieh  completes the 
triangle aPb ; so that bP is parallel to  the tangent at C. 

In like manner it is evident that the tension  upon D is 
represented in magnitude and direction by cP ; So that CP is 
parallel to the  tangent  to the curve at D. 



538 T H E  CA'l'fi;S.iIIY. 

weight ps of DP, it has been  shown (Art, 395.) that DQ 
will represent  the tension c a t  D, and TR that at P. 

By addition  and  reduction, 

Substituting  this value for S in  equation (605), and inte- 
grating  between  the  limits 0 and S, 

y=,,(tC + e  c ) . . . . (608); 
P2 -gr , c: 

which is the  equation to the catenary. 



THE CATENARY. 589 

C 
c ) .  . . . (609); 

I-= 
P 

from which expression the value of c may be determined by 
approximation. 

398. The tension at any point of the chaim. 

The tension T at P is represented by FQ= -~ ~~~~- 
:+ DT' ; 

:. T=(C?+~'S')~. . . . . (610). 

Now the value of c has  been determined in the  prkeding 
article ; the tension upon any point of the chain whose dis- 
tance from its lowest  paint is 8 is therefore known. 



540 TfIE CATENARY. 



THE SUSPENSION  BRIDGE OF GREATEST STRENQTH. M1 

squaring the binomial, and integrating, 

Substituting H and S for their values, as given by equa- 
tions (607) and (608), and reducing, 

G = + ( s H + ~ )  . . . . . (618). 

ME. THE SUSPENSION BRIDGE OF GREATEST STRENGTH, THE 
WEIGHT OF THE SUSPENDING BODS BEINQ NEGLECTED. 

Let ADB represent the chain, EF the road-way; and let 



642 THE SUSPENSION BRIDGE 

Let this load ( t i ) ,  supported  by  the portion DP of the 
chain, be reprcsented by the  line Da, and draw DJI in the 
direction of' a tangent  at D, reprcsenting on the same  scale 
the tension c at  that  point ; then \\-ill QP be  parallel  to a tan- 
gent  to  the chain a t  P (Art. 395). 



OF THE GREATEST  STRENGTH. 543 

Integrating these expressions *, we obtain 

Substituting in this equation the value of p1 given by the pre- 
ceding equation, and reducing, 

g=- log. sec. 
fl&,LL1 c 

7 {F(, + Z ) * z >  . . . . (623); 

&ch is the equation to  t h  mapemion chain .f un;fo+pll 
strength, and therefore OF THE GREATEST STRENGTH WITH A 

GIVEN QUANTITY OF MATERIAL. 



5.1'4 T H E  SUSPESSlON BRIDGE 



OF GEEATEST STRENGTB. 545 

contained in i t  may be precisely equal in weight to the 
material of the suspending rods. It is  evident that the con- 
ditions of the equilibrium will, on this hypothesis,  be very 
nearly the same as in the actual case. Let ,us represent the 

weight of each square foot of this plate, then will ps ydz re- 

Present the weight of that portion of it which is suspended 
from the portion DP of the chain, and the wholeload u upon 
that portion of the chain wiU be represented by 

f 

u=p, Kd.s+w+p8 yak - . . . . (627). s s 
I t  may be shown, as before (Art. 402.), that 

- 
&-C' 
dy-y Kr=rn(c2+u")i . . . . . (628), 



Substituting for U* its  valuc from equation (631), 



OF GREATEST STRENGTH. b47 

Extracting  thc  square  root of both sides, transposing, and 
integrating, 

x+ I*JJ c f p9 )I?/--b). . ., . . (633); 
9C 

the equation to a parabola whose vertex is in D, and its 
axis vertical. 

Thc values a and €1 of z and y at  the points of suspension 
being substituted in this  equation,  and it being solved in re- 
spect to e, we obtain 

by which expression the tension c upon the lowest point of 
the curve i s  determined,  and  thence  the lengthy of the sus- 
pending rod at any given distance x from the centre of the 
span, by equation (633)' and.the section K of the chain at 
that  point by equation (632), which last  equation gives by a 
yeduction similar to the above 



548 T H E  COMMON SCSPESSION BRIDGE.  

The furmer of these  equations may he rationalised by 
assuming (c3+u2)+=r:+z7/ ,  and  the  latter by assuming 
(c2+up)+=z; there mill thus be  ohtaincd by  reduction 

The  latter  equation may  be  placed under  the form 



RUPTURE BY COMPRESSION. 5 4  

\vci& of each foot in the length of the chains i s  greater or 
less than the  weight of each foot in  the  length of the roadway. 

Substituting  for z its value, we  obtain therefore, in the two 
cases, 

[“+r)-(”a+a+ D l , . - M ) I  

*, 

suspension, be  substituted  in  equations  (638)and (637),egus- 
If the given values, a and H, of x and y at the pointe of 

lions will be obtained, whence the value of the  constant c 

approximation. A series of values of rr, dirninhhing from the 
alld of a at the points of suspension may be  determined by 

value thus  found  to zero,  being  substituted in equations 
(638) and (637), as  many correspondiug ralues of x and y will 
then become known.  Tlle  curve of the chains may thus be 
laid down with suy req&ed degree of accuracy. 

This  common method of construction, which assigns a mi- 
form section to the chains, is evidently false in  principle ; the 
Strength of a  bridge, the section of whose chains vaned 8c- 

cording to the law established in Art. 408. (equation 6%)’ 
would be  far  greater,  the same  quantity of iron being em- 
ployed in its construction. 
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mass upon another  were accurately the samc in every direc- 
tion in which the plane CD may be imagined to  intersect 
the mass, then would the  plane of actual  rupture be inclined 
to the basc at  an angle  represented by the formula 

the  value of P would in  this case be (equation 639) 
a minimum  when sin. (2.-p) is a maximum, or when 
22- P=,, or a=&+g; whence it follows that a plane  in- 

dined  to  the base at   that  angle is that plane along which the 
will first take place, as P is gradually increased beyond 

the  limits of resistance. 
The  actual inclination of the plane of rupture was found 

in the  experiments of Mr. Hodgkiuson to vary with the 

varied according to  the  quality of  the iron from 48' to 58"*, 
material of the column. In cast iron, for instance, it 

and was differcut in different species. By this dependence of 
the angle of rupture upon thc nature of the  material, it is 
Proved that  the value of the modulus of sliding coherence 
Y is not  the same for every direction of the plane of rupture, 
Or that  the value of p varies greatly in different qualities of 
cast iron. 

U = ?  

Solving equation (639) in respect  to 7, we obtain 

y=--  sm. (a-p)cos.asec.p. . . + (@l);  

from which  expression the value of the moduli  7 m y  be 
determined in respect to any  material whose limiting angle 

under the circumstances supposed, being o b s e t d  and 
of resistance p is known, the force P producing W't'lt"-?, 

the  angle of ruptnre.t 

K 
P .  
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face with the section of rupture ; which intersection being  in 
the case of rectangular beams a straight line, and beiig in 
fact the  neutral  axis,  in  that  particular position which is 
assumed by it when  the beam  is  brought into  its  state bor- 
dering upon rupture, may be called the mis of 7upture; AK 
the area i n  square inches of any  element of the section of 
rupture,  whose  perpendicular  distance &om the ax is  of r u p  
ture R is  represented by p ;  S the resistance in pounds op- 
posed to the  rupture of each square  inch of the section at P; c, 
and cp the  distances PR and QR in inches. 

and compression of the material at different points of the 
The forces opposed per  square inch to the extension 

section of rupture  are  to ono another as their several perpen- 
dicular distances  from the axis of rupture, if the elasticity of 
the  material  be  supposed  to remain perfect throughout the 
section of rupture, up to  the period of rupture. 

Now at the distance  cl the force thus opposed to 

inch  by S ; at  the distance p the elastic force opposed to 
the  extension of the material is represented per square 

the extension or compression of the material (according 
as that &stance  is measured on. the extended 01 com- 
pressed side), is  therefore  represented  per square ineh by 
S 
Cl 
-P,  and  the elastic force thus developed upon the  element 

AK of the section of rupture by --pAK, SO that  the moment 

of this elastic force about R is represented by ;,P*AK, and 

the sum of the moments of  all the elastic forces upon the se* 

tion of rupture  about  the  axis of rupture by ;%''A$*; Or 

representing  the moment of inertia of the section Of mPtum 
ahout the axis of rupture by I, the sum of the momenta Of the 
elastic forces upon  the section of rupture about its Of 

and those of eoq,re.sion tend to tUlO the a d  Of m dK*gl. 
F It will be & s e n d ,  BS in Art. 36% that Ofere 

direction about the axis o fruptw.  .~ . 

S 
c1 

S 

S 

. .  . , : .: . .  
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affects, moreover, the determination of the values  of L and 
R (Arts. 357. and 383.), and therefore the value of cl. 

To determine the intluence upon the conditions of rupture 
by transverse  strain of that unknown direction of the  insistent 
pressures, and  that variation from the law of perfect elasticity 

fall back upon experiment.  From this it has resulted, in 
which belongs to  the  state bordering upon rupture, we muat 

respect to rectangular  beam, that  the  error produced by these 
diffcrent causes in equation (642) will he correctedif a value 
be assigncd  to cl beariug, for each given material, a constant 
ratio to the  distance of the  point P from the centre of gravity 
of the  section of rupture ; so that c representing the  depth 
of a  rectangular  beam,  the  error  will he corrected, in respect 

where m is a certain constant dependent upon the  nature of 
to a beam of any material,  by assigning to c1 the value mkc, 

the material. It is evident that this correction is equivalent 
to  assuming cl=+c, and assigning to S the value S instead 
of that which it has  hitherto been supposed to represent, viz. 
the  tenacity per square inch of the material of the beam. 

It is customary  to  make  this assumption. The values of S 
Corresponding to i t  have been determined, by expelhent, 
iu respect  to  the materials chiefly used in construction, and 
will be  found  in a table at the  end of this work. It is to 
these  tables that the values represented S in all Wbse- 

quent  formule  are to  he referred. 

1 

i 
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Thc following  tables  contnin  the summary given by Mr. 
Hodgkinson of his  results : - 
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material is shown  collected in two thin but wide  flanges, 
but united by a narrow rib. 

That which constitutes the strength of the beam 
being the resistance of its material to  compres- 
sion on the one side of its neutral axis, and 
its resistance to extension on the other side, it 
is evidently (Art. 390.) a second condition.of the 
strongest form of any given section that  whin the 

beam is  about to break  across that section  by extension 

sion on the other. So long, therefore,  as the distribution 
on the one side, it may  be about  to break by  compres. 

tended sides  would yield together, the strongest form of 
of the material is not such  as that  the compressed an& ex- 

section is not attained. Hence it is apparent .that the 
strongest form of the section  collects the greater quantity 
of the  material on the compressed or the extended side of 
the beam, according as tbe resistance of the material to 
compression or  to extension is the less. Wheie the material 
of the beam is cast iron f whose resistmce to extension is 
greatly less than i ts  resistance to compression, it is'evident 
that  the  greater portion of the material must be collected  on 
the  extended side. 

Thus then it follows, from the preceding  condition and 
this, that  the strongest form of section  in a W t  iron barn ie 
that  by which the material is collected into two 
flanges joined bp a rib, the greater flange  being on  the 
extended  side;  and  the proportion of this inequality Of the 
flanges being just such as to mske UP for the hqdQ of 
the resistances of the material to rupture by extension and 
compression  respectively. 

directed a series of experiments to the i+&mnimti~ Of :that 
proportion of the flanges  by  which the S ~ ~ ' ' ~ ~  Of 

section is obtainedt 

1t is oo~y  in east iron beants that it M . c m t O D P r i  t6 R?& an m n O m Y  
of the in sw@h of the w h n  of the -.;.?e -P+ I 

Mr. Hodgkinson, to whom this Snggestion is 

ciple of emnomy is study,' bow-, *PP- to m OfW. - '  ' +,memoirs of'-wM p@@@j*'&l&+&r&i%>p.wV+u 
seations of Mechanics, An. 68. 
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The  details   of  thcse  espcrinmlts are found in the following 
table : - 

F 

the  beam. 
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the particular section across  which rupture will  actually take 
place is that in respect to which  equation (fX.8) issrat  
satisfied, as P, is continually increased; or that section in 
respect to which thc formuIa 

is the least. 
If the beam be loaded  along its whole length, and x 

represent the distance of any section from the  extremity at 
which the load commences, and p the load on each  foot  of the 
length, then (Art. 373.) Pip, is represented 'by &x*. The 
section  of rupture in this case is therefore that section in 
respect to which p is first made to satisfy the equation 

&px* = ; ; or in respect to which the formula 
SI 

I 

l 

x% . . . . . (644) 
i s  the least. 

I f  the section of the beam  be  uniform, - is constant; the 
I 

c1 

section of rupture is therefore evidently that which is most 
distant from the free extremity of the beam. 

415. THE BUM OF ORBATEST STRENGTH. 

The beam of greatest  strength being that (Art.  390.) which 
Presents an equal liability to rupture across  every Section, 
or in respect to which every section is brought inti the S t a h  

bordering upon rupture by the same  deflecting p ~ m m ,  is 
evidently that by which a given value of P & made to 
equation (6442) far all the possible  values of I, pi, and e in 
respect to which the formula 
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If the beam bc unifor~nly  loaded  throughout (Art. 3 X ) ,  
th is  co~rrlition becomes 

I . . . . . (t;tt;), 
.+CI 
- 

01' collsbnt, for all points in the  length of the beam. 
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1=i9r(1.~4-rp4) ; which expression may be put under the form 
Tcr(@+ kc*) (see Art. 86.), r representing the mean radius 
of the hollow cylinder, and c its thickness. Also c ,=T,  
=r+ !C ; 

. .  , P =xS . . . . . (650). (r'+W)cr 
(r + kc). 

417. The strongest f o m  of beam zm&r the conditions suppabed 
in the Zast article. 

1 s t .  Let  the section of the beam be a rect- 
angle, and let y be  the  depth of  this  rect- 
angle at a  point whose distance &om its 

breadth b be the same throughout. In this 
extremity A is  represented by x, and let its 

case I=&bf, q=$y ; therefore  (equation 

642) P= -=;Sb- .  If, therefore, P be 

taken to  represent the pressure which the 
beam is destined just to  suppart,  then  the 
form of ita section ABC is determined  (Art. 
415.) by the equation 

SI y* 
C I S  X 

y% SbX 
6P . . . . . (651); 

it is therefore  a parabola, whose vertex is at A.* 
If the portion DC of the beam  do not rest against . 

r- masonry at every point,  but  onlyat  its  extre- 
mity D, its form should evidently be the same 
with that of ABC. 

2d. Let the section be a circle, and let y 
represent its radius at distance x fmm.its 
extremity A, then I=w, cl=$; 'there- 

foreP=&rS; so that thegeomdricai f o r ~ ~  of 

its longitudinal in section is determined  by 

ys 

D the equation 

farm described in Art. 419, 
* The portion of the beam imbedded m the mssonrg should have the 

0 0  
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W1 
"=c:,uz . . . . . (653); 
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in the case of a  beam having a rectangular section of uniform 
breadth, must  be  substituted for Plpl in equation (642), 
and >-h? I X  J x for I, and for c, ; whence we obtaiu by reduc- 
tion 

?/=(g)'= . . . . . (655). 

Tbe form of greatest  strength is therefore, in this case, the 
straight line joining  the points A and B ; the distance DB 
being  determined  by  substituting  the distance AD for 30 in 
the above equation. 

That portion BED of the heam  which is imbedded in the 
masonry should evidently be of the same form with DBA.* 

420. If, in addition  to the uniform load upon the heam, a 
given  weight W be suspended from A, &L." + W= must  be 

substituted for P,pl in  equation (642) ; we shall thus ob& 
for the equation to the form of greatest  strength 

0 0  2 
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If the flanges be exceedingly thin, dl and 4 are exceedingly 
small; the first term of this expression may therefore be 
neglected. The equation will then become that  to a parabola 
whose vertex is at A and  its  axis vertical. This may there- 
fore be assumcd as a  near  approximation  to the true form of 
the curve AQC. 

Where  the material is cast iron, it appears by Mr. Hodg- 
kinson's experiments (Art. 413.) that n is to be  taken =6. 

42%. A BEAM OF UNIPORM SECTION IS SUPPORTED AT ITS  EX- 

TiZEMlTIES  AND LOADED AT ANY  POINT BETWEEN THEM: IT 

IS REQUIRED T O  DETERMINE THE CONDITIONS OF RUPTURE. 

The  point of rupture  in  the case of a uniform section is 
evidently (Art. 414.) the point C, 
from which the load is suspend- 
ed ;  representing AB, AC, BC, 
by a, R,, and Q; and observ- 

ing  that  the pressurc P, upon the  point B of the beam 

=- -, so that  the moment of PI, in respectto thesection of 

rupture C= __ l": we have, by equation (W), a-~- 
Cl 

WUl 

a 

Wa 
a 

WUIa,  SI. 
- 7  

SI0 
ala9cl . .  . W=--.  . . . (659). 

If the beam be rectangular, I~&,b8,  c,;.& 

. w=-~-- .  S bcqa . .  . . . .(m); 6 WP 

where W represents the breaking weight, S the m m b h  
of rupture, a the lengtb, 6 the brendth, C the de@, a d  
al, ap the distances of the  point c from the two exhemiti=, 
all these  dimensions  being in inches. 

If the load be suspended in the middle, UI=%=& 

12s be* 
Y a  

*.. W=--. . . . . (661). 
: 

: . :' 1' 
0 0  3 
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wa, sr 

a Cl 
L=- . . . . . (665)). 

1st. Let  the section  be reclangular; let ita breadth b be 
constant;  and  let its depth  at  the distance I from A be repre- 
scnted by y; therefore I=&by3, cl =iy. Substituting in the 
above equation  and reducing, 

y2=-= Gw";c . . . . . (666). 

The curve AC is therefore  a parabola, whose vertex is 
at A, and its axis horizontal. I n  like manner the curve 
BC is a parabola, whose equation is identical with the above, 
except that al is to be substituted  in  it for up. 

2d. Let  thc section of the beam be a circle. Repre- 
senting  the  radius of a section a t  distance I from A by yv 
we have I=$rry4, c,=y; therefore  by  equation (665) 

y3 =4;21. . . . . (667). 

. . . "-2wa, ---(---"> Saacy 4y2+c 2y+c . . . . . (668). 

0 0  4 
. .  

./ 
i~ , 



4% It' instead of the depth of the beam  bcing made to 
vary so as to adapt itself to the  condition (Art. 390.) of 
uniform strengtil, its  breadth L be  made  thus to vary, the 
depth c rcn~aining  the same; then,  assuming  the breadth of 
the  upper flange a t  thc  distance S from the  point of snppD't 
A to be represented by y, and the section of the lo\r.er 
flange to be 71 times greater than that of the  upper; ob- 
serving, moreover, that  in equation (508) AI=&, An=nAl 

pnred with A, and A,, and writing c for d,, we have by re- 
=nyd,; nrglecting also A, as  exceedingly  small when corn- 

duction 
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Also c1 being the distance of the lower surface of the beam 
from the common centre of gravity of the sections of the 
two flanges, we have cI(n+ ])=c. Eliminating, therefore, 
the values of I and c ,  from  equation (&S), 

x=wae Sa {;$(W + 
tho equation to a straight line. Each flange is thereforein 
this case a quadrilateral figure, whose dimensions are de- 
termined from the  geatest breadth ; this last being known, 
for the upper flange, by substituting al for S in the above 

from the  equation nb,d, = b,& in which h1 6, represent the 
equation, and solving in respect of y, and for the lowerflange 

greatest  breadths of the two  flanges, and dl 4 their depths. 

426. h BEAM IS LOADED UNIFORMLY THROUOHOUT ITS 

WHOLE LENGTH, A N D  SUPPORTED AT ITS EXTREMITIW: 

IT IS REQUIBED TO DETERMINE, 1. THE CONDITIONS O F  

ITS RUPTURE WHEN ITS CROMS SECTION 19 UNIFOI(M 

TIIROUGHOUT ; 2. THE S T R O N Q ~ T  FORM OF BEAM HAVING 

BEAM OF GREATEST STRENGTH IN REFERENCE BOT- ro  
EVERY WHERE A RECTANGULAR CILOSS SECTION; 8. THE 

TIlE FORM AND THE VARIATION OF ITS CROSS SECTIOA'. 

1. Tf the aert.inn of the beam be uniform,its point ofrupture 

equation (642) 

is determined by formula (6M)to be 
its middle point. Representing there- 
fore, in this case, tbe length of the 
beam bp 2a, the weight on each inch 
of its length by p, and ita breadth 
6; and observing that in this case 
p,p,=w*-++"$pa*, we have br 





c 
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%AIS 
z(,OU-Z)=-~----~. f i  . . (676); 

the  eqoation  to  a parabola, whose axis is the vertical pass- 
jng through the centre of the beam  whose parameter is 
%A$ 

P 
, and thc position of its vertex D determined by the 

fannula 

-~ 

CD=- %AIS ' . Pa* . ,  
4. I f  it be proposed to make the rib or plate  uniting the 

. . . (67'0. 

two flanges ruery where of the same depth *, and so to vary 
the brcadth of the 5anges as to give to the beam a uoifom 
strength  at all points  under these circumstances ; represent- 
ing by y the breadth of the  upper flange at a horizontal 
distance 5 from the point of support, we shall obtain, as in 
Art. Ms., 

uation, and 
,mined by 
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Let PI be conceived to  he  the less, and let  the prop A he 

PI will be increased, and diminished. Now if, after this 
moved nemer  to  the  extremity C; a, being thus diminished, 

change in  the position of the  prop, pr still remains less than 
h, it is evident that  the beam  will bear a  greater load than it 
would before,  and that when hy  continually increasing the 
load i t  is  brought  into the  state bordering upon rupture at 
A it wiIl not  be in the  state bordering upon rupture  at E. 
The  beam  may  therefore  he  strengthened yet  further by 
lnoving the  prop A towards C ; and thus continudty, SO that 
the beam  evidently hecomes the strongest when the pmp is 
moved into such a position that p1 may just equal h. This 
position is readily determined from equations(680) md(681) 
to  be that  in which 

a l=a( , /5 -~)=~44225a  . . . . . (68.2). 

429. A RECTANQULAR  BEAM OF UNIFORM SECTION AND 

UNIFORMLY LOAOBD IS SUPPORTED AT ITS EXTREMITIES, 

AND BY TWO PROPS SITUATED AT EQUAL DISTANCE6 

FIlOkI T H E M :  TO DETERMINE  THE CONOlTlONB OF 

TURE. 

- -  

Adopting the 8ame notation 

eqnation(548)  that  the dis- 
aa in Art: 376., it appe#a by 

est curvature of the  neutnl 
tance s1 of the point of p8 t -  

line, and therefore of tbe sec- 
tion of ruptrue in AB - .  h 

i , 
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Let  I’ represent  the  intersectiou of the  ncutrnl  line wit11 
the  plane of rupture, and pl the load per  inch of the wholc 
length of the beau  which would produce rupture  at P. 
Now thc sum of the moments of thc forces  impressed 011 

AP (other than  the elastic  furces on the section of rup- 
ture) is represented,  in  the  state  bordering  upon  rupturc, by 

I’,.rI-+plz?;  or, since P1=pp~l ,  it is  repwscnted hy  Pi’; 

whrnce  it follows hy  equation (6.1.2) that  the conditions of 
the rupture of the beam hetwcen A and B are  detennincd by 

the equat.ion ;r PI9  = + S W ,  or 

1 
:?p1 

1 
+l 

P I 3 -  -$r1 ’ Sbc2 . . . , . ( W ) .  

Eliminating the value of P, between  equations (556) and 
(G84), we obtain 

Substituting  this value of pl  in  equation ((i81’), and re- 
ducing, 
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of the length, which would produce a rupture at E. 
Nolv, the sum of the moments  about E of the forces im- 
Pressed upon AE is P I U + P , ( U - R ~ ) - ; , + ~ = ( P ~  +P&- 

- d l  -2n)p2u2 + Plna. Therefore by equation (@a) 
Pp~uz=pLpa~-O*pa-Pl)na--~u~(sincePn+Pn=pp) P,na - L 

- 1  

~ ( 1 - - 2 n ) l ~ ~ u ' + P , n a = ~ S b C ' ~  1 . . . . . (689). 

Substituting for P, its value from equation (556), and 
solving in respect to p*, 

If the  load be continually increased, the beam.will break 
k w e e n  A and B, or between B and C, according as p1 (equa- 
tion 685) or pn (equation 690) is the l e ~ .  

430. THE BEST POSITIONS OF THE PROPS. 

It may  he shown, as in  Art.428., that the positions in 
which the  props must be placed so  as to cause the beam to 
bear the  greatest possible load distributed uniformly over ita 
whole length, are those  by which the values of pI (equa- 
tion 685) and pn (equation 690) are made equal; the former 
of these  quantities representing the load, pm inch of the 
length, which  beiog uniformly distributed OV& the whole 
beam would just produce rupture between A and B, if it did 
not before take place between B and C ; and the latter  that 
which would, under the same ~ir~umstances, produce 

and B. 
between B and C if it had not before taken plae bet.neSn A 

must be placed from A to produce this qdtll i and lat the 
value of p, given by equation (6844) he S U b S t i b I d  Ps in 
equation (689) ; we s b d  thus obtain bp r&CtiOn 

Let,  then, na represent  the distance at W h i c h  the 

. .  



The negative  sign n ~ u s t  be taken in  this cspressiou, since 
the positive \rould give P , = F ~ ~  by cquation (GX1), and 
corresponds  therefore to the case n=O. Assuming tlle nrga- 
tive sign, and  reducing, we have 3(:!n-l)Pln=Sbc2. Sub- 
stituting in this espression for PI its  raluc S m n  cquation 
(FSG), and reducing, 

&(%L- 1) ( % - 3 )  
713fl:?n.1--2.1,,+~8- - 1. 

The three roots of this  equation  arc 1.~7087, *(i1078, and 
.%X)94. T h e  first and last are inadmissible: ; the one enrrj%~$ 
thc  point U beyond E, and the other assigning to  P, a nrga- 
tive value." The best position of the pro13 is therefore that 
which is determined by the raluc 

?L==61078 * . . . . (691). 
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of I t  is, however, to bo observed that  the svmhol a re- 
presents in that equation 
the distance BE ($9 
Art. W.); and that if we 

distance BE in that or 
take it to represent the 

the accompanying figure, we must substitute for a i n  
equation (690), since a=BE=AE--AB=(l-n)BE; so 

a that AE = This substitution being made, equation 

(690) becomes 
I -n' 

a 
-n 

Ils=$;y -3 4 l-*)l ; 
S W  (2n-3)(1 -n)l 

n -  ( 

and substituting  the value .6202 for n, we obtain  by redue- 
tion 

= .~~ a . . . . . . . . (692), S69 
a 

b' which formula the load perincb of the length of the beam 
1:ecessary to produce rupture is determined. 

If the beam had  not been prolonged beyond the pinta of 
support B and D and imbedded in the masonry, the0 the 
h d  per inch of the length necessBIy to produoe NptW 
would have been represented hy equation (674): e lh i -  
nating  between that equation and equation (692), we obtain 
p~p=3p; so that  the load per inch of the ]en& net- 

sary to  produce  ruptute is 3 times &B great, when the exwe- 
mities of the beam are prolonged and finds imbedded in the 
masonry, as when they  are  free ; .i. e. the atrmga Of the h?& 
i s  3 times as great in the me ewe (U i 9 k  tire OtbW. 





Tl lE  STREXQTH OF COLUMNS. 579 

was rouuded  and the other Aat, was  found to be an arithmetic 
In all cases the  strength of a column, one of whose ends 

mean between  the  strengths of two other columns of the 

same  dimensions, one having both ends rounded and the 
other  baring  both  ends flat. 

The above results only apply to the case in which the 
length of the column is so great  that i ts  k t u r e  is pro- 
duced wholly by thc bending of its  material; this limit is 
fixed by Mr. Ilodgkinson in respect  to columns of cast iron 
at  about fifteen times the diameter when the  extremities 
are  rounded, a n d  thirty times the diameter when they are  
flat. I n  shortcr columns  fracture takes place partly bp the 
crushing  and  partly by the  bending of the material. TO 
these  shorter columns the following rule was found to apply 

tons which would break the column by bending done (or if 
with su%cicnt accuracy : -" If W, represent  the weight in 

it did not crush) as given by the preceding formula, and 
W, the weight in tons which would break the column bp 
crnslling alone (or if it did  not bend) as determined from 
the above table, then  the  actual breaking weight W of the 
column is represented in tons  by the formula 

the  strengths of columns of cast iron, whose diameters 
Columns enlarged in the mi&. -It wm found that 

were  from one and a half times to twice 89 great 'in 

seventh  than solid columns, containing the same quantity of 
the  middle as a t  thc extremities, were stronger by one 

iron and of the =me length, when their extremities were 
rounded ; and stronger by one  eighth or one ninth when their 
extremities were flat  and  rendered immoveable cfiscs-. 







since by equation (695) P= (~~~ - ~ - ) ( ~ u )  ; i n  wlricll cx- 

pression ( @ U )  represents  the  lengt,h of the path dcscrihcd by 
the point P from its position of repose, so that  the Inoring 
force upon the puirrt l', when the pressure producing torsion 
is  rcmored, varies as the  path  describcd by i t  from its position 
of repose. 

The above is manifestly the  theory  of Coulomb's Torsi011 
Balance.* W represents  in  the furmula  the mciglrt of the 
mass supposed  tu be carried  rouud  by  the  point P, aud thc 
inertia of the  cylinder  itself is ncglcctcd as excecdingly 
small when  compared  with thc inertia of this weight.. 

The torsion of rectangular prisms l ~ a s  been made thc subject 
of the  profouud  investigntions of MM. Cauchy+, L a d  e l  
Clapeyron:, and   Po i s so r~ .~  It results from thcse  investi- 

nr G 
2a2L 

* hstrations of Mechanics, art.31. 
t Excrcisea de Mathematique, pe  ann&. 
i Crelle's Journal. $ M6~noires de I'Academie, tomc 
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! W i ~ s *  that if b and c be taken to represent the sides of the 
rectangular section of the prism, and the same notation be 
adopted in  other respects as before, then 

M. Cauchy  has shown the values of the constant G to 
be related to those of the modulus of elasticity E by the 
formula 

G=fE ..... (698). 
In  using the d u e s  of G deduced by this formula from the 

table of moduli of elmticity, aU the dimensions must be taken 
in  inches,  and the weights in  pounds. 

Ms. ELASTICITY OF TORSION A SOLID HAVING A CIR-. 

CUIIAR S8CTION OF VARIABLE DIMENSIUWS.  

Let nb represent an element of the solid contained 
by  planes, perpendicular to  the axis, whose 

= ; 3" distance from one another is represented by 
the exceedingly small increment & of the 
distance .z of the section ab from the fixed 
section AB, and let its radius be Rpre- 
sented  by y; and suppw the whole of'thp 
solid except this single element to become 
rigid, a supposition by  which the conditions 
of the equilibrium of this particuhr element 

ing the %me, and being that which produces 
will remain unchanged, the presswe P rem&- 

the torsion of this single e k n e n t  Whence, 

considering it a cylinder whose. len& is &, we have .by 
representing  by AB the angle of torsion of tbis element, a d  

equation (694), substituting for I its value flu*, 



436. THE RUPTURE O F  A C Y L l N D E E  BY TORSION. 

It is evident that  rupture will first take place in respect 
to thosc  elements of the cylinder which are  nearest to its  sur- 
face, the displacement of each scction upon its  subjacent section 
heing  greatest  about those  points which arc  nearest to  its 
circumfercnce. If, thereforc, we represent by T thc pressure 
per square inch which will cause rupture hy the sliding uf  
any section of the mass upon its contiguous section *, then 
will T represent  the resistance of  torsi011 per  square inch of 
the section, at  the distance r from the  axis,  at the instant 
when rupture is upon  the  point of taking place, the radius of 
the cylinder  being  represcnted by T. Whence  it follows that 
the displacement,  and  therefore the  rcsistance to torsion, 
per square inch of the  section, a t  any  other distance p 

from the axis, will be rcpreseuted at  that distance by 7, the TP 

(Art. 408.). 
* Or the preaswe per square inch necessary to dear it across 
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resistance upon any element AK by ;pAK, and the sum of 

the moments about the axis, of the resistances of all  such 

clements,by,Sp’AK, or by -I, or substituting for1 itsvalue r 
(equation F4) by aTrr”. But these  resistances are in equi- 
librium with the pressure P, which  produces  torsion, acting at 
the distance a from the axis; 

T 

T T 

:. Pa=)Trv” . . . . (701). 

It results from the researches of M. Cauchy,  before  referred 
to, that in  the case of a rectangular section whose sides are 
rcpresented by b and c, the conditions of rupture are deter- 
mined by the equation 

The length of a prism subjected to tomion does not affect 
the actual amount of the pressure required to produce rup- 
ture,  but only the angle of torsion  (equation W6) which 
precedes rupture, and thercfore the space  through whiclr the 
pressure must he  made to act, and the amount of WOBK which 
muat be do7u to  produce rupture. 

sion T is connected w-ith that S of m p t m  by t z a n s v w  
According to M. Cauchy, the modulus of rupture by tor- 

strain by the equation 

T=$S., . . . (703). 

L Navier, RmumC d‘ua Coum, &C. Art. 187. 
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W I 

I 
f~ rc'prescnt (Art. 95.) the efectiue  force  upon W,; and 

if& he taken to represent under the same circumstances the 

iucrclnent uf velocity received by W, theti will -h W9 repre  

Sent the effcctive fWCe upon W,. Whence  it follows,  by the 
principle of U'Alembert (Art. IO&), that if these effective 
forces be conceived to be applied to the bodies in directions 
opposite to those in  which the corresponding retardation and 
acceleration take place,  they will be in equilibrinm with the 
other forces applied to the bodies. But, by supposition,  no 
other forcea than these are applied to the bod&: these are 
therefore i n  equilibrium with one another. 

9 



588 IMPACT. 

:. w,(V,-T')~w,(v,+v). 
Solving thcsc  equations  in  respect to V, we 011t;tin 

the sign  being taken according as  tlle motions of tllc 
bodies before  inqlact are both  in  thes;nnc directiun o r  in 01)- 
posite directions. 

If the sccond body was at  rest bcfore impact, V,=O, null 

If  thc bodies he cqual in wcight, 

The  demonstration of this  proposition is wholly  indc- 
pendrnt of any  hypothesis as to  the  naturc of thc impinging 
bodies or their elastic  propertics ; t hc  pr011osition is there- 
fore true of all bodies, whatever may he  their degrces of bard- 
ness or thcir elasticity,  provided  only that at the  instant of 
greatest compression every part of each body partakes in the 
common velocities of the bodics, there  being no  relative or 
ribratory motion of t he  parts of cither body among them- 
selves. 

439. TO DETERMINE TIIE WORK EXPRADED UPON PRODUCING 

THE ST.ATE OF THE GREATEST COMPRESSION OF THE sun- 
FACES OF THE RODIES. 

The same  notation  being  taken as hcfore, the wholc work 
accunlulated  in  the bodics, before impact,  is  represented  by 

1 +&- Vi'; and  the work accumulatcd  in then1 at 

the  period of greatest compression, when  they move with  the 

cumnlon velocity V, is  represented by + + V*. Now 

the difference  between the  amounts of work accumulated  in 

1 ~ ~'V 2 

p Y  

W 
Y 

Y 
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the bodies in these  two states of their motion has  been  ex- 
pendcd in  producing  their compression; if, therefore, the 
amount of work thus  expended  be represented by a, we have 

Or substituting for V its value from  equation (106), and re- 
ducing, 

This expression represents the  amount of work permanently 
lost  in the  impact of two inelastic bodies, thcir common 
velocity after impact  being  represented by equation (706). 
If W, be exceedingly great as compared  with W,, 

. 
41.0. TWO ELASTIC BODIES IMPINGE UPON ONE  A3OTBF.R: 

I T  IS REUUlKED  TO DETERMINE THE VELOCITY  AFTER 

IMPACT, 

If the impinging bodies be perfectly elastic, it is  evident 
that aftcr the  period of their  greatest compredon ,is pmed,  
they will, in the act of expanding  their surfaces, exert mutual 
pressures  upon one another, which are, in corresponding PO- 
sitions of the surfaces,  precisely the Same with those which 
they  sustained  whilst  in  the  act of. compression ; whence it 
follows that  the decrements of velocity experienced by that 
body whose motion is retarded by this expansion of the S W -  

faces, and the increments  acquired bp that whose velQ&' is 
accelerated, will be equal to those before received in passing 
through corresponding positions, and therefore the Whole 
decrements  and  increments  thus received during  the whole ex- 
pansion equal  to those received during  the whole comPre@3ion. 

NOW the velocity lost by W, during the ~ m P ~ ~ i O n  
represented by (V, -V) ; that lost by it duringfie expansion, 
or from tile period of greatest compression M that when 
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bodies  separate from one  another, is therefore representcc1 by 
the same quantity. But  at the instant of greatcst cuwpressio~~ 
both bodies had the velocity V ; thc velocity rI  of \Vl at the 
instant of separation  is  therefore  V-(V,-V), or O V - S ' , .  
In like  manner,  the velocity gained  by W, during compression, 
and thereforeduringcxpnrlsiun, beillg rcpresented by ( V  +-V,), 
and  its velocity at  the  instant of grentest  compressiou IJY \', 
its velocity I.$ at  thc illstant of srparation is rcprcscntctl by 
V+(VTV,), or by OVTV,, the sign being takcn accord- 
ing as the  motion of the bodies bcfore  impact w a s  i l l  tllc samU 

or oppusite directions. 

;06), and  rfducing, we tilJt& 
Substituting for V its value i n  these expressions (rquntion 

"~~ = -. 
- +(W,-\V,)V,+"W,V, ~ 

W ,  +.W* . . . . (711).  

If the bodies be perfectly  elastic and  equal  in weight, 
u,=V,, r,=V, : they  therefore, in this case, inlerehn)rgr their 
vclocities by  impact ; and if either  was  at  rest before  impact, 
the othcr will be at rest after impact. 

If 'W, be exceedingly great ns compared with wl, e l=  
- V I j W v 4 ,  Q= +V,. In  this case v1 is  negative, or the 
motion of the lesser body alters its direction  after impact, 
when their rnotions before impact  were in opposite  directions; 
or when they were in  thc same direction,  provided that "VI 
be  not  greater  than V,. 

441. If  the elasticities of the balls be imperfect, the force 
with which t.hey tend  to  separate  at  any given point of the 
expansion  is  different  from that at the corresponding  point 
of the compression; the  decrements and increments of the 
velocities, produccd duriug given  corresponding  periods of the 

follows that  the whole amounts of velocity, lust by the one 
compression and  expansion,  are  therefore  different; whence it 

and gained by the  other  during the two  periods, are  different: 
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let tllcm bear to one  another the ratio of 1 to e. Now the 
velocity lost during compression  by W, is under all circum- 
stances represented by (V,-V) ; that lost during expansion 
is therefore represented, in this case, by .(Vl -V); therefore, 
a,=V-e(V,-V)=(I+e)V-eV,. In like manner, the 
velocity gained b y  W, during compression is in all e m s  re- 
presented by (V V,) : that gained during expansion is there- 
fore represented by e(VTV,) ; therefore, epV+e(VTVs) 
=( 1 t e)V eV,. Substituting for V, and reducing, 



443. Let U LC taken  to  represent tlre \?-hole amount of the 
work accumulated  in  the two bodics before their  impact, mhich 
is lost during their impact. This nmount of work  is  cvidently 
q u a l  t o  the difference between that gaiucd  by the uue body 
and  lost by the  other ; so that u=u,-u2. Substituting  the 
values of u1 and I I ~  froin thc preceding  cquations, and re- 
ducing, we obtaiu 

This expression is eqiual to onc half the vis viva lost during 
the impact uf the bodies. If the bodies be  pcrfcctly clastic, 
e = ] ,  aud u=O. I n  this case there is no real loss of vis viva 
in the impact,  all that which thc  one body yields, duriug  the 
impact,  being  taken up by the  other.* 

4448. In  the preceding  propositions it has  been supposed 
that  the motions of t he  impinging body, a d  the body impinged 
upon, arc opposed by no resistancc wlratever during  the period 
of the impact. There is no practical case in  which  this con- 
dition obt;~ir~s accurately. If, neverthelcss, the resistance 
opposed to  the nlotinn of each body bc small, as comparcd 
with the pressure cxcrtcd by each upon  thc  othcr, a t  any 
period of the impact, thcn  it  is evident that all thc circum- 
stances of the  impact as it proceeds, aud the motion of each 
body at  the  instant wrhcn i t  ceases, will be very  nearly  the 
mnle as though no resistance were opposed to the motion of 
eit1rer.t 

the impact of pcrfcctly elastic bodies. This loss is in all such cases to be 

* It has bccn custonlary, nevertheless, to speak of a loss of vis viva ill 

untlerstoud only as a loss experienced h? o m  of the bodies, and nut as an 
a t d o t e  lass. When thc impinging bodies are perfectly elastic,  it is cvident 
that the one flies away with all thc vis viva which is lost in the impact by 
the other. 

t Let P, and P, represcnt resistances opposed to the motions of two 

impinging bodies whose weights me W, and W, ; also let -->A, and 
W 
6 
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448. As an illustration of the principle  established in the 
last  article,  let it be required to determine the space through 
which a  nail mill be driven  by the blow of a hammer; and 
let it be supposed that  the resistance opposed to the driving 
of the nail is partly a constant resistance overcome at  its 
point, and partly  a resistance opposed  by the friction of the 
mass into which it is driven  upon its sides, varying in amount 
directly with the length of it r, at any time imbedded in the 
wood. Let this resistance be represented hy CL tPx;  then 
will the work which must  be expended in driving it to a 
depth D be  represented (Art. 61.) by 

J C L ~ + @ X ) ~ X ,  or by (MD+& I D' ). 
0 

Let W, represent the weight of the nail, and v the velocity 

it to drive i t  t o  this depth, and let the surfaces of the nail and 
with which a hammer  whose  weight is WI must impinge upon 

hammer both be supposed inelastic ; theu will the work 

represent the erective forces upon the two bodies at any P i o d  of the 

impact ; then, by D'Alembert's principle, 

Transposing and intEgrating between the limits 0 and I, 
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accumulated  in the hammer  hcfore  impact be represented 

by k- V2, and the amount of this work lost during  the 

impact  by  the compression of the surfaces of contact  will  be 

represcnted  (cquation 716) by i?!,(mw, ’ w’wz-)V!. The work 

remaining,  and effective to drive the nail, is therefore  repre- 
sented by the diflkrenue of thesc quantities ; and this work 
being that actually expendcc1 in driving the nail, we llave 

\VI 

9 

by the solution of whicll quadratic  cquation, D may be dcter- 
mined. 

44.6. T W O  SOLID  PRISMS  IIAVE A COMMON AXIS;  THE EX- 

TREMITY  OF  ONE  OF  TIIEM  RESTS  AGAINST  A  FIXED  SURFACE, 

AND  ITS  OPPOSITE  EXTREMITY  RECEIVES  THE  IMPACT,  IN A 

HORIZONTAL  DIRECTION,  OF  THE  OTllER  PRISM:  IT 18 RE- 

QUIRED r o  DETERMINE TIIE COXPRESSION OF EACH PRISM, 

TI16  IJYITS OF  PERFECT  ELASTICITY  NOT BEING PASSED I N  

T H E  IMPACT. 

Le t  W represent  the weight of the  impinging prism, and V 
its velocity before impact; Ll and L, the  lengths of the 
prisms before compression ; E, and E3 their  moduli of elas- 
ticity ; K, and K, their sections ; 2, and l2 the  greatest com- 
pressions produced in them respectively by the impact ; then 
will the amounts of work which must have been  done upon 
the prisms to produce  these compressions  be  represented 
(equation 491) by the formulie 

K I E l ~ l ~  
4 L, 

& J U S ’  and 4--- L ’  
1- 

and the whole work thus expended by 
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But  this work has been done by the work '-VJ, accumu- 

hted  (Art. 66.) before impact in the impinging body, and 
that work has  been exhausted in doing it ; 

W 
"9 

Eliminating &between this equation and the pmeding, and 
reducing, 

in which expressions l, represents the greatest COmPrmiOn Of 

the prism  whose section is K], and P the pressure at 
the  instant of greatest compression. 
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G O .  The d o c i t y  of the impinging W y  ai a*yp&d of the 
impacf, tire impact being supposed to takephca vwticdy. 

I t  is evident that a t  any period of the impact,  when the 
velocity of the impinging body is represented by D, there will 
have heen expended, upon the Compression of the two bodies, 
an amount of work which is represeated by the work a m -  
mulnted i n  the impinging body before impact, increased by 
the work done upon it by gravity during the impact, and 
diminislwd by that which still remains  accumulated in it, or 

Representing, therefore, by Y the work expended  upon 

thc compression of thc bodies, we have i-V+WZ- 
W 
9 

Substituting, therefore, for U ita d u e  frOm gmti'Jn 
(723), 

Or substituting for 1 its value in terms of P (quation 7k), 
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THE PILE DRIVER. 

451. I t  is evident  that  the pile will not  bcgill 
t o  be driven until a period of thc  impact  is 
attained,  when  the  pressure of the ram upon 
its head, together  with  the  weight of the pile, 
cxceeds  the  resistance  opposed  to  its  motion 
by the  cohcrenre  and  the  friction of the mass 
into which i t  is  driven. Let  this resistance 
bc  represented  by 1’; let V rcpresent  the vrlo- 
city of the ram a t  tllc instant of ilhpact, and 
W its velocity at  the  instant when thc pile be- 
gins  to move, and WI, W, the  weights of the 
ram and  pile;  then,  since  the  pile will have 
been  at  rest  during  the whole of the  intcr- 
vening  period of the  impact,  since  morcorrr 

the  mutual  prcssures Q of the surfaces of contact are, at   the 
instant of motion, represented  by P-W,, W C  hare  by  cqua- 
tion (725) 

If the value of W determincd  by  this  cquation  be  not a 
possible  quantity,  no  motion  can bc communicated to  the pile 
by thc  impact of the  ram : the foilowing inequality is  thcre- 
fore a condition  necessary to  the driving of the pile, 

After the pile  has moved through  any given distance, one 
portion of the  work  accumulatcd  in  the  ram before its  impact 
will have  been  cxpcndcd in overcoming, through  that distance, 

portion  will have been expended  upon the compression of 
the  resistance upposed to  the motion of  the  pile;  another 

the surfaces of the  ram and  pile ; and the remainder will bc 
accumulated in the moving masses of the  ram  and pile. The  
morion of the  pile  cannot ceasc until  after  the  period of the 
greatest compression of the ran1 and pilc  is  attained;  sincc  thc 
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feaction of the surface of the pile  upon the ram, and there- 
fore the driving pressure upon the pile,  increases m n t i n d y  
With the compression. If the surfaces be inelastic,  having DO 
tendency to recover the forms they may  have  received at  the 
instant Of greatest compression, they will move on afterwards 
with a common  velocity, and come to rest together; so that  the 
whole work expended prejudicially during the impact will he 
that expended upon the compression of the inelastic surfaces 
of the ram and pile. If, however,  both surfaces be  elastic, 
that of the ram will return from its position  of greatest com- 
pression, and  the ram will thus acquire a velocity relatively 
to the pile, in  a direction opposite to the motion of the pile. 
Until it has  thus reached the position in respect to the piIe 
in which it first began to drive it, their mutual reaction Q 
will exceed the resistance P, and the pile  will continue to be 
driven. After  the ram has, in its return, passed this point, 
the pile will still continue to be  driven through a certain 
space, by the work  which has been accumulating in it d h g  
the period in which Q has  been in exceas of P. When the 
motion of the pile ceases, the ram on its  return will thus have 
passed the point at which it first began to drive the pile: if it 
has not also then passed the point at which its weight is just 
balanced by the elasticity of the surfaces, it will  have heen 
continually  acquiring velocity relatively to the pile from the 
period of greatest compression; it will thus hare a certain 
velocity, and a certain  amount of work  will  be accumulated 
in it when the motion of the pile ceases:  this amount of 
work, together with that which must have  been  done to P* 
duce that compression  which the surfaces of contact re6 at 
that instant, will, in no respect have contributed to the 
of the pile, and will  have  been expended ~ l e ~ * Y .  Jf the 
ram in its return has, st the instant When the motion of the 
pile w e d  the point at which ita would jlmt 

velocity relatively to the pile will be in the act ofdimiai$liag i 
be balanced by the elasticity of $he eurfecea Of COnWs ita 

or it map, for an i,ns(nnt, cease at  the instant when *e 
pile ceases to move. In thie last c a ~ ;  the pile and mm* for 

imhnt, ~amiag to rest together^ the 
a a  4 
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l n t e d  in  the  impinging ram will have bccn usefully espcndcd 
in driving the pile,  excepting only that by which thr re- 
maining compression of the surfaces  has  been produced; 
which  compression is less than that due to  the weight of the 
ram. This,  thrrefore, may be considered the case in which a 
maxin~uln useful effect is produccd by the ram. Thc follow- 
illg article contains an analytical discussion of these  conditions 
under  their most general form. 

453. A prism iqJinged upon by m u t k r  is moveahle  in tho di- 
rection Gf its ax i s ,  and its ,,,olion i s  opposed by a constant 
pressure P: it i s  required to determine the eo~zditions of the 
motion during the period oJ infpact, the cireun~stanren of the 
i n p c t  hein9 i a  u ~ k e r  respects the sanae as i,n Article 4.50. 
Lct  fi and fz represent  the  additional velocities which 

would bc  lost and  acquired  per second (see Art. 95.) by tlle 
impinging prism and the prism  impinged  upon, if the pres- 
sures, at  any  instant  operating upon thcm, wcre to remain 

froln that  instant  constant;  theu  will -fl, 3 fg repre- 

sent the effective forces  upon the  two bodies (Art. 10%) or 
the pressures which would,  by the principle of 1)’Alcmbert, 
he in equilibrium  with  the  unbalanced  pressures  upon them, 
if applied in  opposite directions. 

Now the  unbalanced  pressurc  upon  the system 
B DP composed of the two prisms is reprcsentcd by 
a (Wl+Wz-P), 

W 1  W2 
9 

also the  unbalanced  pressure  upon  the  prism PQ 
=Wz+ Q-P, where Q represents  thcmutual pres- 
sure of the prisms at Q;  

:. W, --f2=Wz+Q-P . . . . . (729). 
9 

Let A have been the position of the  extremity B of the 
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impinging prism nt the instant of impact; and let x1 represent 
the space through which the aggregate length BP of the two 
prisms  has been diminished since that period of the impact, 
and S? the space through which the point P has moved; then 
(equation 721) 

Q=X, (K=+=- -  L LP 1 5  h . . . . (730). 

(729), and eliminating fo between the resulting equations, 
Substituting these values offi  and Q in equations (798)and 

- d2x1 - Y(7+K)",+z 1 1  . . . . . (131). 
dt"-h W 

Integrating this equation by the known  rules, we obtain 

in which expression the value of 7 is determined by the 
equation 

and A and B are certain constants to be determined by the 
conditions of the question. Snbstituting in equation (729) 
the value of Q from equation ( 7 3 9  and solving in 1- 

Substituting  for z1 its value from equation (739), and fox& ita 

value dty, and reducing, d"sp 
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when t=O, ----(l; the time heing supposcd  to  connncncc 

with  the motion of the prism 1’Q ; 

d,rl 
dl - 

Integrating a second time bctn-cell tllc same limits, 

Now when the motion of the second prism ccascs = O  ; 

wllence, if the corresponding value o f t  be reprcsentcd by T, 

dE2 

To determine  the  constants A and B, let  it be obscrved 
illat  the motion of the p r i m  &P cannot commence until  the 
pressure Q of tllc  impinging prism upon it, added to its own 
weight W,, is equal to the resistance 1’ opposed to its motion. 
So that  if c be  taken to reprcsent tllc value of .rl (i. e. the 
aggregate compression of the two prisms) at  that  instant, then, 

substituting for Q its value from equation (730), - + W,=P; 
C 

h 

Now since the time t is supposed to comtnence at t k  ’ lnstant ’ 

when this compression is attained,  and  the prism P a  is ~1po11 
the  point of moving, substituting  the above value of C for z1 
i n  equation ji32), and observing that wl-hcn IT=C;, t = O ,  ,ye 

obtain (I’-Wg)h=B+ -S-; wllence by sgbstitutiun from 

equation (733), and reduction, 

1 9  
y W, 

at rcst, the whole motion of thc  point U arises from the com- 

S O  long as the extremity P: of the  prism impingcd upon, is 
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pression of the two  prisms, and is represented by d.72 -. The 

value o f  - when t=O, i s  represented therefore by 0 (equa- 

tion 726). Difcrentiating, therefore,equatiou (732), assuming 

t = O ,  and substituting W for dr, we obtain a=7A; whence 

it appears  that the value of A is determined by dividing the 

~ Substituting for A and B their values in equation (736), 
square root of the second member of equation (726) by 7. 

dt 

dt  ' 

Reducing, and  dividing by the common  factor of the two lest 
terms, 

v( I -cos.yT) 
$TWP(P( W, + W*)-' - 1 1  

.__ +sin.yT-yT=O. . . . (759). 

Substituting for A and B their values  in equation (735), and 
representing byD the value of S, wheu t=T, 

The value of T determined by equation(739) being  substi- 
tuted  in equation (740), an expression is obtained for the 
wholc space through which the second  prism is driven by the 
impact of the first.' 

the same with that given by Dr. WheweU, io the last edition of h i  Me. 
chanicn, the principle of the Mvcstigation appears to be due to Mr. ?rep. 
great, then, since the value of T in io ell pracdd cnma e X d k d Y  md, 
If the value of y, BR determined by equstion (739). were not exCdn8lY 

the value of 7T would io all casea be exceedingly small, nod we 
approximate to the value of T in  equation (740), by subatituthg for C m  IT 

terms of IT. 
and sin. yT, the two first terma of the expansions Of thoJe rUnCth% in 

* The method of the above investigation is, &om equation (731), 



A P P E N D I X .  
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NOTE R. 
POXCELET~ F I R S T  T ~ ~ o n ~ n r .  

- 

let it be requircd to  detcrminc  the vuluc~ of  two  indeterminate  quantities 
li The values of a and 6 in the radical Jo'+h2 being lincar ancl rational, 

LI and ,3, such  that  the errors which result  from  assuming Jn'+ti'=an+i36, 

through B given range of the values of  the  ratio ( i )  , may be the  least pos- 

sible in reference to  tlte true value of the radical ; or that 
aa+/3b-Juv+h', 

~~ ~~~ 

4- 
or -~L -1, may  be the Icast possible in respect  to all that mange of 

values which this formula  may  he made to  assume between two given 

extreme values of the  ratio  Let  these  extreme values of the  ratio 6 
be represented by cot.+, and cot.+%, and any other value by cot. +. Soh- 

atituting  cot.+ for 6 In the preceding  formula,  and  observing that Ja2$ti' 

=Jb'rot.'++6'=6 coset.+, also that u a ~ @ = n I .  cot.++/3b=(a cos.++ 
p sin. $)b C O S ~ C .  +, thc correapondirlg error is represented by 

Ja=+bJ 
an + 

0 Q 

a .  

mcos,++/3sin.+-l . . . . . ( l ) ;  

which expression is cvidcntly a maximum for that value +,of + which is 
determined by the  equation 

0 cot. +a= ~ . . . . . P ( 2 )  i 

80 that its maximum value is 
J'?+@2-1 . . . . . (3). 
~- 

Moreover, thc function  admits of no other maximum value, nor  of any 
minimum value. The values of a and /3 being arbitrary,  let  them be 

asumed to be such  that ' or cot. +a may be  less than  cot. +,, and  greater P 

M. Poncelet;  thc principle is the same. 
* The method of this investigation is  not  the mrne as that  adopted by 





- l  --l 
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POXCELUT‘S SECOND TnEomeai. 

To approximate to the value of Jd-b*, let ba-@ be the for- 
mula of approximation, then will the relative error be represented by 

Now, let  it be observed that a* being essentially greater than d*, ! > l ;  

let i ,  therefore, be represented by cosec. +, then will the relative ermr be 

b 

represented by 1- -__I, or by 
(a cmec. $-p) 
J casec. g+--l 

~--asec.$+ptan.$ ..... (Iz)), 

which function  attains  its maximum  when sin.$=; Substituting this 0 

value in  the preceding formuln, and obsemng that -a see. $ +p tan. Q= 

Bubetituting these values in equation (14), and -1- m respect to & 
R E  
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I -  

- _ ~  ' ~ ~ - ' ~ _ _ _ I  I 

The following are the pitches commonly in use among mechanics : - 
ill. IO. io. in. in. io. in. 
1, 1:. l.:, l*, P, q ,  S. @ 

Prol: Willis considers the following to be sufficient below inch piteh :- 
in. I". l". in. io. 
;, p, *, Q. $. 

from formola 239, the nearest pitch is  to be taken from the above series to 
Having, therefore, dctemined  the proper pitch to be given to the tooth 

thnt  thus determined. 

XOTE F. 
EXPERrMEsTs OF M. MoRIN OX TIiE TRACTION OF CnRnlnc~s. 

T h e  following are among the general rcsdts deduced by M. Mucin  from 
his experinlents : - 
1. The traction is directly proportior~d  to  the load, and inversely propoi- 

tional to the diameter of the wheel. 
P. Upon a paved or B hard Mecn-adumized mad, the resistance is inde- 

pendent of the width of the tire when it exceeds fmm 3 to 4 iwhes. 
3. At a walking p e e  the traction is the same, under the name circum- 

stances, for carriages with springs and without them. 
4. Upon hard h a d a m i r e d  and upon paved  roads, the traction increases 

with the velocity ; the increments of traction being directly pm&d 

ahout e+ miles per hour. The equal increment of traction thus due to 
to  the increments of velocity above the velocity 3'20 feet per seoond, or 

each equal increment of velocity in less )U the road is more ~moab, Md 

4. Upon so* roads of CS&, 6r  nand or turf, or r o d e  fresh' Md  thiekb 
the carriage less rigid or better hung. 

gmvelled, the trnetion is independent of the velocity. 
3. Upon a ,,.d-made and compct pavement of hewn .tala. the tm+w 

Macdamieed  mad under nimihr circumstances; at B mttin% Pace it in 
st a walking pace is not more than three fourths of that "P" the k t  

equal to It. 
8. The destruction of the road is in alfcaae3- 
of the wheels mi less, and it in greater in m*onr *so +tb 
springs. 

E R  3 
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37 
38 

1.75216 1 1'76325 

li 

Sin.-' 
__ 

46 
47 

49 
50 
51 
52 
53 
54 
SS 
56 
57 
58 
59 
60 
61 

63 
62 

64 
65 
ti6 

68 
ti7 

69 
70 

72 
71 

75 

48 

.~ 

__  

-- 

-- 



G16 TIIE  ANGLES 0 P  RUPTURE 1 6  ARCHES. 

THE  TABLES OF M. GARIDEL. 

,=O. 

58'25 
57'11 
55'82 

-0'1 

~ 

G I "  50'. 

47 .84~  
53'64 
5 7 M )  

60'33 
6 1 'OR 
61'83 
61'18 

59'81 

59.07 

60.67 



THE A N G L E S  OF RUPTURE IN ARCHES. G17 

~ 

e1.0 

-_ 
50.99 
199" 

SS 0 5  
57'84 
59'79 
$1 '1 5 
6 2 0  
02'6 

69'5 
62'7 

.. 

42.7n 
50'17 
54'56 
57'11 
58'95 
60'16 
6091 
6 I .P5 
61 2 7  
61 00 5 7 'YO 

~. .. 

_- l 

57'13 

58'89 
57.93 

58.47 
5n.w 



0 ' . 5 0  

THE ANGLES OF RUPTUKE IN ARCHES. 

. ~ .. 
! 
.- 



0'0.5 

0'1.5 
0'10 

0'20 

0-30 
0'25 

035 
0'40 
0'45 
0'50 
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,=150. 

* 

- 
0'05 
0'10 
0'15 
0 2 0  
0'25 
0'30 
0'3.5 
0 4 0  

050 
04.5 

l '  

I 
I- 

OQ5 

0 1 5  
0'10 

0'20 
02.5 
0-30 
0'95 
0'40 

0'50 
0'45 

0.09355 016408 0'23605 0'30845 0'38101 
0.11597 0.17592 O - T J S P Z  0'30263 0'36609 
0'13295 0'18962 0'24640 0'50325 0'36009 
015058 0'20172 075314 0'30459 Oc?5606 
0.1649Y 0'21160 0'25834 0'30513 0.55193 

0.45365 
0'42957 
0'416% 

0'39876 
0'40755 

0'58951 
0'37990 
0'56791 
035524 
034128 
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0'58688 0'94881 

10%9Ln 0.40079 0'43240 046412 OB%" 

] 056657 , 
OS9494 0.42384 045177 0'59419 
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- 

- 

A 

A 
A 

A 
A 
d 
A 

B 
B 

B 
U 

B 

B 
B 
B 

B 
B 
B 
C 
C 

C 
C 
C 
C 

~ 

m 5  11. , i 
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621. TABLC OF TIIE hlECHANIChL  PROPERTIES 

I. 

1. 

/ i  
l 

l 

1 ;  
l 

R 

1U 

i 7  
l 
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n 

00 
W 
m 

. . l .  

. _ , .  
I ~ O I  n 



UYEFGL NUMBEIlS . 

I...& n=I'll.kie!Jo zJ.2 ... =144%f429 

1 ........ =0':1183090 -T 

TI ...... =9'&696O&.k 

=0.1013"1% 

.... = I.iP24538 

=@364189G 

d/n = 1.4l&zl3C 

li .... =2'2214 4.15 , 12 

I 
~ ....... ........ 0.4301582 

li- a 
- 

...... I di 1'253514.1 

...... O.iUi88.16 
Jn 

.... S/< 

.... 5 

I .......................................................................... =2'718181S 
Log.' .................................................................... =0.+3peoL5 
Modulus of common logarithms .................................. ='434294.482 

8 =3P19084 
Log of ditto =Q6377845 . .......................................................... 
.......................................................................... 

d g  ....................................................................... =5'ti7363 
. ................................................................... 

........................................... Inches in a French m&trc = 3 ~ 3 7 0 7 9  
Log g = 1'50772e-2 

Lpg.ofditto ........................................................... =1'5951741 

Log.ofditto =0'$159929 
Feet in ditto =32808992 

Acres in the Are ..................................................... =on2471 1 
Lbs . in a kilogramme ................................................ =e-zo548 
Log . OF ditto .......................................................... =o'3435031 
Imperial gallons in a litre .......................................... =a2200967 
Lhs . per square inch in 1 kilogramme per square millirnetre=14s2 

Volume of a sphere whose diameter is 1 =o'5235988 
Cwts ditto.  ditto = 1 2 7  

Arc of 1' to rad . 1 .................................................... = 0.017453293 
Arc of I' to rad . 1 ................................................... = @m$go888 

Degrees in an arc whose length is l = 5 ~ ~ 9 5 7 8 0 0  
Arc of 1" to rad 1  woo^^ woo^^ 

Grains in 1 oz . avoirdupois ........................................ =437+ 

........................................................... 

..................................................... .... 
Square feet in the square mttre ................................... =lo764897 

. ...................................................... 
........................ 

. .......................................... 
............................. 
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(k~sins in 1 Ih. ditto .................. ... ............................. =inon 

Cuhic irrchcs in a s  ounce of water ................................ =~%zgs 
(hairla in a cubic inch ofdistilled wdter, Bar.30 in., Th. 620=25245R 

Fcct in LL gccographical  mile ......................................... =GO756 
('obic inches in the Imprrial gallon .............................. =2i7.276 

Lop of ditto ........................................................... =2i83%92 
Fcct in B statute mile ................................................. =5280 
1.02. of ditto ..... ....... .................. ...... ... ............ ........ =3'7226330 
I m g h  of seconds' pendulum in inches .......................... =38'19084 
('uhir inches in 1 cwt. of cast iron ...................... . ........ =430'25 - BIW iron ............................... =3wm 

Cast brass .................. ...... ...... =368.BR - 
- Cast copper .................... ...... =352-41 
- 

Cubic feet in I ton of (laving stone ..... .. ..... .................. =14'S35 
Cmt lead ............................. ..=P72%0 

- Granite .... . ._. .. . ..... ... , .. . .. ... ...... ...... = 13'505 
Matble ........................................ =l3070 
Chalk ........ .,..... ., ..... ........ ..... ...... =IC874 
Limestone ............ ..... .. .... ..,. ..... ... = 1 1 W 3  
E h  ............................ . ........ ... ..... =64'4(30 
Honduras mahogany .......,. .............. =64'OLW 

- 
- - - - - F~~~~~ fir ............................... =51'650 
- Beech ............................... ..... ..... =51-494 

- - Rigs fir .................... .. ...... ........... ~ 4 7 . 7 6 2  

- Spanish mahagmy ....... .. ...... ...........X 42'066 
A &  and Dantzie oak .......,........... ... =47'158 

English oak .................................. =36m - 
~u find the weight in Ihs. of 1 foot of common rope, multi- 

Ditto for B cable ............................. . ........ .................' 027 
ply the square of ita circumferince in inches by .-.. . 'OM M '046 

sote. - me nrlmerical "dues of the funetions of I in this table, ",ere calcu- 
lated by Mr. Goudwi,,, m-, together with the numbers of cubic mehea md 
feet per tan of different materials, me d e n  the h Ih.. Grogory'. 
ercollent treatise, entitled Mechoniufm Radicnl ,We#. The other Of 

the table are priocipally taken from Mr. Babbsge'9 Tab*r .fw'bm md 
Aide Mmoire of M. Morin. . , 

THE END. 






